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Asymptotically Stable Running for a Five-Link,
Four-Actuator, Planar Bipedal Robot

C. Chevallereau, E.R. Westervelt, and J.W. Grizzle

Abstract— Provably asymptotically stable running gaits are Section Ill presents the models of the stance, flight, and
developed for the five-link, four-actuator bipedal robot, RABBIT.  impact phases of the studied robot. These are assembled into
A controller is designed so that the Poincaé retum map 44 gyerall hybrid model of running in Section IV. A qualitagi
assguated with pe(lod!c running gaits can be cpmputed on the di - fth d trol law f S -
basis of a model with impulse-effects that, previously, had been |scuss_|on orthe propo;e control flaw for running 1S pr n_
used only for the design of walking gaits. This feedback design in Section V. The details of the control law are developed in
leads to the notion of a hybrid zero dynamics for running, which  Section VI. Like the model, the controller is hybrid, withtho
in turn allows the existence and stability of running gaits to continuous-time and event-based actions taking placehén t
be determined on the basis of a scalar map. The main results gi5n06 phase, the control law is identical to the developinen

are illustrated via simulations performed on models with known . - . .
parameters and on models with parameter uncertainty and [3]. The control law in the flight phase consists of two parts:

structural changes. Animations of the resulting running motions & continuous action similar to [3] plus a discrete or event-
are available on the web. to-event action that adjusts the coefficients in the cootiisu

portion of the controller in order to achieve a landing objex
that assures the existence of a hybrid zero dynamics. The
I. INTRODUCTION existence and stability properties of periodic orbits oé th
closed-loop hybrid model are studied in Section VII. Themai
"Bhtribution is the closed-form computation of the restdc
Poincaeé return map of the hybrid zero dynamics, because
nalysis of orbits in the closed-loop, multi-phase, hyloniadel

totically stable running gaits for RABBIT, a five-link,
four-actuator, planar bipedal robot [1]. Running is define

as forward motion with glternation ofsingl«_e support(one can then be performed on the basis of an easily computable

L\e;i?hgattfgilgr%u%?ﬂ;:(ﬂ;ﬁztrég%tcvsgﬁ?;tb\g?&;gieng:ﬁupr;gl’escalar map. Section VIII begins an extensive simulatiodystu
o . ! o . of the control laws proposed in the paper as applied to

or “jogging” in place. RABBIT was specifically designed to, WS prop ! pap S appl

q the fund tal understandinccoftrolled | q the underactuated, planar bipedal robot, RABBIT [1]. The
advance the fundamental understandingControlied 1I699€d o gticteq Poincér return map is computed for ten different
locomotion. In particular, it was designed without feetdan

. e o running trajectories, varying from5 m/s t02.75 m/s, showin
hence a widely-used stability heuristic, called the zero m gral ying g

. o . e ability to achieve stable running motions over a wide
mer)t point (ZMP) criterion, |s.not applicable. The robot was, ge of speeds. The trajectories 105 m/s and2.5 m/s are
designed to be able to walk with an average forward SpGGdi strated in detail under the assumption of a perfect rhode
at leasts km/h and to run at more that2 km/h.

The robustness to model imperfection is studied via sirfarat

In a series of papers, the authors_and colleagues h"ﬁ‘(eSection IX. The systematic design of auxiliary eventduhs
developed new feedback control strategies [2]-{7] thate¥eh ., action [4], [13] to accelerate the rate of convergen

p.rovably asymptotically-stable walking gaits in undevated to a periodic orbit is illustrated in Section X. The paper is
bipeds, such as RABBIT, and demonstrated many of the(g, .| ded in Section XI. Animations and other supporting

experimentally [8], [9]. In regards to running, Open'mo‘?naterial are available on the web [14].
trajectories have been studied in [10], [11]. An objectife o

this paper is to develop ime-invariant feedback controller Il. RELATED WORK
that realizes these open-loop running trajectorieprasably
asymptotically-stable orbitsA key step is to design the feed-_ ;i o of running in terms of a one-legged, prismatiedd

back controller in such a way that the Poireeanap associated hopper [15], [16]. He decomposed his control actions into

W?th a running gait can be_ CO”.‘p”ted on the bas_is of the mgd%§ee parts—hopping height, foot touchdown angle, and body
W't.h |mpu_lse effects studied n [3] for the d_eS|gn of Walk'n_ osture—and emphasized the role of symmetry in designing
gj;‘z')' ?"S Ieac_is to tze notr:on IOf adk}ybnd £€ro dypaml able running motions. The remarkable success of Rasbert’
(h ) or rt:jnglqg, an to the ccisze -form computation of,hro) jaw motivated others to analytically characteritze
the restricted Poincarreturn map [12]. stability [17], [18], and to further investigate the role of
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ideas of Koditschek et al. [21]-[24], a spring-loaded itedr
pendulum model—essentially a prismatic-kneed hopper with

a radially symmetric body and a massless leg—was approx-
imately embedded into a one-legged, revolute-jointed trobo

with an ankle, knee, and hip [25], [26]. With this approach,

the center of mass of the robot could be nicely controlled.
However, there was no natural “posture principle” to specif

the evolution of the remaining degrees of freedom of the 6s(q)
robot; also, the ballistic phase was difficult to address du
to underactuation and the non-holonomic constraint aisin
from conservation of angular momentum. Various methods for (@) (b) (©)
controlling the attitude of bodies undergoing ballistic tran

have been studied; see [27]-[31] and references therein. Fig. 1. Different phases of running with coordinate coni@m labeled.

In late 2003, both Iguana Robotics and Sony announc robot is shown (a) at the end of the stance phase; (b)dg€light; and
c) at the beginning of the stance phase just after impact.voa eclutter,

(separate_) eXpe”mental demonstrations of runnlr!g fC(Ede the coordinate conventions have been spread out over thke sinpport and
robots with revolute knees. In early 2004, running was afiight phases even though they apply to all three phasesl Isgeresented in

nounced for another humanoid robot, HRP-2LR [32], and fp!d- Angles are positive in the clockwise direction.
December 2004, Honda’s robot, ASIMO, achieved running.

The readers are invited to seek videos of these robots on then the flight phase, the robot has seven degrees of freedom
web. The controllers of the Sony and Honda robots are baggsbF): a degree of freedom associated with the orientatfon o
on the ZMP, that of Iguana Robotics is based on central pattfach link, plus two DOF associated with the horizontal and
generators (CPGs), and HRP-2LR uses “resolved momentufirtical displacement of the center of mass within the salgit
To our best knowledge, only two other bipeds with revolutglane. The state vector of the dynamical model is thus 14-
knees have been designed to perform running—Johnniedimensional: there are seven configuration variables redui
Munich, Germany [33], [34] and RABBIT in Grenoble, Franceo describe the position of the robot, plus the associated
[1], [35]. velocities. In the stance phase, the robot has only five DOF
The computation of optimal running trajectories has begfscause the position of the center of mass is determinedeby th
studied in [36]. Trajectory tracking for running was invest grientation of the five links (plus a horizontal, constarfesst
gated on a simulation model of the Honda biped, ASIMQyt the stance leg end with respect to a world frame). The state

[37]. A nominal trajectory was computed off-line, and theRector of the dynamical model is thus 10-dimensional.
during the ballistic phase, an on-line trajectory modifimat

was made to allow Raibert-like control of foot placement. A

control strategy for running that does not rely on trajectoiB. Lagrangian model for flight

tracking was studied in [38], where a Raibert-like congoll ) i i . i . )
was used on a planar robot with a torso and two prismatic-A convenient choice of configuration variables is depicted
kneed legs. The control action sought to excite naturaligass” F19- 1. The vector of body coordinates consisting of

: ) )
solutions of the dynamics by restoring energy lost at toucfl€ relative anglegq:, g2, g3, ¢4)" describes the shape of the
biped. The biped’s absolute orientation with respect to the

down.
world frame is given byys. The biped’s absolute position is
I1l. M ECHANICAL MODEL OF A BIPED RUNNER specified by the Cartesian coordinates of the center of mass,
A. The biped (Xem; Yem). The vector of generalized coordinates is denoted

— / /
The studied bipedal robot evolves with respect to a fI&e % = (45,45 Xem: Yem)". _ .
surface in the sagittal plane; see Fig. 1. The flat surfacke wil The dynamic model is easily obtained with the method of

be referred to as the ground. The robot is composed of fiy89range, which consists of first computing the kinetic gyer
rigid links with mass, connected through ideal (i.e., rigi a"d Potential energy of each link, and then summing terms to
frictionless) revolute joints to form a torso and two ideati COMPute the total kinetic energy’, and the total potential

legs, with each leg articulated by a knee. Each leg end §8€'9¥:Vr [391-{41]. The Lagrangian is defined & = K —
terminated in a point so that, in particular, the robot doets n't, and the dynamical model is determined from Lagrange’s

have feet. An actuator is provided at the each knee and tf@Uation

actuators are provided at the hips, acting between the torso d 0Ly 0Ly -7 1)
and the legs. There is no actuation at the leg ends. Hence, in dt Oge  Oqgr

single support, the robot is underactuated.

The robot is said to be iflight phasewhen there is no
contact with the ground, and istance phasevhen one leg
end is in stationary contact with the ground (that is, the le
end is acting as an ideal pivot) and the other leg is free.
the stance phase, the leg in contact with the ground is called 1, .
the stance legand the other leg is thewing leg Ky = §Qfo(Qb)Qfa (2)

where I'; is the vector of generalized forces and torques
applied to the robot.

In terms of the generalized coordinates of the ropgtthe

IIal kinetic energy becomes
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where because the kinetic energy is invariant under rotationsef t
Algy)  Osx2 ] body, Dy depends only ony,. The potential energy remains

F70 Ogws  milons ) Va(q) = mgyem(q). Lagrange’s equation becomes

m is the total mass of the robot, antl depends only ory, iaﬁf _ 9L =T, (12)
because the total kinetic energy is invariant under ratatio dt 9q 9q
and translations of the body. The potential energy is and the external torques are
Vi = cm- 4 I
t =mgy 4 I B l 04><4 ] . 13)
The principle of virtual work yields that the external toegu x4
are I The dynamic model can therefore be written as
4x4
e l O3 ] “ © Dulgn)ii+ Culan. )i+ Gul) = Bow. (14)

whereu is the vector of actuator torques applied at the folptroducing the state vectar, := (¢',¢')’, the Lagrangian
joints of the robot. Applying Lagrange’s equation leads to R0de! (14) is easily expressed as

model of the form iy = fi(xs) + gs(xs)u (15)

D¢ (gv)de + Ce(av, gr)dr + Ge(gr) = Bru, (6) The state space is taken Q. := {z, := (¢.¢)' | ¢ €
Qs, ¢ € IR?}, where the configuration spaeg, is a simply-
connected, open subset 8f corresponding to physically
reasonable configurations.

whereD; is the inertia matrix, the matri€’; contains Coriolis
and centrifugal terms, an@; is the gravity vector. Introducing
the state vector; := (gf,4;)’, the Lagrangian model (6) is
easily expressed as

D. The impact model

s = fr(xe) + ge(e)u. 7 . ..
£ = fileo) +giler) % The Cartesian position of the end of leg-2 can be expressed
The state space is taken &%y = {zr := (¢;,4;)’ | ¢¢ € in terms of the Cartesian position of the center of mass and
9, ¢r € IR™}, where, ifS denotes the circle, the configuratiorthe robot’s angular coordinates as

space Q; is a simply-connected, open subset $f x IR? < <
corresponding to physically reasonable configurationshef t 2 _ amol f2(q), (16)
robot. y2 Yem

where f; is determined from the robot's parameters (links
C. Lagrangian model for stance lengths, masses, positions of the centers of mass); see (8).

