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Abstract— We investigate the design of periodic gaits that will
also function well in the presence of modestly uneven terrain.
We use parameter optimization and, inspired by recent work
of Dai and Tedrake, augment a cost function with terms that
account for perturbations arising from a finite set of terrain
height changes. Trajectory and control deviations are related
to a nominal periodic orbit via a mechanical phase variable,
which is more natural than comparing solutions on the basis
of time. The mechanical phase variable is also used to penalize
more heavily deviations that persist “late” into the gait. The
method is illustrated both in simulation and in experiments on
a planar bipedal robot.

I. INTRODUCTION

To be practical, bipedal robots must be able to walk
over uneven terrain with imperfect knowledge of the ground
profile. In this work, the gait design problem is formulated
in terms of parameter optimization, with a cost function that
accounts for periodicity under nominal walking conditions,
and additional terms that specifically account for trajectory
and control-effort perturbations arising from a finite set of
ground height changes. When the method is evaluated on
the planar biped shown in Fig. 1, for modest terrain height
variations typical of sidewalks, parking lots, and maintained
grass fields, it is observed that a cost function that favors
quasi dead-beat rejection of terrain disturbances results in
the best performing gaits of the three tested approaches, both
in simulation and in experiments.

Numerous methodologies are being considered to quantify
and improve the capacity of a bipedal robot to walk over
uneven terrain. The terrain variations can be deterministic or
random, and the control policy can involve switching or not.
The gait sensitivity norm [1]–[3] has been used to measure
deviations in state trajectories arising from unknown step
decreases in ground height. Swing-leg retraction, employed
by bipedal animals [4], has been observed to be helpful in
accommodating this class of disturbances. The mean-time to
falling has been used in [5] to assess walking performance
in the presence of stochastic ground height variations. For
low-dimensional dynamical systems, such as the rimless
wheel and the compass bipedal walker, numerical dynamic
programming has been used to maximize the mean time to
falling. The simultaneous design of a periodic walking gait
and a linear time-varying controller that minimizes deviations
induced by ground height changes is addressed in [6], [7].
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Fig. 1: MARLO, an ATRIAS 2.1 robot designed by the
Dynamic Robotics Laboratory at Oregon State University,
walks with unknown terrain heights.

The results are illustrated through simulation on the compass
gait biped and on Rabbit, a five-link biped with knees. A
time-invariant linear controller that is robust to modest terrain
variations is developed in [8], using transverse linearization
and a receding-horizon control framework; experiments are
performed on a compass-gait walker. An event-based con-
troller is given in [9] that updates parameters in a fixed
controller in order to achieve a dead-beat control response,
in the sense that after a terrain disturbance, it steers the
robot’s state back to its value at the end of the nominal
periodic gait. A control architecture that switches among a
finite-set of controllers when dealing with terrain variation
is studied in [10], [11]. In the current paper, we seek a
single (non-switching) controller and nominal periodic gait
that are insensitive to a predetermined and finite set of
terrain variations. This choice is motivated in part by ease
of implementation, but even in the context of a switching
controller, it seems desirable that one of the controllers be
insensitive to a pre-determined range of terrain variation.

Motivated by the approach of Dai and Tedrake [6], [7],
we seek a periodic walking gait that can accommodate a
finite set of perturbations in ground height. Trajectory and
control deviations induced by the perturbations are defined
with respect to a nominal periodic orbit via a mechanical
phase variable. As in [12], a parameterized family of non-
linear controllers is assumed to be known and constrained
parameter optimization is used to select a periodic solution
of the closed-loop system that satisfies limits on torque,
friction, and other physical quantities. Motivated by [6],



[7], the cost function is augmented with terms that penalize
deviations in the state and control trajectories arising from
the terrain perturbations. Two choices of cost function are
studied. In one of them, the mechanical phase variable is used
to penalize more heavily deviations that persist “late” into
the gait while the other cost function makes no distinction
of when the deviations occur. Focusing on deviations late
in the gait is shown to improve the ability of the robot in
Fig. 1 to handle terrain deviations, both in simulation and in
experiments.