For the stance phase, the generalized coordinates can'#&t"n €9-2 touches the ground at the end of a flight phase,

taken asy := (¢}, qs)’ = (q1,- - . qs)". Since the robot's legs an impact takes place. The impact model of [42], [43] is

are identical, in the stance phase, it will be assumed withd!S€d: Which represents the ground reaction forces at ingsact
loss of generality that leg-1 is in contact with the groundMPulSes with intensity/r. The impact is assumed inelastic,

Moreover, the Cartesian position of the stance leg end \aill B\mh the velocity of the contact leg end becoming zero

identified with the origin of theéz —y)-axes of a world frame. 'NStantaneously; furthermore, after impact, the contegteind
ssumed to act as an ideal pivot. This model yields that the

The position of the center of mass can be expressed in terth ; ! . _ S
of ¢ per robot’s configurationys is unchanged during impact and there

Xemm () are instantaneous changes in the velocities.
[ ] =f1(q), (8) The velocity vectorjust beforeimpact is denoted byj; .
After impact, with the assumption that the leg neither retutsu
por slides after impact, the robot is in stance phase. leg® a
as an ideal pivot and thus the linear velocity of the center of
mass center can be expressed in terms of the angular vefociti

Yem(Q)

wheref; is determined from the robot’s geometric paramete
(link lengths, masses, positions of the centers of mass)céle

Isxs just afterimpact, g™, yielding
ij = q (9) o+
0|~ | v ag 1
Substituting (9) into (2) yields the kinetic energy of the
stance phase, The impact model of [42], [43] is expressed as
1
K, =~ q,DS(Qb)CL (10) d+ _a¢/
2 Alqn)  Osx2 . o =0
ith ij — 4 = 0q IR.
wit O2xs  mloxo vt Ioxo

ofi(q)' 0f1(q) .
dq  dq '

Ds(qn) = Algp) +m (11)

(18)
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The vectorIi of the ground reaction impulses can be eminceg—{;; = [-Xem(q) | Yem (¢)])- Using (24) results in
pressed using the last two lines of the matrix equation (8) i
combination with (17): oy =05, (27)
In— ofz(q) ., Xem meaning the value aof; is unchanged during the impact. Since
R=TMm dq | Yo : (19) the stance phase model assumes that the stance leg is leg-1,
for later use, (27) is rewritten as
Substituting this into the first five lines of (18) and reaging
yields that the robot’s angular velocity vector after impec oyt = 05_ (28)
given by a linear expression with respect to the velocityteef

to reflect the swapping of the roles of the legs; see (30).
) Remark 2: The notations+ emphasizes that; is being
) of,' of, ]~ of"] . evaluated at thbeginning of the stance phaaad the notation
+ = 2 72 o2
¢ = {A+m dq Oq Alm Jq G (20) f— emphasizes that; is being evaluated at thend of the
which, for later use, is written as ﬂ|ght phase If no confusion is poss@le, the notatianand —
) will be used. For example, the variable only makes sense
it =Ag 4 ). (21) in the stance phase, and hertfe would be redundant. On

K1 h ‘ . . h bot h the other hand, for a variable such =g, it is important to
Remark 1: In the case of running, since the robot has aistinguish amongest, x5, x| andx!..

. . cm? cm? cm?
DOF before |.mpact an_d only 5 D.OF af_ter impact, for any_post- Remark 3: The robot is assumed to advance from left to
impact velocity, there is a two-dimensional set of velastin

) .rig?ht that is, in the positive direction of th&-coordinate.
the flight phase that gets mapped onto that same vector.s‘l’hl§n this paper, angles are positive when measured in the
different from walking where, generically, the double sofp ’

) : I clockwise direction so that the angular momenta about the
Impact re_sults n a oqe-to-one mapping between pre"mp%(fénce leg end and the center of mass will be positive in
and post-impact velocity vectors. the simulations. A more classical choice of measuring the

angles in the trigonometric sense, that is, positive is t@un
E. Some linear and angular momentum relationships clockwise, would lead to negative angular momenta fortieft-

A few linear and angular momentum properties of theght movement of the robot. In this case, (24) would become
mechanical models are noted. Let, denote the angular @i = Tem + M ((Xem — Xi)Yem — (Yem — ¥i)Xem). I turn,
momentum of the biped about itenter of massin the flight certain equations derived from this one would have to be
phaseg., can be computed by.,, = %Kf = Asg, where4; Mmodified. For the convenience of the reader, the principal
is the fifth row of A. The fifth row of (1) yields conservation changes are noted in Appendix VI.

Of Ocm»

impact:

Fem = 0. (22) IV. HYBRID MODEL OF RUNNING

In addition, the last two rows of (1) correspond to Newton's The overall biped robot model can be expressed as a
second law in a central gravity field: nonlinear hybrid system containing two state manifold$i¢da
“charts” in [44]):

m¥Xen =0 and myenm = —mg. (23)

Let o; denote the angular momentum of the biped about .Xf =TS
the end of leg; for i = 1,2. The three angular momenta are S Fe: (@) = fe(we) + ge(ae)u
related by ' Sf = {xr € & | Hf(zr) = 0}

0; = Ocm + M ((YCI‘H - Yi)).(cm - (Xcm - Xi)YCm) . (24) /Tfs : I:r - A?(xf_) (29)
This expression is valid in both the stance and flight phases. X, =TO,
In the stance phase, is determined byr; = 25 = D, 54, o
whereD, s is the fifth row of D,. The fifth row of (12) yields 5 ] Toi @) = Ssla) +gslasu
the angular momentum balance theorem: St ={zs € X, | Hl(z5) =0}

T5af = Al(a;
o1 = fgvs = Mg Xem- (25) ° f s(25) .
a5 where, for examplef; is the flow on state manifoldt;, S¢

The impact model of [42], [43] yields conservation ois the switching hyper-surface for transitions betwegnand
angular momentum about the impact point. Indeed, becaukg and7® : S; — A is the transition function applied when
the only external impulsive force is applied at the impadhpo z; € S;.

the fifth row of (18) can be written as The transition from flight phase to stance phase occurs when
o % leg-2 impacts the ground. Hendd} (z¢) = y»; see Fig. 1. The
— oamTem ing initial value of the stance phasg,, is determined
O-C+m —Oem =M [YCm -y | — Xem + XQ] ) ensuing .|n|t|a . s .
NGNS Gl from the impact model of Section I1I-D. A relabeling matik

(26) is applied to the angular coordinates to account for the anpa
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occurring on leg-2 while the stance model assumes leg-1 isphases, stance and flight, and discrete transitions between
contact with the ground: them. Moreover, the flight phase presents more complicgition
[R|0s.0]qr for gpntroller design than does the stance phase: it has two
Ad(z7) = xe 13 (30) additional degrees Qf freedom and angular momentum about
RA(xf‘) the center of mass is conserved.

and A. Analytical tractability through invariance, attractty, and

configuration determinism at transitions

Above all, the control strategy is constructed to faciéittite
stability analysis of the closed-loop hybrid system cairsis
of the robot, the running surface, and the feedback costroll
If stability analysis can be rendered sufficiently simplegrt
it becomes possible to explore efficiently a large set of
gymptotically-stable running gaits in order to find onet tha
ets additional performance objectives, such as minimum
energy consumption per distance traveled for a given aeerag
eed, or minimum peak-actuator power demand.
he controller will be hybrid, with continuous-time feed-
k signals applied in stance and flight phases, and discret
or event-based) updates of controller parameters peefrm
at transitions between phases. The design of the controller

the stance phase. Hendd, = 0.(q) — ., wheref.(q) := uses two principles that are ubiquitous in non-hybrid sys
q_l . - . - -
s tptasisthe anglé of the hips with respect to end of thetems, namely invariance and attractivity, with the notidn o

stance Ieg (S?e. F|g. 1) and,, is a_constant tf pe de'{.ermmedinvariance being extended to hybrid systems so as to include
The ensuing initial value of the flight phase;, is defined so

. L . . . the discrete transitions as well as the continuous flow of
as to achieve continuity in the position and velocity vaeab h ian d . brid i . il lead h
using (8) and (9): the Lagrangian dynamics. Hybrid invariance will lead to the

creation of a low-dimensional hybrid subsystem of the full-
q- order closed-loop system. The low-order hybrid subsystem i
fi(q7)

(1)

o = O O
S = O O O
o O O O =
S O O = O
= O O O O

0

where (21) has been used.
The transition from stance phase to flight phase can B
initiated by causing the acceleration of the stance leg e
to become positive. If torque discontinuitteare allowed—
as they are assumed to be in this paper—when to transit
into the flight phase becomes a control decision. Here, 'wvi%
of simplifying the analysis of periodic orbits in SectionlyI ac
the transition is assumed to occur at a pre-determined poin

called the Hybrid Zero Dynamics (HZD) of running. Attrac-
tivity will mean that trajectories of the full-order closéabp

£~ _

Alzs) = q- ’ (32) system converge locally and sufficiently rapidly to those of
o, B the hybrid zero dynamics so that existence and stability of
94 |,- periodic running motions can be restricted to the study of

Continuity of the torques is not imposed, and hence neit@]nertpe hybrid zero dynamics. The Poineareturn map for the

o : : hybrid zero dynamics will turn out to be one-dimensional.
continuity of the accelerations. It is assumed that therod)ntWhen transitions between phases in the hvbrid zero dvnamics
law in the flight phase will be designed to achiejg™ > 0; b y y

occur at known configurations of the robot—this is called
see [11]. ) ) LS - a
- . . : onfiguration determinism at transitions—it will turn outath
The definition of a solution of the hybrid model is adopte L .
e Poincag return map can be computed in closed form,

from [44]. For the definitions of orbital stability in the ssnof . o . i
Lyapunov, attractivity, and orbital asymptotic stability the :?:g;%;llerendenng stability analysis of the closed-looptem

sense of Lyapunov, see [2], [45], [46].

V. QUALITATIVE DISCUSSION OFCONTROL LAW DESIGN ~ B: Desired geometry of the closed-loop system

This section describes in qualitative terms a control law The objective of the control law design is to achieve the
design for planar bipedal running that is presented in betijteérnal structure of the closed-loop system that is deglian
in Section VI, analyzed in Section VII, and illustrated vigd9- 2. The vertical surfaceS! and S; represent the points
simulations on RABBIT in Section VIIl. A related discussiori" the state space where the transitions from stance to flight
about control law design for walking is available in [1]. An@nd from flight to stance occur, respectively; see (29). The

important difference is that running has two continuouseti norizontal surface on the |eftZ, is created by the stance-
phase controller; it is designed to be invariant in the usual
1This is a modeling decision. In practice, the torque is camtirs due to  sense that if the system is initialized i, the solution of

actuator dynamics. It is assumed here that the actuator timgtagars small _ ; ; ; ; ; i
enough that it need not be modeled. See the very end of Secti@hfor the stance phase differential equation remainsZinuntil it

further discussion of this point. intersectsS!, at which time the flight phase is initiated. The
2In RABBIT the femur and tibia are of equal length. In generaly a family of horizontal surfaces on the righg; .., (shown for
functloq that is |ndepend§nt of the body coordinates and mcmmm_al_ly two values ofay, namely,af_1 anda; 4) is created by the flight-
increasing along the motion of the robot can be used. As lonthagibia . ’ > . . . .
and femur are approximately of the same lengti(g) == 2 + g2 + gs is phase controller; each surface is designed to be invamant i

a reasonable choice. the usual sense that if the system is initializeddp,,, the
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A(SEN z))
Stnz,

A(SE N Zeaz)
Stnz,

Fig. 2. Geometry of the closed-loop system that is achievetth Wie Fig. 3. Geometry of the closed-loop system when the flight greasl the

controller presented in this paper. Under the action of ¢eelback controller, impact mapA$ are composed to form a generalized impact mathat maps

the state of the system evolves on the low-dimensional s8fds, Z; o,. S! N Zs to Z,. This is analogous to the geometry that previous work has

Consider two strides of a running cycle initiated at the beiig of stance designed into walking. The analogy becomes exact if the imbonfiguration

(at po). The robot’s state evolves i throughout stance until the state at the initiation of the stance phase is the same for all pamt&s N Sf.

entersS! (at p1), when two discrete events occur: the robot lifts off to begi

the flight phase; and the controller selects a valuerothat will be held . . . . .

constant throughout the flight phase. The value of the paemetl itas 1, is of the various links throughout a stride—which is another

determined as a function of the angular momentum about theestegend at way of saying that they reduce the degrees of freedom. It

transition into flight in such a way that the robot will landarpre-determined . . "> . : :

configuration. During the flight phase, the state of the ravolves inZ; ,, | is the |mpo_S|t|on of the ConStramt_S that creates the iavari

until it entersSs (at p2). The impact mapping\s is then applied and’the surfaces. Since RABBIT has four independent actuators (two

next Stanc'ﬁ phase is begun ﬁ&ti]) ancaa the rl})rocess rtlepeatS- The robr?t willat the hips and two and the knees), four virtual constraints

terminate the ensuing stance phasep@twith an angular momentum that is : : :

different than what it had on the previous stride £a). Due to conservation may be |mpo_sed In bqth t_he stance and fllght phases. The

of angular momentum about the center of mass in the flight phasepbot  Virtual constraints used in this paper are constructed|&se.

must evolve on a different surface in the flight phase this timerder to Consider a function pai{@(q), hd(g)}, wheref : Q — R is

land in the same configuration it had on the previous landirige fequired : : : ; ;

change in flight-phase evolution is accomplished by appaterselection of a‘. scalar function of the4 cqnflguratlon \(arlables _(In stgnce o

as 4, which specifiesZ; ,, ,. By design, the rule for selecting; results flight) and hy : IR — IR* gives the desired configuration of

in 8§ N Zpap, = Sf N Zpa,. This common set has been denoted byhe actuated joints?(¢) should be selected to be monotonic

grfb;‘ Zt,ap» Whereay is the parameter value corresponding to a periodigiong the planned motion and, for purposes of analysis, it is
' required that, andéd be independent, that i , 6]’ is a valid

solution of the flight-phase differential equation remains change of coordinates ap. The virtual constraint is expressed
in the form of an outputy = h(q) := g, — hqg 0 0(q), and a

Zq, UnNtil it intersectsS?, at which time the stance phaseI . . : .
is re-initialized through the impact mag:. The value of controller is designed to asymptotically enforce the cariist

the parameteu; is selected at each transition from stance t%y driving the output asymptotically 1o zero. Since the "_‘p“.

flight as a function of the angular momentum of the rob(ﬁnd output have_the same number of _components, designing

about the stance leg end; ™, in such a way that evolution a contrholler to dlrlve Fhe O]E;Wt. to zr(]aro is a standard .protillem

along the surface, o will cause the robot to land of, [47]. The control action of driving the output to zero is what
,ag (o

with a pre-determined 1configuration. This brings out a sdcofAuses the trajectories of the system off of the invariariasa

form of invariance that is related to the hybrid nature of thté) converge to the surface.

system: the parametes; is selected so that the composition V1. CONTROL LAW DEVELOPMENT

of the flight-phase dynamics with the impact may maps i )

2, 8! back to Z,. This is shown in Fig. 2 with the arrow Separate statg—varlable control stratggles are develfmped

looping from the end of the flight phase back to the initiatiofi"® Stance and flight phases of the running cycle. The coertrol

of the stance phase, and more succinctly in Fig. 3, where #ig6 €ach phase is formulated as an output zeroing problem

composition of the flight-phase dynamics with the impact mdfSulting in non-trivial zero dynamics [1], [3]. For the fig

is represented by a “generalized” impact map, phase, it WI|.| t_)g advantageous _to allow the contfol to depend
Not shown in either figure is the behavior of the robot Oﬁllso on the initial value of the flight state or, equivalenthe

of the hybrid zero dynamics. This is where attractivity cemdinal value of the stance state.

into play. In addition to creating the invariant surfacdse t

feedback controller must also ensure that trajectorietsstaat  A- Stance phase control

off of the surfaces converge to the surfaces. Both the areati As in [3, Sec. V], define the output

of the invariant surfaces and their attractivity are acclishpd

with the use of virtual constraints. Ys = hs(a) = @b — has © 0s(q) (33)
on (14), where the twice continuously differentiable fuoist
C. Virtual constraints has : IR — IR* encodes the stance-phase gait. It is assumed

Virtual constraints are holonomic constraints on the risbotthat the associated decoupling ma?mEgSLfshS’ is invertible,

configuration that are asymptotically imposed through feed 3The control law is rewritten without the use of Lie derivativin Ap-
back control. Their function is to coordinate the evolutiopendix I.
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®,(q) := [hL, 6] is a global diffeomorphism o, so that
Xem Ae(qo ‘
Zs 1= {2 €TQs | hs(as) = 0, Lyhs(as) =0} (34) l ;zrf ] ) l E?’ ; ] o (46)
is an embedded two-dimensional submanifold7e®,, and om llstnz, vAio

szmZS is an embedded one-dimensional submanifold g¥;;

see Fig. 2. _ . B. Flight phase control
The feedback control is chosen to be continuous and to . .
render Z, invariant under the closed-loop dynamics as well The overall goal of the flight-phase controller is to land the

as attractive in finite time (the exact hypotheses from [8] afobot in a favorable manner for_ continging Wit_h the 'stance
given in Appendix I1): phase. It will turn out that a particularly interesting adijee

is the following: if the robot enters the flight phase from the
s () = (Lg. Ly, hs(25)) " (v(hs(xs), Ly hs(zs)) stance—phase zero d_ynamics man_ifoEg,,_controI the ropot
~ L2 by )) (35) so that it lands orZ; in a fixed configuration. The analytical
Fs > motivation for this objective will be made clear in Sectioh.V

wherev renders the origin of The feasibility of landing in a fixed configuration will be
d2ys illustrated in Section VIII with a feedback controller that
a2 v (36) depends omx; andthe final value of the state of the preceding

stance phase. To realize such a controller as a state-fariab
feedback, the flight-state vector is augmented with dummy
variables,a; = 0, whose values can be set at the transition
feis(@s) == fs(xs) + gs(s)us (). (37) from stance to flight. Letiy € A := IRP, p € IN.

In other regards, paralleling the development of the stance
phase controllét define the output

globally asymptotically stable with finite convergence ¢im
The closed-loop system is denoted

The feedback control

ug (25) = —(Lg, Ly, hs(x5)) " LY hs(xs) (38)
rendersZ, invariant under the stance-phase dynamics; that is, yr = he(gr, ag) 3= o = hai(Xem, ar), (47)
for everyz € Z, wherehg ¢ is at least twice differentiable. Then the following
Froro(2) 1= fo(2) + gs(2)ul (2) € TL 2. (39) can be easily shown: for any value af,
1) the decoupling matrixL, Ly he, is everywhere invert-

Z, is called thestance-phase zero dynamics manifedd

2 = fzero(2) is called thestance-phase zero dynami€®llow-

ing the development in [1], [3]fs, 01) is a valid set of local
coordinates fotZ; and in these coordinates the zero dynamics
has the form 1

ible;
2) ®; := [h}, g5, Xem, Yem] IS @ global diffeomorphism on
£
3) the flight-phase zero-dynamics manifold

b = —~ o1, Zp ap = {2t € TQs | he(xe,a¢) = 0, Ly he(ar,ar) =0
1(6,) (40) tar = {ar € TQr | he(ar, ar) sihi (s, ar) (48)}
o1 = mgXem(bs), is a six-dimensional embedded submanifold7ady;
whereI(6,) plays the role of an inertia. Moreover, in these 4) Sf N Zi.q, IS a five-dimensional embedded submanifold
coordinatesS! N Z, is given by of TQy; _ .
o - . 3 o e e o 5) (g5, Xems Yems Ocms Xem, Yem) 1S @ Set of global coordi-
{(@ 4" g =257(0,050), ¢ =dy 07, 07 € IR}, nates forz; ,,; and
(41) 6) the flight-phase zero dynamics has the form
where .
S %’ff 0451 (42) G5 = F1,t(Tem; Xem; Xem, 0r) (49)
© T a4 N Gem =0 (50)
. . o . )“(cm =0 (51)
For later use in computing a Poinéareturn map on the . (52)
zero dynamics, it is noted that (40) has Lagrangian [3, Eq. Yem = =5
(59)] Ls zero := K zero — Vi,zeror Where where (49) arises from evaluating
1
Ks,zero = _(0'1)2 (43) o 4 A=,
2 , qs _ c _ 51(Qb) q'i (53)
: Ass(qp) 4= Ass(an)
‘/;,zero(es) = - ot I(f) mg Xcm(f) d£7 (44)

on Z; ... Note that in Fig. 2, only a two-dimensional projection
the choice of the lower limig is arbitrary and will be made of z; ,, could be shown and; N Z; ., was represented as a
later. Also for later use, define one-dimensional projection.

l Aalgy) ] _ OhG) o

. a, (45) 4As in the stance phase, the control law for the flight phasegitten
)\y(qb ) Jq without the use of Lie derivatives in Appendix .
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The feedback controller is defined as
ug(ze, ag) := —(Lg; L he(we, a5)) " (Kphf($f7af)
+ KqLy he(xe, as) + L?cfhf(iﬂh af)), (54)

where §r + Kq9¢ + Kpys = 0 is exponentially stable. Let
Zr := (xf,a;)’ and denote the right-hand side of (7) and the
trivial parameter dynamicg; = 0 in closed loop with (54) by

_ fe(ze) + ge(ze)ue (Zr)
St (Ts) = : (55) )
0 Fig. 4. Poinca maps for the closed-loop system. Conceptudlly; S§ —
Sf, and is determined by following the flow of the closed-loomstamodel
. from the impact at the end of flight up to, and not including, transition
C. Closed'IOOp hyb”d model from stance to flight. SimilarlyP; : Sf — S¢, and is determined by following
The Closed-loop hybrid model is the flow of the closed-loop flight model augmented with the afiiarameter
B dynamics ¢¢ = 0) from the transition at the end of stance up to, and not
Xp=TQ9r x A including, the impact event at end of flight. The Poirécarap isP : Sf —
_ . B S, whereP := Ps o P;. A periodic orbit corresponds to a fixed point Bf
5 Feort: (x5) = fore(Ts) namely,z; = = P(zX7).
f,el * > S
St = {(=f,ar) € At | Hf (z¢) = 0}
TP ot = Aj(ay) = Ajar) _
(56) completion of a stance phase (for example, the robot may not
X, =TQ, have sufficient speed)?, is only a partial map. And, since
. not every transition out of stance results in a successfytfli
fcl,s : (1‘5) = fcl,s(xs) : :
Yol ! f ; phase followed by a successful stance phdseis a partial
Sy = {zs € A | Hy(xs) = 0} map. Hence, the domains where these maps are well defined
Tl at = Al2D), of =wi(z]), must be identified, which will give rise to the subséfsc S:

andS; C St.
Following [2], define thestance-time-to-impact functien
TI,s txg € Xy — IRU {OO}, by

where the parameter update law is at least continuously
differentiable. The internal geometry of the closed-loggtem
is shown in Fig. 2.