With respect to prior work on terrain variations, the
primary contributions include:
• Allowing a family of nonlinear controllers to be

searched over in the disturbance attenuation prob-
lem.

• Synchronizing the calculation of trajectory and
control deviations of a biped’s gait via a mechanical
phase variable.

• Penalizing more heavily trajectory deviations that
persist late into a step, when ground contact is
likely to occur.

• Illustrating in experiment the potential utility of
trading off deviations early in the step for improved
attenuation of the disturbance toward the end of the
step.

II. WALKING MODEL AND SOLUTIONS

A. Hybrid Model

The walking model assumes alternating phases of single
support (one foot on the ground) and double support (both
feet in contact with the ground). The single support phase
assumes the stance foot is not slipping and evolves as a
passive pivot. The standard robot equations apply and give a
second order model that is expressed in state variable form

ẋ = f(x) + g(x)u, (1)

where x ∈ X is the state of the system and u ∈ Rm are
the control inputs. For later use, a parameterized family of
continuous-time feedbacks is assumed to be given

u = Γ(x, β), (2)

where β ∈ B are control parameters from an admissible set.
The resulting closed-loop system is

ẋ = f cl(x, β) := f(x) + g(x)Γ(x, β). (3)

The closed-loop system is assumed to be continuously dif-
ferentiable in x and β, thereby guaranteeing local existence
and uniqueness of solutions.

With the stance foot taken as the origin let, p2 be the
Cartesian position of the swing foot on the second leg, and
denote by pv2 its vertical component. The double support
phase occurs when the swing foot strikes the ground which
is modeled as

pv2(x)− d = 0, (4)

for d ∈ D, a finite collection of ground heights used to
account for varying terrain. It will be assumed at impact that

the transversality condition ṗv2(x) < 0 is met. Physically,
it corresponds to the impact occurring at a point in the
gait where the swing foot is moving down toward the
ground, as opposed to the impact occurring early in the gait
which would lead to tripping [11]. The impact is modeled
as a collision of rigid bodies using the model of [13].
Consequently, the impact is instantaneous and gives rise to
a continuously-differentiable reset map

x+ = ∆(x−), (5)

that does not depend on the ground height. Here, x+ is a
vector of the post-impact states and x− is the vector of pre-
impact states. So that only one continuous-phase mechanical
model is needed, the impact map is assumed to include leg
swapping, as in [12, pp. 57]. Moreover, for reasons that will
become clear in Section IV, the impact map is allowed to
depend on β.

The overall hybrid model is written as

Σ :

{
ẋ = f cl(x, β) x− /∈ Sd

x+ = ∆(x−, β) x− ∈ Sd
(6)

where
d ∈ D := {d0, d1, · · · , dN} (7)

is the set of ground height variations and

Sd := {x ∈ X | pv2(x)− d = 0, ṗv2(x) < 0} (8)

is the hypersurface in the state space where the swing leg
impact occurs at ground height d ∈ D.
Remark: The reference [12, pp. 109] shows how to augment
the state variables with control parameters in order to accom-
modate event-based control, as used in [9]. This extension is
employed later in (32).

B. Model Solutions

For a given value of β ∈ B, a solution of the hybrid
model (6) is defined by piecing together solutions of the
differential equation (3) and the reset map (5); see [12,
pp. 56], [13]. Because we are interested in periodic orbits
and their perturbations, we exclude Zeno and other complex
behavior from our notion of a solution.

In the following, for compactness of notation, explicit
dependence on β is dropped. A step of the robot starts at
time t0 with x0 ∈ S d̄0 for a given value of d̄0 ∈ D. The reset
map is applied, giving an initial condition ∆(x0) for the ODE
(3), with solution ϕ(t, t0,∆(x0)). The step is completed if
the solution of the ODE can be continued until a (first) time
t1 > t0 when x1 = ϕ(t1, t0,∆(x0)) ∈ S d̄1 for a given
value of d̄1 ∈ D. Not all steps can be completed, but when
one is completed, the next step begins by solving the ODE
with initial condition ∆(x1) at time t1, etc. The solution (or
step) is periodic if ϕ(t1, t0,∆(x0)) = x0, and T = t1 − t0
is the period. Because the model is time invariant, wherever
convenient, the initial time is taken as t0 = 0 and the solution
denoted as ϕ(t,∆(x0)).