VII. EXISTENCE AND STABILITY OF PERIODIC ORBITS inf{t > 0] as(t,z0) € ST} if 3 ¢ such that
This section of the paper could equally well be titled, “Maid7,s := Pas(t, x0) € St
Results”, as it is here that the internal geometric strgctur 00 otherwise,
of the closed-loop system (56) is exploited to obtain a low- (57)

dimensional, closed-form characterization of asymp#diic where ¢ (¢, 20) is an integral curve of (37) corresponding
stable, periodic, running motions. Section VII-A develdps 10 ¢ (0, z0) = zo. ¢From [2, Lemma 3]} 5 is continuous
Poincaé section and the Poin@amreturn map that will be at pointsz, where0 < T7s(xg) < oo and the intersection
used for analyzing periodic orbits of (56). The analyticakith S! is transversél Hence, X, := {z, € X, | 0 <
results based on restriction dynamics—that is, the hybri <(zs) < oo, Ly, HE(pes(Trs(zs),25)) # 0} is open,
zero dynamics of Fig. 3—are developed in Section VII-Band consequenthss := A ~!(X,) is an open subset~o§;.
The relation to stability in the full-order model is treated It follows that thegeneralized Poincd stance mag, : S§ —
Section VII-C. S! defined by

A. Definition of the Poincdr return map Py(Z5) := pers(Tr.o (A3 (), A (), (58)
A periodic running motion corresponds to a periodic orbit
in the closed-loop model. The Poinéareturn map is a well is well defined and continuous (the terminology of a

known tool for determining the existence of periodic Orbitﬁeneralized—Poinc@ mapfollows Appendix D of [50]).
and their stability properties; for its use in hybrid syssesee Similarly. th lized Poincds fliah P St
[2], [45], [48], [49]. A fixed point of the Poincérreturn map > mhary: the generalized Poincar flight mapf = 5 —
is equivalent to a periodic orbit. St, is defined by

Since running consists of two phases, the Poimaaturn
map is naturally viewed as the composition of two maps= Pr(zs) := @a¢(T1 ¢ (Al(xs), wl(zs)), Al(zs), wl(zs)), (59)
P, o P, as in Fig. 4, whereP, : S§§ — S! follows a solution
of the closed-loop model from the impact event at the end, ons | f ) _ lod
of fight o just before the end of stance, afd: S1 — S R 1o one sultee b st we coeines tele s e
follows a solution from the end-of-stance event to just befo 6Transversality gharantees nonzero vertical leg end wvglatiimpact; that

the end of flight. Since not every landing will result in thes, the foot does not just scuff the ground.
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where, Ty ¢ : Zo € X; — R U {oo} by Theorem 2 (Characterization of restricted impact map):
Suppose thal\(S N Z,) C Z, and7 o A(SN Z,) = {¢5T}.

inf{t > 0[ e ¢(t, 7o) € S;}  if I ¢ such that e coordinatesds, o) for Z,, the restricted impact map

Trs:= vai(t,To) € S§ s given by
00 otherwise, o+

- (60) Agero (9;07 o’i‘i) = S;O_ ) (64)
and ST = {zs € ST | 0 < Tre(Af(w),wi(z,) < 3(o17)
00, Ly, H(¢ert(Tre(Al(s), wl(ws)), Al(ws), wi(zs))) #  where
0}. In [50, Appendix D], it is proved thaP; is continuously 0, = 0.
differentiable. i (65)

The Poincaré return mapP : Sf — Sf for (56) is defined 6(077) = xoi —/(Bo) )2 +q,
by and
P=heh OD o= o= v — vim)
B = mxi;rl)‘y(qg_) (66)

B. Analysis of the Poincérreturn ma s— s— s s— s—
y _ rmap X = 1+mxi A (607) + mlysh = yim)Ae(@))-
Theorem 1 (Connecting running to walking): Let P be The proof is given in Appendix III.

as (61), and letS := Sf, and S := S!. Then P is also the ~ Remark 4:

Poincaé return map for the system with impulse effects 1) x < 0 would imply a sign change in the angular
_ B momentum at impact, which would be incompatible with
| { as(t) = fas(as(t)) x5 (8) ¢S (62) the definition of running as forward motion with a flight

Tl af@) =A@ () I (t) €S, phase.

2) If x3f < 0 is not assumed, the general expression
for (65) isd(0]7) = xoi~ +sgn(x5t )4/ (Boi7)2 +
wheresgn(z) is the sign ofz.

3) Whena = 0, that is, the center of mass has the same
height at the beginning and end of the stance phase,
d(oi7) = (x —18])o}” is linear, exactly as in walking.

whereA := Ajo P.
Proof: This follows from the construction of the Poinéar
return map in [2, Eqg. (14)]. ]
This observation is important because models of the form
(62)—called systems with impulse effects [51], [52]— have
been studied in the context of walking gaits [3], [4]. The

association of running with walking may indicate how result 4) I[‘ terms of the coordmate_@‘)syo,g _:: _%(Ui )?) for
developed for walking, such as closed-form stability asialy SN Z,, where the (generalized) kinetic energy of the
on the basis of a restricted Poineamap, may be extended stance-phase zero dynamics is used instead of the angu-
to running. One motivation for pursuing this association is  |ar momentum, the second entry in (64) becomes

the fact that the control law designs of [3], [4] have been 5.(C) = (x2 + B2)¢

validated experimentally [8], [9]. In this section and thext c o

several results along this line of reasoning are developed a —XxV2a(+ (200)* + 5. (67)

illustrated on an asymptotically stable running gait. o ) - -
Suppose thah (SN 2,) C 2, whereZ, is the stance-phase 5) ImpI|(:2|t in the construction of is the cor_1d|t|0[12_oz§+
zero dynamics manifold. Then, from [3], (62) has a hybricbzer (26¢)" = 0. Also a part of the construction & is the

dynamics, which may be called the/brid zero dynamics of condition thatTy ¢ is a positive real number; under the
running assumptions made oA\, this is equivalent to checking
2= frero(2) ¢ SN2, thaty®! > y5. and\,(gj~) < 0 do not simultaneously

_ _ (63) occur.

2= Aeno(27) 2 €SN Z Let P : S — S be the Poincdr return map for (62), and
where the restricted impact mapAs..., := Als; andf,., Nhence, also for (56), and suppose S N Z,) C Z;, as in
is given by (39). The key properties in walking gaits that leffig- 3. ThenP(S N 2Z5) C SN Z,, and the restriction map
to a rich analytic theory weré&,-invariance A(SNZ,) C Z,, P:SNZ— SN Zs by
and what one may catlonfiguration determinism at transition pi= Pz (68)
moA(SNZ;) consists of a single point, where: TQs — Qs ) _ o _
is the canonical projection. How to achieve these conditioff Well defined. The restricted Poineareturn mapp is

for A = Aj o P; through design of the flight-phase controllefTPortant because it is scalar and, by [2, Theorem 2] (see [3,

will be detailed in Section VIII. Sec. 1V]), asymptotically stable fixed points of it correago
Let ¢¢~ be as defined in (41) and defingt = 7 o to asymptotically stable peric_)dic orbits of the_hybric_i mbde

A(gy~,*). Use (8) to define the positions of the center df62), and hence, to asymptotically stable running gaits.

mass at the beginning of the stance phdse},y>), and _ Iheorem 3 (Closed-form forsﬁ): Suppose St_hatA~(S n

the end of the stance phasec=,y5-). In the following, it 2s) C Zs andmoA(SNZ,) = {qy" }. Let(f;,077) € SNZs,

cm?

is assumed that the center of mass is behind the stance le§nt Se¥ := 3(077)% Then
the beginning of the stance phase, and thig, < 0. p(C) = 8e(C) = Viasero(050), (69)
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A
4
Impact + Flight
& Visero(05) + 3(01)? oyt =xo7 —/(Boy ) +
L — g _ _
2| Vesero(60) + (0773  — 2 — Vaaero (50}
2 2|4 52 1
G H R |
& - 5
; s
Visero(02) Pl
T 1 H
0%, A 050" 0% 050’

Fig. 5. The stance phase zero dynamics is Lagrangian, andhfaugyhout
the stance phase, the corresponding total en&igyero(0s) + %(01)2 is
constant. Over the impact plus flight phase, the change il ®targy
depends on the angular momentum throdgh; ™) and the potential energy
through\/s,zem(e;o). The total energy corresponding to the periodic orbit is

Vvs,zero(esio) + %(0r57)2-

with domain of definition

Dy = {¢> 0] 6.(0) — Vihar, >0,
20 + (26¢)* > 0}, (70)

(b) unstable

whereé, is defined in (67), and Fig. 6. Qualitatively different Poincarmaps that may occur in running. The
dashed line is the identity map and the bold line is a sketchefréstricted
Vbnzlgfo = max Vi sero(0s)- (71) Poincag return map. In (a), the fixed point is exponentially stableabee the
eiagesgego ' intersection with the identity line occurs with a positiMepe less than.0.

. o . » In (b), the fixed point is unstable because the intersectiith the identity
Moreover, the first derivative of the restricted Poiricagturn line occurs with a negative slope less tha.0.

map is

@(g) = d_de(g) =2+ 5% - XLW. (72)  (b) limc\ —o 3—2’(0 = —oo, for x >0 anda < 0;
d¢ d¢ 20¢ + (26¢)? .o
The proof is given in Appendix IV. (c) 11m<—>oo L= ( - 18

Remark 5: 1) Computing a fixed point of (69) is easily (d) < F 2(¢) =
reduced to solving a quadratic equation. If its discrimériat
is non-negative, where

XW does not change sign.