III. OPTIMIZATION FOR ACCOMMODATION OF
UNKNOWN TERRAIN DISTURBANCES

Let d0 ∈ D represent the nominal change in ground height
step to step. We seek β ∈ B and x0 ∈ X giving rise to a
periodic solution of the closed-loop system (6); that is, for
which there exists T0 > 0 such that

x0 = ϕ(T0,∆(x0)). (9)

Moreover, for the same value of β ∈ B, we desire that
the periodic orbit ensures the existence of the following
additional solutions of the closed-loop system: ∀ 1 ≤ j ≤ N ,
dj ∈ D, ∃ 0 < tj <∞, and 0 < Tj <∞ such that

xj := ϕ(tj ,∆(x0)) ∈ Sdj , (10)

and
ϕ(Tj ,∆(xj)) ∈ Sd0 . (11)

In plain words, there exist steps that begin on the periodic
orbit, end at ground height dj , and continue for at least one
more step at nominal ground height d0.

In the following, we set up a parameter optimization
problem in (β, x0) for finding a periodic solution that meets
these conditions. Moreover, we will pose a cost function
on the steps following the change in ground height that
favors solutions that “return closely” to the nominal periodic
solution, that is, the closed-loop system attenuates the effects
of the set of ground height variations.

A. Mechanical Phase and Trajectory Deviations

As in [6], [7], we have found that computing deviations of
the perturbed solutions from the nominal periodic solution
does not work well when the trajectories are parameterized
by time. This is because terrain disturbances cause varying
initial conditions, which cause perturbed trajectories to be
unsynchronized with respect to time. We use instead a
mechanical phase variable τ̄ : X → R that is strictly increas-
ing along walking steps. Examples include the horizontal
position of the center of mass, the horizontal position of the
hips, or the angle of the line connecting the hip and the
ground contact point of the stance leg, which will be used
in Section IV. The mechanical phase can be thought of as
a measure of progress through each step. We further assume
that the units are normalized on the periodic orbit so that it
takes values in [0, 1], namely

τ̄(∆(x0)) = 0 (12)
τ̄(x0) = 1, (13)

and that Lg τ̄(x) := ∂τ̄
∂x (x)g(x) = 0.

Let τ̄j(t) := τ̄(ϕ(t,∆(xj)), for 0 ≤ t ≤ Tj , and as in [6],
denote by τ+

j and τ−j the initial and final values of τ̄ along
the trajectory. Due to the strictly increasing assumption, the
inverse map τ̄−1

j : [τ+
j , τ

−
j ]→ [0, Tj ] exists. Define

x̃j(τ) := ϕ(τ̄−1
j (τ),∆(xj)) (14)

ũj(τ) := Γ(ϕ(τ̄−1
j (τ),∆(xj)), β). (15)

For 1 ≤ j ≤ N , deviations in the state and control
trajectories are defined as

δxj(τ) :=


x̃j(τ)− x̃0(0) if τ < 0

x̃j(τ)− x̃0(τ) if τ ∈ [0, 1]

x̃j(τ)− x̃0(1) if τ > 1

(16)

δuj(τ) :=


ũj(τ)− ũ0(0) if τ < 0

ũj(τ)− ũ0(τ) if τ ∈ [0, 1]

ũj(τ)− ũ0(1) if τ > 1

(17)

for τ+
j ≤ τ ≤ τ

−
j .

Using (16) and (17), the weighted square error is defined
as

||δxj(τ)||2 :=< Qδxj(τ), δxj(τ) > (18)
||δuj(τ)||2 :=< Rδuj(τ), δuj(τ) >, (19)

for Q and R positive semi-definite (constant) matrices.

B. Cost Function

The problem of defining a cost function J0 and appro-
priate equality and inequality constraints for determining a
nominal periodic solution of (3) has been addressed in [12,
pp. 151-155], [14], [15] using parameter optimization. Here
we define additional terms that penalize deviations induced
by the terrain height disturbances in D.

For 1 ≤ j ≤ N , we define

Jj =

1

(τ−j − τ
+
j )

∫ τ−
j

τ+
j

(
||δxj(τ)||2 + ||δuj(τ)||2)

(τ − τ+
j )

(τ−j − τ
+
j )
dτ.

(20)

The term
(τ−τ+

j )

(τ−
j −τ

+
j )

under the integral scales the errors so
that initial deviations from the nominal periodic trajectory
are discounted with respect to errors toward the end of the
step. The rationale for this is that errors directly following
the previous impact are much less problematic than errors
that can compound at the following impact at the end of the
step. The term 1

(τ−
j −τ

+
j )

outside the integral is included so
that perturbed step costs are normalized w.r.t. the varying
ranges of τj resulting from higher and lower terrain distur-
bances. The benefit of the scalings introduced in (20) will be
illustrated by comparing control solutions that include them
against those that do not.

The overall cost function is

J = J0 +

N∑
j=1

wjJj , (21)

where wj determines the relative weight of each perturbation.
Parameter optimization problem: Find (β;x0) that (lo-
cally) minimize J subject to the existence of a periodic
solution of (6) that respects ground contact conditions, torque
limits, and other relevant physical properties, as illustrated
in Section IV-(C).
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Fig. 2: State description for planar model of MARLO we
use for simulation and control design.

IV. OPTIMIZATION IMPLEMENTATION

We now provide an implementation of the optimization
approach for rejecting terrain disturbances presented in Sec-
tion III.

A. Bipedal Robot MARLO

The robot used in this study, MARLO, is the Michigan
copy of the ATRIAS-series of robots built by Jonathan Hurst
[16]. The dynamic model is described in reference [17]. The
robot’s mass is approximately 55 kg and its legs are one
meter long. Here, the robot is planarized through attachment
to a boom. Furthermore, while the robot has series elastic
actuators, the springs are stiff and in this study are removed
from the model. With these simplifications, the robot has five
DOF when in single support and four actuators.

The configuration variables are defined in Fig. 2. Specifi-
cally,

q =
[
θ, qact

]′
, (22)

where θ is the absolute angle of the stance leg clockwise
from the horizontal plane at ground contact and

qact =


qLA,ST
qLA,SW
qKA,ST
qKA,SW

 (23)

is a vector of the actuated configuration variables. In (23),
LA and KA are abbreviations of leg angle and knee angle,
respectively, and ST and SW designate the stance and swing
legs. The Lagrangian model for single support and the impact
model are derived as in [17]. These models give rise to (1)
and (5), with x = (q; q̇) ∈ X an open subset of R10 and u ∈
R4 for one degree of underactuation during single support.

B. Family of Feedback Controllers

The feedback controller is designed using the method
of virtual constraints and hybrid zero dynamics [18], [19].
Briefly, a holonomic constraint that is expressed as an output
and zeroed through the action of an actuator rather than the
internal forces of a physical constraint is said to be virtual.
Virtual constraints can be used to synchronize the links of a
robot in order to achieve common objectives of walking, such
as supporting the torso, advancing the swing leg in relation

to the stance leg, specifying foot clearance, etc. For planar
MARLO, four virtual constraints are defined, one for each
available actuator. The output vector y is defined in terms of
the configuration variables and a set of parameters κ and β,

y = h(q, κ, β), (24)

in such a way that the output has vector relative degree 2 [20,
pp. 220] on a subset of interest, X ×K×B. Specifically, κ
is used to maintain hybrid zero dynamics following impacts
with terrain disturbances. The feedback controller is based
on input-output linearization, namely

uff (q, q̇, κ, β) := −
[
LgLfh(q, κ, β)

]−1
L2
fh(q, q̇, κ, β),

(25)

ufb(q, q̇, κ, β) := −
[
LgLfh(q, κ, β)