Fig. 6 provides a graphical depiction pffor y > 0, o > 0,
and § — Vs zero(65) > 0. Similar figures could be drawn
Y= 4y2 ( 2,2 for other cases. The next result shows that these quatitativ
features of the Poincarreturn map lead to a large region of
+ (—2Vezero(05) + @) (— ax? + a — 26°Vi yero (02, 0)) ) attraction for an exponentially stable fixed-point.
(73) Theorem 4 (Non-local convergence in the HZD):

. ) o Considerp : D, — IR, and suppose that
the fixed point can be explicitly calculated as

1) (x—18D)?
. 03+ —1) (2Vezero(0) — @) 4+ 220 — VT 2) x >0,
¢ = ) ((X+5)2 - 1) ((X—ﬁ)2 B 1) : 3) an(dg*t?e;re(z) exist§* € D, such thatp(¢*) = ¢* and
(74) .
2) As in walking [1, Fig. 14], the restricted Poinéamap can Then, the following statements are true:
be interpreted in terms of energy transfer; see Fig. 5. (@) ¢* is the unique fixed-point op;
The following two corollaries are immediate. (b) the set
Corollary 1 (Exponentially stable fixed points): {C €D, dp(O > 0} (76)
Suppose that* € D, is a fixed point of p. Then it is d¢
exponentially stable if, and only if, is unbounded and connected; and
) ) a+46%¢ (c) ¢* is locally exponentially stable and every solution
pi=(x"+pB%) - 200 T 200 )2 (75) of ¢(k+1) = p(¢(k)) initialized in D, converges
monotonically to¢*.
satisfies|u| < 1. The proof is given in Appendix V. This result shows that
Corollary 2 (Qualitative analysis of p): The following once the motion of the robot has settled to the hybrid zero
statements are true. dynamics, the domain of attraction of the periodic orbit is

(@) lime o j—g(() = —o0, for x >0 anda > 0; quite large. The analysis in Theorem 4 has not accounted for
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Femur | Tibia | Torso
Length (m) 0.4 0.4 | 0.625 1
Mass (kg) 6.8 3.2 17.0 0.8
Inertia about COM (kg-rf) 0.47 0.20 1.33 0.6k
0.4+
TABLE |
EXPERIMENTALLY MEASURED PARAMETERS FORRABBIT. 0.2r
.

the peak torque of the actuators and the allowed frictioreconig. 7.
at the support leg end. This theorem should thus be viewed
as stating that such physical considerations will deteentlire
limits on the region of attraction, and that the semi-global
convergence of the control logger seis not the key limiting
factor. 06
For all of the examples worked by the authors, if an
exponentially stable fixed point was found, hypotheses(2)),
and (3) of Theorem 4 have always held as well. In particular, °2
1 was always greater thaf.4 and ﬁp equalledD,, that 0
is, the Poinca& map was always strictly increasing on the
region of interest. In the case of Raibert’s hopper, the €#n Fig. 8. Stick diagram for a running trajectory with averageed2.5 mis.
map was unimodal—and thus not strictly increasing on the
domain of interest [17]. Nevertheless, semi-global siigbil
was established using a more powerful analysis method d&eat least 25% of the duration of a stride, and the required
to Singer [53] and Guckenheimer [54]. coefficient of friction is less tha/3. Stick-figure diagrams
corresponding to the running motions b6 m/s and2.5 m/s
S are given in Figs. 7 and 8.
C. Stability in the fuII_—order mod.el ) Denote by© the path traced out in the state spaces of
Under the assumptions made in Section VI-A on the stanggg hybrid model of the robot by any one of these running
phase controller, Theorem 2 of [2] guarantees that asympsjectories. It was checked th@tintersectsS! andSg exactly
totically stablg orbits in th.e hybrid zero dynamlcs (63) argnce: definez;” = O NS and 2t~ = O N SL. The goal
also asymptotically stable in the full-order hybrid modé2) s o design a time-invariant state-feedback controieta
(for a discussion of exponential stability, see Remark 1 iection VI that has? as its asymptotically-stable periodic
[13]). By Theorem 1, the Poincarreturn maps of (62) and it Recall that designing the controller is equivaleat t

(56) are identical. Hence, once asymptotic stability of gsito specifying the output functions in (33) and (47) and the
has been proven in (62), it follows that the orbit is a|SBarameter update-law in (56).

asymptotically stable for (56). Putting all of this togethe
proving the existence and stability of an orbit in the hybrig\ Stance Phase Controller Desian
zero dynamics of running leads to the desired conclusions’in 9

the state space of the closed-loop hybrid model (56). ~ On the basis ofz;~ and 2{~, the values ofgy" (the
initial configuration in stance on the periodic orbifj,” (final

configuration in stance on the periodic orbit}; (normalized

VIII. | LLUSTRATION ON RABBIT . o L ;
. . . . initial velocity in stance on the periodic orbit; see (423hd
The analytical results of Section VII make it straightforda 45~ (normalized final velocity in stance on the periodic ofpit

to determine if a control law of the kind specified in Sectidn V., easily deduced, which in turn give the initial and final
leads to the existence of a stable periodic orbit. Howevep, os ofg. on the p,eriodic orbitgt, and6_,
s s, s,0°

proposing specific values for the output functions so that p¢ i [5], an outputy, = hs(q) = qv — has o 6s(q)

the evolution of the robot is energetically efficient, whilgs gesigned so that it satisfies the boundary condition and
respecting actuator I.|m|ts, the frlctlon cone at the cp’rmnt vanishes (nearly) along the stance phase of the periodit orb
of the leg end, and lift-off at the beginning of the flight paas 54 thys the orbit will be an integral curve of the stancespha
is nearly impossible to do by intuition. Here, the feedback,,, dynamics. For this, the functidn . was selected to be a

designs will be based on optimization. o fourth-order polynomial irf,. The design method in [11] that
Using the method proposed in [11], time-trajectories 0)(29¢ \sed to compute the periodic orbit essentially guarantee

corresponding to average running speeds varying ighm/s -+ the technical conditions of Section VI are satisfiediar
t0 2.75 m/s and parameter values given in Tab. |, were detqfayertheless, the conditions were formally verified. Onge

mined for RABBIT (see [1] for details on the planar, bipedak \nown. so isz.. and by construction® 1 T'O, C Z.,.
robot, RABBIT). The running trajectories satisfy > 0 at the ' 5 ’ s s

beginning of the flight phase, the duration of the flight phase’in (42), replace evaluation af~ with ¢;".

1k

0.8
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. functions hy ¢ (xcm, ar) that achieve the boundary conditions

3000} s on the body-coordinate configuration and velocity, once the
flight duration is determined from the ballistic motion okth

robot’s center of mass. The final step is more difficult beeaus
it is indirect: adjust the evolution of the body coordinates
a function of the takeoff velocity so as to achieve a desired
orientationgs of the robot at landing.

To begin the first step, observe that beca(gg, ¢) is in
7~ HgyT )N Z, if, and only if, ¢ = g5t o}t for somea?r € R,
and(qy ,¢) isin SN Z, if, and only if, ¢ = gy o3~ for some
o]~ € IR, conditions (77) and (78) are equivalent to

2500 -

2000

1500

1000

500

S— s+ S— s— _S— s+
o ‘ ‘ ‘ ‘ ‘ Voi, o1 st Algy ,dy o7 ) = (qO 7QO o). (79)
0 | 500 1000 1500 2000 2500 3000 3500

Cmin ¢ o ) ¢From Theorem 2, it follows that;™ = §(o5~), and hence
? (79) is equivalent to

Fig. 9. Running afl.5 m/s. The restricted Poindamap (bold) associated sl s
with the closed-loop system. The fixed point occurs where tlaplg of p A(qo 4y 0q ) (qo 7(]0 5( )) (80)
intersects the graph of the identity map (thin line).

which gives specific boundary conditions, juter impact,

to be met by the design of the flight phase controller. In
B. Stability of the periodic orbits particular, recalling thay = (q,gs)’, it is seen that (80)

The data requn’ed to determ|ne the restncted Pommp p|aceS ConStraintS on the body Conﬁguration Variables |‘&Eldt

p in Theorem 3 and Theorem 4 can be computed directly frof¢rivatives, and on the overall orientation of the robg,
ha. This was carried out for each of the running trajectoriehile the constraint o is equivalent tooi* = 6(o77), if
studied in this paper. The numerical values are summariZé§ other constraints are met.
in Tab. Il. In each casep, < 1 and hence if a flight- For the purpose of computation, itis convenient to tramsfor
phase controller can be determined to meet the conditid®9) to conditions in the flight-phase state spacey, instead
of Theorem 3, the corresponding orbit will be asymptoticallof the stance-phase state spafe€s. This is done as follows:
stable. Note that slower running speeds yield smaller galu&e boundary conditions (80) specify the height of the aente
of 1. So, for fast running, the convergence toward the perioda mass at impact, and from this information, the flight time,
orbit will be slow. A plot of the restricted Poindarmap tr, is computed for any initial condition i8N Z;; see (100) in

is provided in Fig. 9 for the trajectory corresponding to aie Appendix. Using (101) and (46), the velocity of the cente
average speed df.5 m/s. of mass can be expressed as a functiorof,

o f— Ae(qy )0y
C. Flight Phase Controller Design [ X'ﬁm ] _ ot
The flight phase controllerys = h¢(g,af) = q, — cm —\/(/\y(qg‘)oi‘)2 —29(y&h — yim)
hat(Xem, ar), ar = wi(z7), is to be designed so that trajec- (81)

tories of the closed-loop system that takeoff from the stancrhe impact model (20), can be rewritten to define the angular
phase zero dynamics manifold;, land onZ;; moreover, the velocity at the end of flight satisfying (80):

landing configuration should be independent of the robot’s

takeoff velocity fromZ;. Since from Section VIII-A the initial i~ = A (A + m3f2 f?fz) RTS8 (057)+
stance-phase configuration of the robot on the periodict orbi Xf_ (82)
is equal tog}™, these two conditions become +mA- 10f/ [ .jff 1 )
- Yem
ASNZ) C Z (77)
mo A(S Nz = qg+, (78) These last two equations define a functt;mq0 ,07 ) such

that (80) is equivalent to
where, as beforey : TQ, — Q, is the canonical projection.

The design of the controller can now be broken down into ¢ = R'GT
several steps. First, (77) and (78) will be translated from §f= = do(qo 057,
boundary conditions on configuration and velocity at the

beginningof the (next) stance phase, into boundary conditions In summary, the objective of the flight-phase controller is
at the end of the (current) flight phase. This will result into meet the boundary conditions given in (83). Meeting these
control objectives for the configuration and velocity of théwo conditions will assure that invariance & under the
body coordinates and for the overall orientation of the tobeomposition of the flight phase and impact model is achieved,
at landing. In a second step, because the body coordipgteg77), and that configuration determinism at transition,) (T8

are directly actuated, it is straightforward to design aifaf  also met; see Figs. 2 and 3.

(83)
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Average Vzero(es_) Vféifo XZ??; Y3$ xit_n yir_n Az (Q(s)_) >\y (QS_)
velocity (em) (cm) (cm) (cm) (1072) (1073)
0.50 m/s —66 21 —6.8 62.4 14.0 69.8 3.74 5.4
0.75 m/s —114 36 —8.8 62.1 184 68.8 3.83 3.3
1.00 m/s —168 54 —10.9 61.5 22.6 67.5 3.95 2.3
1.25 m/s —219 74 —12.9 60.5 264 65.7 4.09 2.0
1.50 m/s —258 100 —15.1 593 29.6 63.8 4.27 2.3
1.75 m/s —274 134 —17.7 58.1 32.3 61.7 4.48 3.0
2.00 m/s —285 167 —20.1 56.7 34.6 59.7 4.69 3.3
2.25 m/s —306 123 —17.5 55.6 34.0 59.1 4.78 3.9
2.50 m/s —309 81 —14.4 54.7 32,5 59.0 4.85 5.0
2.75 m/s —260 70 —13.2 552 29.8 586 4.91 5.0

Average a Jé] X Cmin  C* H x — ||

velocity (1072)

0.50 m/s 9.12 —1.37 0.926 53 151 0.695 0.832

0.75m/s | 14.26 —1.07 0.926 88 275 0.708 0.838
1.00 m/s | 19.04 —0.92 0.931 125 434 | 0.729 0.850
125 m/s | 23.34 —0.96  0.940 164 615 0.754 0.866
1.50 m/s | 27.33 —1.29  0.955 206 801 0.785 0.887
1.75 m/s | 30.84 —1.99 0.976 253 982 0.826 0.914
2.00 m/s | 32.77 —2.47  0.990 294 1162 | 0.856 0.932
2.25 m/s | 29.56 —2.52  0.986 231 1327 | 0.859 0.922
2.50m/s | 23.69 —2.66 0.984 161 1503 | 0.870 0.916
2.75 m/s | 15.91 —2.45  0.994 127 1729 | 0.908 0.940

TABLE Il
STABILITY ANALYSIS OF VARIOUS RUNNING MOTIONS. IF ¢ > (min, THEN( € D,.