]−1(
Kpy +Kdẏ

)
,
(26)

with

u = Γ(q, q̇, κ, β) := uff (q, q̇, κ, β) + ufb(q, q̇, κ, β). (27)

Along solutions of the closed-loop system,

ÿ +Kdẏ +Kpy ≡ 0. (28)

Appendix A gives an explicit construction of h(q, κ, β) in
terms of the actuated variables qact and a set of degree (M+
1) Bézier polynomials. Moreover, with this output choice, it
is straightforward to construct a function Ψ : Sd × B → K
such that for all

β ∈ B and
[
q+

q̇+

]
= ∆(q−, q̇−)

the initial values of the outputs are zeroed, that is,[
0
0

]
=

[
y+

ẏ+

]
=

[
h(q+, κ+, β)

∂
∂qh(q+, κ+, β)q̇+

]
(29)

for κ+ = Ψ(q−, q̇−, β).
The parameters κ are constant within each step and are

reset at the end of each step. They are thus formally states
and are included in the dynamics with

xe :=
[
q, q̇, κ

]′
(30)

and κ̇ = 0. The closed-loop model used in the optimization
is then

Σ :

{
ẋe = f cl(xe, β) x−e /∈ Sde
x+
e = ∆e(x

−
e ) x−e ∈ Sde ,

(31)

where

f cl(xe, β) = f cl(x, κ, β) :=

[
f(x) + g(x)Γ(x, κ, β)

0

]
,

(32)

∆e(x
−
e , β) :=

[
∆(q−, q̇−)

Ψ(q−, q̇−, β)

]
, (33)

and
Sde := Sd ×K. (34)

Remarks: (a) The reset map is independent of the current
value of κ. (b) Because of the second-order system (28) and



the reset map in (29), solutions of (32) that are initialized
in Sde satisfy y(t) ≡ 0. This has two consequences: (i)
The solutions evolve on the zero dynamics manifold, a 2-
dimensional invariant surface and can thus be computed from
a 2-dimensional vector field [19], [21]. This fact is used
to accelerate the parameter optimization process. (ii) The
feedback term ufb in (26) is identically zero, and thus Γ in
(27) is independent of the gains Kp and Kd.

C. Mechanical Phase and Three Periodic Orbits

Along periodic walking gaits, the coordinate θ shown in
Fig. 2 is monotonic and cycles between a minimum value
θmin and a maximum value θmax. The mechanical phase
variable is defined as

τ(x) =
θ − θmin

θmax − θmin
. (35)

The cost function for the nominal periodic orbit is taken
as

J0 =
1

step length

∫ T0

0

< u, q̇motor > dt, (36)

where T0 is the period, u is the 4-vector of motor torques,
and q̇motor is the corresponding 4-vector of motor angular
velocities, obtained from the link velocities and gear ratios
[17]. The inner product of q̇motor and u is instantaneous
mechanical power.

The nominal periodic orbit was computed for walking on
level ground, that is d0 = 0, by optimizing (36) subject to
(32), and the following additional constraints: peak motor
torque less than 2.5 Nm; vertical ground reaction force
positive and friction coefficient less than 0.6; minimum foot
clearance at mid-stance of 0.05 m; minimum knee bend
of 22o to avoid hyperextension; average walking speed of
at least 0.75 m/s; minimum swing-leg retraction of 7o;
dimensionless swing-leg retraction less than -0.5 [2]. The
computations were performed with fmincon in MATLAB.

The set of terrain variations was taken as D =
{0,±2 cm,±4 cm}. A second periodic gait was found
that minimized the cost function (21), with wj = 100 for
1 ≤ j ≤ 4. Taking the weights all equal is analogous to
assuming a uniform distribution of terrain variations [7].

To investigate the utility of discounting trajectory devia-
tions that occur early in the perturbed steps, a third periodic

orbit was found with the term
(τ−τ+

j )

(τ−
j −τ

+
j )

removed from (20),
resulting in

Jj =
1

(τ−j − τ
+
j )

∫ τ−
j

τ+
j

(
||δxj(τ)||2 + ||δuj(τ)||2)dτ. (37)

In total, three gaits have been computed: a periodic gait
that does not account for terrain variation and two that
do. These will be denoted as Nominal, NS4cm and S4cm,
where the NS (not scaled) refers to the cost function (37)
and S (scaled) refers to the cost function (20). In the next
section, these gaits are evaluated both in simulation and
experimentally.

∆y

∆x

∆y

Fig. 3: Sloped (bottom left) and step (top right) terrain

V. RESULTS

The “raw” simulation and experimental results are given
here, with discussion given in Section VI. Videos of
the experiments are available at http://youtu.be/
OmhzbsCDN34 [22].

A. Simulations

1) Control Law: The simulations are conducted with
the same controller that will be used in the experiments.
Because the model of the robot is imperfect, even with the
initialization (29), the outputs (24) (see also (38)) will not
remain zero. Hence, the feedback term (26) is used with
Kp =

( 1
0.03

)2
and Kd = 60. Due to the 50:1 gear ratio of the

harmonic drives, the feedforward term (25) is not essential
and is dropped, as in [14]. The parameter update portion of
the reset map (29) is pre-computed and interpolated using
τ(x+) of each step.

2) Terrain and Results: Two types of terrain profiles
were generated, stepped and sloped, as shown in Fig. 3.
Step-terrain profiles consist of one vertical displacement per
step, modeled as an i.i.d. uniform random variables with
−4 cm ≤ d ≤ 4 cm. Fifty such terrains were generated, each
with a length of 10,000 steps. The sloped terrain is meant to
more closely approximate real ground variation. It uses an
additional i.i.d. uniform random variables to determine the
horizontal intervals between vertical displacements. Because
the average step length of the three periodic gaits was
approximately 0.5 m, the horizontal intervals are chosen
uniformly between 0.25 m and 0.75 m. Because the intervals
between height changes are random, it is possible to have
more than one vertical displacement in the span of a single
walking step. As a result, the sloped-terrain profile admits
disturbances that exceed 4 cm over a single step. Fifty sloped
terrains were generated, each long enough that at least 10,000
steps would be possible.

Each of the three gaits was evaluated over each of the
100 terrain profiles, 50 stepped and 50 sloped. A simulation
over a given terrain profile was initiated at the gait’s fixed-
point and terminated when the robot reached 10,000 steps or
fell. A fall could occur from losing momentum and falling
backward, gaining too much momentum and falling forward,
or slipping after violating ground contact constraints. The
results of these simulations are summarized in Table I.



TABLE I: Simulation results for all control solutions.

Number of Steps
Variation Finished

Control Meana Med. Min. Max. Coef. Trials
4 cm Step Terrain

Nominal 192 112 6 1157 1.22 0
NS4cm 85 67 5 404 0.96 0
S4cm 4616 4499 165 104 0.73 4

4 cm Sloped Sidewalk
Nominal 481 331 17 2224 0.93 0
NS4cm 218 178 15 740 0.79 0
S4cm 4543 3335 40 104 0.71 8

aS4cm mean could be higher, but trials were limited to 10,000 steps.

TABLE II: Cost function J0 evaluated on periodic terrain
with constant step height changes.

Constant Step Periodic Efficiency (J/m) a

Disturbance Nominal NS4cm S4cm
3 cm Unstable Unstable 58.5
2 cm 41.2 42.4 55.7
0 cm 35.6 39.6 52.5

-2 cm 35.2 37.8 48.4
-4 cm 42.3 36.0 39.7

aPeriodic efficiency is calculated using (36).

An additional set of simulations over terrain with periodic,
constant stepped height changes was performed and the cost
function J0 in (36) was evaluated. The results are in Table II.

B. Robot Experiments

1) Experiment Setup: The robot MARLO with point feet
is attached to a 2.4 m boom to impose a planar gait. The
center of the boom is mounted near a wall of the laboratory,
and hence the maximum distance of an experiment is 7.5 m.
Because the robot is walking in a circle, the outside leg
travels a longer distance than the inside leg. To partially
compensate for this, in the last 25% of a gait, the lateral hip
angles are commanded to move the feet toward the center of
the robot; to avoid leg collisions, the legs are moved outward
toward the middle of the gait.