The design ofhqs can now be given in two more stepsthe robot—satisfies the landing constraint. This is done as

First, definé follows. The output (86) satisfies all of the conditions of
—y _ Xem —Xh _ Xem — Xoh Section VI, and hence the evolution gf in the flight-phase
T(Xem, 0] ) = = 2, (84) zero dynamics is given b¥s = 1 t(Tem, Xem, Xems 05, a5).

- 4 - S—
trXem teds(gp )01 In the flight phaseg.,, and %, are constant and can be
the real-valued function varies betweeh and1 and can be substltuted by the|r values frodin Z.. In addition Xem (1) =

used to parameterize trajectories fréin 2, to 7' (¢57)N 2, xS + tAs(¢5 )0l . Hence, s = Ri¢(t,0] ,as). Letting
in a neighborhood of the periodic orbit. Choose a functiof’*~ denote the value af;~ on the orbit,0, qsd =¢5(0) +
fen(as, -+, as) : [0,1] — IR* such that fo Fyr(t, 07", at)dt is satisfied because, by construction of

fen(ar, - ,a5)(0) = a; the output, the orbit corresponds to an integral curve of the

flight-phase zero dynamics. Finally, it is verified (numatig)
de(ar, - ,a5)(0) = a that
(85) b ty
fen(ay, -+, a5)(1) = a3 5a (%,d—%(o) —/ /%1,f(t70>1ks_,a5)dt> # 0,
5 0 as=as*
d(ﬁj'n (a‘lv e 70’5)(1) = Qg4, o (87)

and thus by the implicit function theorem, there exists aarop

and there existj, --- , az for which g, — fen(aj, - - , a5)(7) subset about;*~ and a differentiable functiom such that
(nearly) vanlshes or0. Here, this was accomplished Wlthwf( =) = ¢¢ and

a fourth order polynomial. Off of the orbit, use (85) to °
solve for aq,---,as4 as functions ofs}~ so thatg,(r) =

fen(aq, -+ ,a5)(7) satisfies the constraints on the body co-
ordinates imposed by (83). Specifically, set = (g5 )b
as = (R g3 ), a2 = (4503 )er andag = (qo(g5", 05 )b

ty
5.4 = q5(0) +/ Rig(t,o5,wf(o57))dt.  (88)
0

Since (88) is scalar while; has four components, there exist
an infinite number of solutions fo@f. Hence, a numerical

Define optimization was performed to find, for each point in a neigh-
hat(Xem, 05 ,as) = fen(ag, -+, a5)(7) (86) borhood ofoi®~, a value ofas that steersy; to g5 4, while
. . minimizin — a?||. The flight-phase control design is
with a;(677), ¢ = 1,...,4 and 7(xcm, 0] ) as determined @ llas — as|| gn'ep g

I f lly defini = (07, ak)
above. Definajs(0) — (g )s andgs 4 — (R~ 1gH)s. completed by formally definingq ¢(g¢, ar), ar := (o], af)’,

. . andwf(z7) := (o5, @ (a57)").
In the final step, the goal is to seleat as a function s(@s) = (o7 o))
S— . .
of o; SO that thegs-component—the overall orientation of 90ther criteria could be used, such as minimization of the ®sqgn the

flight phase. This latter criterion requires the computatbhe torques via
8Note thatxCm = Xom- the dynamic model, and hence is costly in calculation time.
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Fig. 10. Running at..5 m/s. The four graphs depict the relative joint anglesig. 12.

in radians (x-axis) versus their velocities in radians perosd (y-axis) in
the stance, flight and impact phases: the swing knee angle (&héeg-2),
the swing hip angle (hip of leg-2), the stance knee angle dkoeleg-1)
and the stance hip angle (hip of leg-1). At impact, the roleghef limbs
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Running afl.5 m/s. The four graphs depict the joint torques in
Newton-meters (y-axis) versus time in seconds (x-axis) irstaece and flight
phases. Upon convergence to the periodic orbit, the adhiergues are very

close to their optimal values. The torque is higher in the flighase away
from the periodic orbit, especially in the hips.

are exchanged; as a consequence the configuration anglegechaimpact;
see (30). Notice that the robot has the same configurationcat teansition
between phases. The plots indicate that a limit cycle is aelie
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Fig. 13.  Running atl.5 m/s. The left graph depicts leg-1 (stance leg)
horizontal force in Newtons (y-axis) versus time in secondaxs) in the
stance and flight phases. The right graph depicts verticeéfy-axis) versus

time (x-axis) in the stance and flight phases. The impulsivee®rexisting
during impact are not presented.

Flight

swing knee angle swing hip angle

Fig. 11. Running atl.5 m/s. The graph depicts torso angle in radians (x-
axis) versus its velocity in radians per second (y-axishidtance and flight
phases. Notice that the flight-phase controller has regnlléite torso angle
to its desired value ofs 4 at impact. The plot indicates that a limit cycle is
achieved.
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D. Simulation without modeling error

The control law developed above has been simulated on ¢
model of RABBIT for the various running motions. Assuming
no modeling error and initializing the closed-loop systeffn o
of the periodic orbit—with the initial velocity0% higher than
the value on the periodic orbit—the simulation data presknte
in Figs. 10 to 17 are obtained for the running motions of
1.5 m/s and2.5 m/s.

For a running speed df.5 m/s (resp.2.5 m/s) Figs. 10 and
11 (resp., Figs. 14 and 15) show the phase-plane evolution o,
the.c_onﬂguratlon Va”abl,es' The convergence to the paloﬁi—lig. 14. Running aR.5 m/s. The four graphs depict the relative joint angles
orbit is clear. By the design of the controller, the stanbag® in radians (x-axis) versus their velocities in radians pecosd (y-axis) in
evolution of the configuration variables does not changéestr the stance, flight and impact phases: the swing knee angle (&héeg-2),

25

stance knee angle stance hip angle

Tmpact

Stance
Flight

Stance

Impact

- S N P Y

0.6 0.8 1 1.2 1.4 25 3

_atrida- i ; the swing hip angle (hip of leg-2), the stance knee angle koieleg-1)
to-stride; only the velocities change. In the flight phaseost and the stance hip angle (hip of leg-1). At impact, the roleshef limbs

notably, for the hips and the torso when runningld@ m/s), are exchanged:; as a consequence the configuration anglesecaaimpact;

the path traced out is modified so that the robot lands in thee (30). Notice that the robot has the same configurationcht teansition

desired state.

between phases. The plots indicate that a limit cycle is aebie
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Figs. 12 and 16 depict the torques for runningldt m/s
° — and 2.5 m/s, respectively. As the motion converges to the
Qe stnce periodic orbit, the torques correspond to their optimaliesl
and hence are within the capabilities of the actuators. Offi@
periodic orbit, the torques are significantly higher in thghft
phase. For the slowdr.5 m/s-orbit, the torque increase occurs
principally in the hips. For the fast@5 m/s-orbit, the torque
increase is more evenly divided among the four actuators and
is smaller in magnitude; the corresponding modificatiorhi t
path in the flight phase is also smaller; see Figs. 14 and 15.
The reaction forces on leg-1 are provided in Figs. 13 and
17. These graphs show the alternating phases of single guppo
and flight. The robot will not slip for a coefficient of frictio
Fig. 15. Running a.5 m/s. The graph depicts torso angle in radians (xgreater thar0.5. The vertical force during the single support

axis) versus its velocity in radians per second (y-axishidtance and flight ; ; ;
phases. Notice that the flight-phase controller has regnlléite torso angle phase IS very close to the W9|ght of the robot (from Tab. 1, its

to its desired value ofi5 4 at impact. The plot indicates that a limit cycle is Mass is37 kg).

Impact

Flight

8 L
084 083 082 081 08 079 078 077 076

g5,d

achieved.
IX. A PARTIAL ROBUSTNESSEVALUATION
The purpose of this section is to show that the proposed
control strategy may still yield an attractive limit cycleem
200 Torque in Hip 1 15 Torque in Knee 1 if the hypotheses made in the modeling of the robot, the
100 control law’s construction, and the analysis and simufatio
100 s of the closed-loop system are not met exactly. The model of
0 0 Section Il assumed a rigid contact between the leg end and th
50 ground. Here, a compliant contact model will be used [5]sThi
-0 100 has several consequences. First of all, the seven DOF model
200 150 of Section 1lI-B will be used in the stance phase, with the
oo e oo e position of the leg end with respect to the ground evolving
o Torque in Hip 2 o Torque in Knee 2 freely as a function of the reaction forces provided by the
0 compliant contact model. Secondly, the robot will enter the
100 © flight phase when the reaction forces at the leg end go to zero.
, . Finally, the impact forces at touch down will be computed by
- the compliant model as well. In addition to these changes,
-100 oo parameter error will be introduced in the robot model.
200 2 4 6 8 %% 2 1 6 8

A. Compliant contact model

Fig. 16. Running ak.5 m/s. The four graphs depict the joint torques in ;
Newton-meters (y-axis) versus time in seconds (x-axis) irsthece and flight In the eXpe”memal pIatform of RABBIT [1]’ the contact

phases. Upon convergence to the periodic orbit, the adhiergues are very between the ends of the robot's legs and the ground is
close to their optimal values. The torque is higher in the flighase away compliant and the ends of the legs may slip. A model that

from the periodic orbit, especially in the hips. more closely reflects these points is summarized here. A
more detailed discussion is available in [5] and the refezen

therein.

The dynamic model consists of the full 7-DOF model of
200 500 the biped (6) with the computation of the forces acting on the
15 00 leg end being given by
100 30 F, = —)\z|"z — \|z|"sgn(z)+\/|z| + k|z|”

200
50 .
, 100 Fy, = (9% +9°d +9°v + 9% sgn(v)/|v])|Fn|  (89)
0 . qa

% 1 2 3 4 5 0 1 2 3 4 5 d = v— ‘V|%d7

Fig. 17. Running a2.5 m/s. The left graph depicts leg-1 (stance Ieg)Wherez S_O is the penetr’.;ttlon depth (Bc S. 0, the. leQ IS In

horizontal force in Newtons (y-axis) versus time in secondsx(s) in the contact with the ground, it > 0, the leg is not in contact

stance and flight phases. The right graph depicts verticeéf(y-axis) versus with the ground and the contact forces equal zero) and

time (x-axis) in the stance and flight phases. The impulsivee®rexisting - : :

during impact are not presented. the relative vel_00|ty of the end of the leg _Wlth respect to
the ground. This model supposes that the interface between

the two contacting surfaces is a contact between bristhes; t
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Parameter| Value Paramete Value . swing knee angle swing hip angle

¢ 9 x 106 9 260

AP 0.3 9o 0.6 0

e 0.18 n 1.5

9@ 0.3 k 25 x 10° -5

e 0.285
-10 -6
0.6 0.8 1 1.2 14 1.6 15 2 25 3
TABLE Il
COMPLIANT CONTACT MODEL PARAMETERS . stance knee angle 5 stance hip angle

-2

average deflectiol of the bristles is an internal state used
to model dynamic friction. The numerical values used in the
simulation, given in Tab. lll, were adjusted for a nominal
penetration of approximately mm and to avoid rebound of %6 07 oz o0s 1 11 15 2 25 3
the leg during the stance phase.