A terrain of variable height is constructed by stacking
sections of plywood that are approximately 61 cm long [23,
Fig. 25]. The plywood terrain is then overlaid with rubber
mats to increase friction. Each experiment is initiated from a
static pose with the robot’s CoM a few millimeters in front of
the stance leg. Each terrain begins with a few steps downward
so that the transfer of potential energy to kinetic energy will
cause the robot to quickly transition from zero velocity to
approximately its velocity on the periodic orbit.

2) Experiment Results: When a fall occurred in the sim-
ulations, it was only after consecutive uphill steps. We thus
set up an uphill terrain, shown in Fig. 4, to compare the
Nominal, NS4cm, and S4cm gaits. Each of the three gaits
was executed over the uphill terrain three times for nine
total trials, as shown in Table III. The S4cm controller was
able to complete all three trials with a consistent walking
speed, as shown in Fig. 5. The Nominal controller was able

TABLE III: Experimental results for all control solutions.
Three consecutive trials are performed for each controller
on the Uphill Terrain depicted in Figure 4. S4cm is the only
controller to complete the terrain on all three trials.

Number of Steps Finished
Control Trial 1 Trial 2 Trial 3 Stalls Falls Trials

Uphill Terrain
S4cm 12 12 12 0 0 3

Nominal 12 12 7 1 0 2
NS4cm 7 6 7 2 1 0
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Fig. 4: Planar view of experimental terrain we use for
comparing control. Stair height is accurate (brown), while
the rubber mats heights are approximate (black).
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Fig. 5: Walking speed vs. step number for all Uphill Terrain
experiments. Lines connect data for each control from max-
imum to minimum speeds. Data points for incomplete steps
are set at zero.

to complete the terrain course twice, but stalled1 during one
trial. The NS4cm controller was not able to complete the
terrain on any trials due to stalling on two trials and falling
on one.

In the next set of experiments, the S4cm gait was further
evaluated over the terrains illustrated in Fig. 6. We performed
consecutive completed trials for each terrain. The results are
documented in the video [22]. Height changes for experi-
mental terrains are given in Table IV.

VI. DISCUSSION

Table V presents the minimum angular momentum about
the stance leg over the step following a terrain perturbation

1A stall occurs when the robot lacks adequate momentum to complete
a step, and thus settles backward onto the previous stance leg rather than
transition to the next step.
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Fig. 6: Additional experimental terrain for S4cm.

TABLE IV: Height changes between wood steps for exper-
imental terrains. Distance between steps is approximately
61 cm.

Terrain Height Changes (cm)
Uphill -1.1, -1.25, -1.25, 0, 0, 3.8, 3.1, 2.2, 2.3, 2.6, 3, 2.5

Hill -2.4, -2.9, -4.1, 4.1, 3.6, 4.2, -4, -2.1, -2.8, -1.5, -2.5, -2.5
Valley -4.3, -3.4, -4.3, -2.5, -2.5, 0, 0, 3.7, 4.1, 3.6, 2.5, 3.8
Mogul -2.5, -2.9, -4.1, 4, 3.6, -2.4, -3.9, -2.3, 4, 3.9, 2.5

TABLE V: Minimum angular momentum about the stance
foot and impact losses for perturbed steps in optimization.

Minimum Angular
Momentum (Nms) Impact Losses (J)

d Nominal NS4cm S4cm Nominal NS4cm S4cm
4 cm 40.5 38.3 43.8 8.3 10.1 13.9
0 cm 54.4 54.7 53.5 17.8 18.8 24.6

-4 cm 53.0 52.3 54.6 50.4 47.4 39.2

of height di ∈ D. The S4cm gait maintains on average
greater angular momentum at peak potential energy than the
other gaits. Furthermore, with a single 4 cm disturbance the
minimum angular momentum of the Nominal and NS4cm
gaits decreases 26% and 30% respectively, while the S4cm
gait decreases 18%. In simulation, we found falling backward
after losing momentum from repeated uphill disturbances to
be the only failure mode. Having a more reliable reserve
of angular momentum explains in part why the S4cm gait
was able to outperform the other gaits in simulation and
experiments (Tables I & III).

Because consecutive uphill steps led to every fall in the
simulations, the initial experiments focused on comparing all
controllers on the uphill terrain of Fig. 4. The Nominal and
NS4cm gaits were unreliable. The lower and less consistent
swing foot trajectories in Fig. 7 are prone to scuffing and
premature impacts, both of which inhibit a consistent forward
velocity (Fig. 5). The S4cm gait exhibited much better distur-
bance attenuation in terms of swing foot trajectory and speed.
However, a consequence of the S4cm gait’s higher swing foot
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Fig. 7: Actual (Red) and desired (Green) swing foot trajec-
tories relative to stance foot. Top black bar on each plot
indicates 4 cm above the origin or stance foot position for
each trajectory. Plots generated using data from all Uphill
Terrain experiments, hence, the swing foot starts below the
stance foot for some trajectories.

clearance is a higher impact loss on flat ground (Table V).
Table II shows that the Nominal gait is the most energy

efficient for flat terrain. However, with some disturbances
the other two gaits are more energy efficient than the
Nominal gait. Hence, the advantages of the Nominal gait
are dependent on avoiding terrain disturbances, which may
be inconsistent with outdoor operation. As emphasized in
[24], efficiency may be out-weighed by robustness.

Overall, the S4cm gait outperformed the NS4cm gait. We
believe that allowing the optimizer to accept actions in
the beginning of the step that resulted in smaller errors
later in the step, near the moment of impact, is the main
reason for this. The difference between the S4cm and NS4cm
optimizations was the use of scaling variables in the S4cm to
emphasize end-of-step errors. This gait was shown to work
well in a variety of environments.

APPENDIX I
BÉZIER PARAMETER RESET DERIVATION

In Section IV, we discuss how control parameters κ must
be reset such that we satisfy (29). First, we define our output

y = h(q, κ, β) = qact(q)− hd(q, κ, β), (38)



where hd ∈ R4 are desired trajectories defined by Bézier
polynomials. Each ith polynomial is defined as

hd,i(q, κ, β) :=

M∑
k=0

αi,k
M !

k !(M − k) !
τk(1− τ)M−k. (39)

A set of four degree (M + 1) Bézier polynomials can be
defined by α ∈ R4×(M+1) [12, pp. 138]. We designate the
first two columns of parameters, α0 and α1, as κ. α0 and
α1 have the most effect on trajectories immediately after
impact during low τ values. The remaining fixed columns,
β, determine trajectories toward the end of the gait. Hence,
perturbed steps return to the nominal gait as τ increases.

Let y+ = ẏ+ = 0 as in (29). Using (38), this implies that

hd(q
+, κ+, β) = q+

act. (40)

Note, to match hd to q+
act, we must reset at least one column

of Bézier parameters. To guarantee desired trajectories match
post-impact velocities, we reset a second column to satisfy

∂hd(q
+, κ+, β)

∂τ
τ̇+ = q̇+

act. (41)

Solving (40) and (41) using α0 and α1 we find

α0 =

q+
act −

M∑
k=1

αk
M !(τ+)k(1−τ+)M−k

k !(M−k) !

(1− τ+)M
(42)

α1 =
q̇+act

τ̇+ − α2M(M − 1)τ+(1− τ+)M−2 − a+ b

M((1− τ+)M−1 + τ+(1− τ+)M−2)
(43)

a =

M−1∑
k=2

(αk+1 − αk)
M !(τ+)k(1− τ+)M−1−k

k !(M − 1− k) !
(44)

b =
M

1− τ+

(
q+
act −

M∑
k=2

αk
M !(τ+)k(1− τ+)M−k

k !(M − k) !

)
, (45)

which is a solution for κ+ that always satisfies (29).
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