Together, the models (6) and (89) describe the robof@' 18. Running at.5 m/s with the c_ompliant co_nta_ct_mode_l and parametric
modeling error. The four graphs depict the relative jointlesdn radians (x-

evolution in all phases of motion: flight, stance and impacixis) versus their velocities in radians per second (y)arishe stance, flight
The robot's dynamics are then described by ordinary (noaprd impact phases: the swing knee angle (knee of leg-2), timg $vp angle
hybrid) differential equations over the entire stride, revelNP of 169-2), the stance knee angle (knee of leg-1) and tdvecs hip angle
. . h . ' 77 "(hip of leg-1). At impact, the roles of the limbs are exchangsdtice the
during the impact, which will now have a non-zero durationprupt change in the velocities at impact, especially in taace leg. The
With this model, contact forces at the leg end are continuoupts indicate that a limit cycle is achieved.
which means in particular that they will not experience an
instantaneous jump to zero at the transition from stance to 5

flight as supposed in the development of the control law.

-4

-6

04 Stance

B. Simulation with modeling error

In addition to the structural change in the contact model,
parametric modeling error is included. A deviation -b20%
in the masses and inertias was introduced between the sobot’ 0
design model and the simulation model; symmetry of the
two legs was preserved. It is important to note that one
consequence of parametric error is that there will be arr erro

in the state of the robot at landing: because the flight-phasg. 19. Running at.5 m/s with the compliant contact model and parametric

controller does not correspond to the simulation model, ritodeling error. The graph depicts torso angle in radiansxig)}aversus its

; ; elocity in radians per second (y-axis) in the stance anditfigrases. Notice
will not CorreCtly account of the conservation of angu'#hat the flight-phase controller has approximately regdide torso angle to

momentum. Finally, saturation was introduced on the ta8URs desired value ofj5 4 at impact. The plot indicates that a limit cycle is
(150 Nm) to take into account the limitations of the actuatorachieved.
of RABBIT.
Despite all of the differences between the simulation model
and the model used to design the controller, the feedbaskclear. At touchdown, the roles of the legs are swapped, as
controller illustrated in Section VIII is able to induce alste When the rigid contact model was used. At the beginning of the
running motion. This is shown in Figs. 18 to 21 for a nominatance phase, the impact causes an abrupt change in this robot
speed of 1.5 m/s. In the simulations, the controller wasvelocities. At the moment of contact, the robot’s veloaitsill
switched from the stance phase to flight phase whggp) correspond to their values from the flight phase. The control
attainedd;”, and it was switched from flight phase to stanctaw sees this as a large set-point error and consequentligapp
phase when the penetration of the leg end into the compligntarge torque, resulting in saturation; see Fig. 20. Onst pa
surface exceede? mm. Due to the differences in the desigrihe impact, the evolution of the relative angles is quiteselto
and simulation models, the limit cycle does not corresponehat was predicted with the rigid impact model; see Fig. 10
exactly to the theoretical prediction. The value/bfcalculated and Fig. 11. The perturbations during the flight phase are
from the simulation data and the model parameters2 small because the initial condition of the simulation ligs o
whereas the value predicted with the rigid model and pdyfecthe periodic orbit corresponding to the rigid contact model
known parameters wai)1 (see Tab. Il). The average runningand no parametric modeling error.
speed was calculated to bes4 m/s, compared to the previous The reaction forces on leg-1 are provided in Fig. 21. These
value of1.50 m/s. graphs show the alternating phases of single support and
Figs. 18 and 19 show the evolution of the configuratioflight. Except during impact, which is no longer instantameo
variables in the phase plane; the convergence to a limiecythe forces are close to the values predicted by the earlier

06

08
0815
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200 Toraue bt 200 Torqueinknee d in [4], [8], [13] can be profitably used to increase the rate
of convergence to the periodic orbit. It will also be shown
10 e that the additional feedback action can be used to reduce the
0 0 magnitude of the torques that are used in the flight phase to

attain the desired landing state.

e e Remark 6: In Section IX-B, it was seen that modeling
-200 ~200 error alters the average running speed. As in [8], evertdas
0 1 2 3 4 5 0 1 2 3 4 5 .
control could also be used to attenuate the effects of ntagleli
"0 Torque in Hip 2 a0 Torque in Knee 2 error on average running speed. In addition, it could be used
to stabilize a periodic orbit that was nominally unstablelem
100 100 the feedback designs proposed so far.
0 0
A. Deciding what to control
-100 -100

Based on [15], it is natural to conjecture that modification
200 200 of the target landing configuration stride-to-stride carubed
to ameliorate the rate of convergence to the orbit and the
Fig. 20. Running at.5 m/s with the compliant contact model and parametri(peak torques in the flight phase. In particular, the horigbnt
modeling error. The four graphs depict the joint torques irwida-meters .
(y-axis) versus time in seconds (x-axis) in the stance anttflipases. The distance between the cepter of mass a”F’ Fhe stance |?g has
torques are limited ta=150 Nm. Upon convergence to the periodic orbit, thed Strong effedf on p. This suggests modifying the landing
achieved torques are close to their optimal values. Priootwergence, note configuration in the directiof0, 0, 1,0,0]’. On the other hand,
the larger torques in the beginning of the stance phase daectunbination . e . . .
of modeling error and landing in the wrong state. the actlon. of modn‘ymg the flight traject_ory 'Fo obtain the
correct orientation of the torso at landing is what leads
1000 — —— 02 — e to the higher torques. This suggests modifying the landing
Cod S N N configuration in the directiof, 0,0, 0, 1]’.

800
0.15
600

400 01 B. Implementing stride-to-stride updates of landing canfig
200 4 005 ration
0/\, S I ’ _ . . . .
oo V V . / : Let ¢, denote the nominal landing configuration for one of
1 12 14 16 1 12 14 16 the running motions of Section VIII; see (83). Set the dekire

landing configuration at thé th stride to be
Fig. 21. Running at.5 m/s with the compliant contact model and parametric

modeling error. The left graph depicts leg-1 (stance legigbatal and vertical qf—d(k) — q(f)— + [()7 0, w; (k)’ 0, wg(k)]', (90)

force components in Newtons (y-axis) versus time in seconesxi§) in 0,

the stance and flight phases. Large forces occur at touchdtermaximal \where the real scalars; (k) and wo(k) are to be updated

vertical force is close t®000 N and the maximal horizontal force is close .

to —4000 N with the compliant contact model. The vertical lines show théat the end of _eaCh stan_ce phas_e. Thro_ugh the Impact map

instant of transition between the control law phases. Tgktgraph depicts (30), a change in the desired landing configuration needs to b

Verti)ca' F;]OSition of th% 'fflfghe“dhi“ meters (Y'arfis) ersus tio";?econgs (x- accompanied by a corresponding change in the desiredl initia

axis) in the stance and flight phases. Notice that the flightroblaw induces . . . .

the stance leg to lift off quickly and the reaction forces totg zero. stgnce Conf'gurat'on' Both of these change; entail stade-t
stride parameter updates to the stance and flight consalfer

Section VI. As a result, the restricted Poinganap is now a

simulation; see Fig. 13. The penetration of the stance |§g1ction ofw: (k) andws (k) and can be viewed as a discrete-
end stabilizes at approximatelymm. These two plots show time control system

cIearI_y the very rapid liftoff of the stance leg to |n|t|at_e Clk+ 1) = p(C(k), wi (k) wa(k)) (91)
the flight phase. Consequently, for the purposes of modeling . .

feedback design, and analysis, it is as reasonable to seipposWith state space N Z, and inputs(w;, ws)’ € IR?; see [13]

instantaneous transition to the flight phase as it is to ssppdor details. Linearizing (91) about the nominal fixed-pogrit
an instantaneous impact. corresponding tav; = 0 andwy = 0 results in

5C(k+ 1) = pdC(k) + brdwy (k) + badwa(k).  (92)

The value ofu is determined from Corollary 1; the sensitivities
Each of the feedback designs illustrated in Section VIH, andb, are more easily determined numerically through a

resulted in a nominally exponentially stable running motio simulation of the model.

Indeed, this has been the case for all of the periodic orbitsLinear state variable feedbackw,(k) = ki16¢(k),

computed by the authors using the techniques in [11]. Frafw, (k) = k20¢(k) can then be used to tradeoff peak torques

Tab. Il, it is seen that the rate of convergence to the peariodi

orbit decreases as the average running speed increases gtﬁ%"’he” the heights of the center of mass at the beginning and etttz of
tance phase are the same= (x — |3]), which is a function only of the

?S' p becomes Close.r.to 1.0). The aim of this Se?tioh IS #rizontal position of the center of mass with respect to thace leg end,
illustrate how an additional event-based-control actiomlied see (66).

X. ADDITIONAL EVENT-BASED CONTROL FORRUNNING
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swing knee angle swing hip angle

0.5 1 15 2 15 2 2.5 3

stance knee angle stance hip angle

Fig. 22. A one-parameter search to minimize peak torque.khet ak;. o
The graph depicts the maximal torque in Newton-meters (y-as@s3us the 3
parameter (x-axis) for an initial velocity of the robot equal t#10% of its -2
value on the periodic orbit (the solid line corresponds-tt¥)% and the dashed 2
line corresponds te-10%). The best choice of parameteis 0.3 < a < 0.35 -
to minimize the peak torque. -6 1
0 0.5 1 15 15 2 25 3

Fig. 23.  Running atl.5 m/s with event-based control of the landing
and the rate of convergence to the fixed point. For the runnipgpfiguration. The four graphs depict the relative jointlasgn radians (x-

; ; : ; i1\, axis) versus their velocities in radians per second (y})awrishe stance, flight
motion with average speed df.5 m/s, it was arbitrarily and impact phases: the swing knee angle (knee of leg-2), tlegship

decided to place the closed-loop eigenvalueuat= 2/3. angle (hip of leg-2), the stance knee angle (knee of leg-1) the stance
A one-parameter search was then performed to minimize thie angle (hip of leg-1). At impact, the roles of the limbs aretenged; as
forques in the fight phase when the velocity upon enterifgEerescience he confoursion ngles hange st mosctashefoice
the flight phase differed from the value on the periodic orbphases. The plots indicate that a limit cycle is achieved.

by +£10%, subject tou + k1by + koby = 2/3; see Fig. 22.

This resulted ink; = 7.8 x 107° and k; = 2.6 x 1075,
It is important to note that transient performance has been ——

optimized subject to a stability constraint.

C. Simulation results 0

Assuming no modeling error and initializing the closed-
loop system off of the periodic orbit—with the initial veldgi
10% higher than its value on the periodic orbit—yields the
simulation data presented in Figs. 23 through 25. The landin "
configuration is being modified at each stride. The orieotati
of the support hip and the torso vary slightly stride-tdektr Fig. 24.  Running atl.5 m/s with event-based control of the landing

L7 . . qopfiguration. The graph depicts torso angle in radiansx{g}aversus its
under the event-based feedback. The deviation in the fligafocity in radians per second (y-axis) in the stance antitfiiases. Notice
phase trajectory—compare Figs. 23 and 24 to Figs. 10 athelt the torso angle at the end of the flight phase variesestdstride. The
11—is clearly much less under the event-based control acti@let indicates that a limit cycle is achieved.

Consequently, the torques during the flight phase are notice
ably reduced; see Fig. 25. ) ) ] . .
The evolution of¢ from stride-to-stride over the course of2Cts both continuously during a stride and discretely sttad

the simulation is presented in Fig. 26. The desired conveegje stride. The flight-phase portion of the control strategy was
rate has been achieved. designed so as to create a generalized impact map whose

properties are similar to those of the impact maps that aocur
is presented in Fig. 27. The induced variation in the landifgede!s of walking. This led to the deliberate design of a tdy/br

configuration is rather small. Despite this, there are figgnit 2670 dynamics of running, that is, a low-dimensional, iravat;
improvements in the rate of convergence to the periodict orSHP-dynamic of the closed-loop hybrid system. Asymptdgica
and the reduction in peak torque. This sensitivity points fjaPle orbits of the hybrid zero dynamics are asymptojicall
potential problems when implementation is pursued on ti§aPilizable orbits of the full-order hybrid model. Usiniget
actual mechanism. It may be necessary to develop otfidea of a restricted Poindareturn map—which is the Poinéar

methods to avoid unnecessarily high torques in the flighturn map associated with the hybrid zero dynamics—an
phase. explicit criterion for the existence of periodic orbits was

given, as well as an explicit characterization of their #itgb
properties. With this theoretical tool, stability analysivolves
the straightforward computation of a scalar map.

A time-invariant feedback control strategy has been devel-The principal results were illustrated on a five-link, four-
oped for a bipedal runner. The control strategy is hybrid: #ctuator planar biped with revolute joints. Periodic tcipeies

The evolution of the event-based-control actian, + wo,

XI. CONCLUSIONS
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Fig. 25.

Running atl.5 m/s with event-based control of the landing
configuration. The four graphs depict the joint torques inbd&-meters (y-

Torque in Knee 1
200
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Torque in Knee 2
200
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-100

-200
0 1 2 3 4 5

computed in [11] were interpreted as desired periodic ®rbit
in the state space of the robot model. For each trajectory,
100 a time-invariant feedback controller was designed to zeali
the corresponding orbit as an attractive solution of theridyb
zero dynamics, without, it is very important to note, the use
of trajectory tracking. Very roughly speaking, the coneol
is “clocked” to events on the orbit and not to time. Hence,
when perturbed away from the orbit, the robot’s links regain
“synchrony” with respect to the robot’s position on the orbi
and not with respect to time. In this sense, the work here is
100 philosophically similar to [15]-[18], [55] and diametribaop-
posed to most other work in the legged-locomotion literatur
The performance of the controller was simulated on slow
and fast running motions. Robustness of the controller to
model imperfections was demonstrated through simulations
where the rigid impact model was replaced by a compliant
contact model, and where the parameters of the robot model
did not correspond to those used to design the controllex. Th

axis) versus time in seconds (x-axis) in the stance and fligasgs. Modifying event-based control method of [4], [13] was used to accElera
the landing configuration stride-to-stride has resultethirch smaller torques the rate of convergence to a periodic orbit and to improve the

when the robot is off of the periodic orbit.

Fig. 26.

transient performance in the flight phase.

This work has only partially explored the benefits of ap-

880

860

L L L
780 800 820 840

Running atl.5 m/s with event-based control of the landing

L L L
860 880 900 920

configuration. The graph’s thick line depicts the value(oft stepk + 1
(y-axis) versus its value at step (x-axis) as obtained directly from the
simulation. The desired modification in the slope of the Paimaaap has
been obtained without changing the fixed point: slepe).66, ¢* ~ 800. [
The thin line is the identity map. The fixed point is at the int@mtion of the

two lin

Fig. 27.

es.

(2]

(3]

(4]

(5]

_ ; (6]

1‘5 2‘0 25 [7]

Running atl.5 m/s with event-based control of the landing

configuration. The graph depicts; (y—axis?C versus step number (x-axis) as [8]
obtained in the simulation. Note that, = ﬁwl.

proaching the feedback control of running with tools previ-
ously developed for walking. On the basis of [4], it seems
likely that event-based control can be profitably used in run
ning to provide additional regulation of average runningesp
and rejection of perturbations. These extensions may \iavol
event-based control actions in the stance-phase comtrolle
parallel to what was done here for the flight-phase controlle
While this paper was in review, experimental implementa-
tion of a running controller was initiated [56].
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APPENDIXI becausex; is constant during the flight phase atg, = 0.
STANCE AND FLIGHT PHASE CONTROL LAwWS The control laws is easily determined using the first five rows

. . of the dynamic model:
The control laws are rewritten here in a form where their y

dependence on terms in the models becomes more explicit.

_ DPhays .
ur = (Ara1:4 — Aras A5 3 A5 1:4) Qd’f X2+
’ ox2,
-1
A. Stance phase control + Cr1:a — Ara5A55Cr 5, (98)

The control law is defined so as to achieve input-outptithere the subscriptl®: 4,1 : 4" designates the square sub-
d®ys matrix composed of the first four rows and columns, the

linearization with respect tw, %% = v(ys,9s), Where o ” ' i
v(ys, s) is subsequently chosen to globally asymptoticall?umcnpt 1:4,5 d_enotes the first four rows of the fifth
column, the subscript5; 1 : 4’denotes the first four columns

stabilize the origin with finite-time convergence [2]. Inpu ) : k -
output linearization is equivalent to of the fifth row and the subscript 5” designates the fifth row
only.

. Ohgs =  0%hgs
g = d. 95 + d.

. 2
6.7 +o. 03
26, ogz = TV (©3)

APPENDIXII
HYPOTHESES ON THEFINITE-TIME CONTROLLER IN THE

The robot’s configuration is a linear combinationggfandés, STANCE PHASE

o Let v(y,y) be any feedback controller on (36) satisfying
g=T 0. |’ (94)  conditions CH2—CH5 of [2], that is, faV = 4 the dimension
° of y:

whereT is a constant invertible matrix, and hence the contrélontroller Hypothe;es: for the closed-loop chain of double
law is easily expressed directly in terms of the dynamic rhodéntegratorsj = v(y, 9),

Indeed, the required torques satisfy CH2) solutions globally exist o2V =2, and are unique;
CH3) solutions depend continuously on the initial condi-
. 2 .2 . i
agg,s os + aafég,s es +o tions; o .
Dqy(qn)T ° o CH4) the origin is globally asymptotically stable, and con-
O vergence is achieved in finite time;

CH5) the settling time functiod, T, : IR*N~2 — IR by

Teet(y0,90) 7= inf{t > 0 | (y(t), 9(t)) = (0,0),
(4(0),9(0)) = (4o, Y0)}

Tyxs

+cs<qb,q)q'+as<q>=l . ]u (95)

The fifth row of the model yieldés. Substituting this expres-

sion in the above yields the required feedback controller depends continuously on the initial condition,
(yO’ yO)
Oha,s Ohas - Hypotheses CH2—-CH4 correspond to the definition of finite-
us = —Dg1.4(q) T afs ] (Ds,s(Qb)T 6% D time stability [59], [60]; CH5 is also needed, but is not ifepl
by CH2-CH4 [61]. These requirements rule out traditional
Phas g 2 +v N sliding mode control, with its well-known discontinuous-ac
DS75(qb)T 69‘3 05 + CS,S(qba Q)q + Gs,5(Q) tion '
has 42
+ Ds 1.4(qn) T R APPENDIX I
0 PROOF OFTHEOREM 2

+ Cs,1:4(ab:4)q + Gs14(q), (96) By (41), points in S N Z, are parameterized by
(@5, 45 o7 ). The position of the center of mags?_,ys )

where the subscript,1 : 4" designates the sub-matrix COM-is obtained by evaluating (8) a}~ and its velocity is obtained

posed of the first four rows and the subscripf™designates from (46), (x5, 55 ) = (Aa(gs)o™, A (g5 )0 7). The
. ’ cm’ J cm - T \10 1 > 7'y\40 1/
the fifth row only. angular momentum about the center of mass can be determined
from (24) to be

B. Flight phase control oim =07 —m(yinda(qd ol — XAy (qg ot ) . (99)

- The:‘ co-ntroullzZI/aW is defirled so as to aphieve input-outpfince the transition map from the stance phase to the flight

linearization, 2" = v(yr, 4r), wherev(yr,9r) = —Kyyr — phase preserves positions and velocities, (99) is also the

Ky e?(ponc_entlglly.stabllllzes the double integrator. Inpuigngular momentum at thigeginningof the flight phasegfl,

output linearization is equivalent to and because angular momentum is conserved during ballistic
Gy = a2hd,f(xcm’ ar) Xgm T, (97) UThat is, the time it takes for a solution initialized @, 7o) to converge

3xgm to the origin. The terminology is taken from [59].
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motion, (99) is also the value of the angular momentum APPENDIXV
at the end of the flight phasecl . From the hypotheses PROOF OFTHEOREM 4

A(SNZ,) C 2, and7 o A(SN Z) is a single point, the gy (q) of Corollary 2, the hypotheses imply thats strictly
position of the center of mass at the end of the flight phasedénvex, and by (c)% < (x—|3])? < 1. Hence, the graph of
known and equal to the position of the center of mass at thg have at most ofie intersection with the graph of the ijenti
beginning of the subsequent stance ph&sg;,, yz,)- FIOM  fnction, which implies that there can exist at most one fixed
this, the flight time.t;, can be computed point. Sinced, and p differ by a constant, their derivatives
are equal and Corollary 2 applies equallysto Therefored,

v \/(y?;:n)2 — 29(y&h — yim) is strictly increasing orD,, and therefore, i{ € D,, then
g + g ' (100) ¢ ¢ D, for all ¢ > (. It follows that D, is unbounded and

connected. By Corollary 15* is exponentially stable.

and from (23), the velocity of the center of mass at the endLet ( € D, be such that¢ < ¢*. Then, sincep is

ty

of the flight phase is determined strictly increasing onD,, p(¢) < p(¢*) = ¢*. Hence,
p*)(¢) is a strictly increasing sequence bounded from above,
Xem(t ) x5 and therefore has a limit. By continuity of, this limit is
l . ] = . (101) a fixed point of p, and by uniqueness of the fixed point,
Yem(ts) —\/(yggy —29(ySh — yim) limg o p*)(¢) = ¢*. Similarly, let ¢ € D, be such that

¢ > ¢*. Then{* = p(¢*) < p(¢), and similar reasoning
Equations (99), (101), and (24) allow the angular momentu$ows thatimy. ... p*)(¢) = ¢*, with the convergence being
about the contact point at the end of the flight phasg,, Monotonic.
to be evaluated, and then (28) allows the evaluation of the

angular momentum about the stance leg at the beginning of APPENDIX VI
the subsequence stance phase. This yields EFFECTS OF MEASURING ANGLES IN
COUNTER-CLOCKWISE DIRECTION
oyt =07 —m(yinda(qy )or — XAy (g5 oy ) + If angles are positive when measured in the counter-
clockwise direction, the following equations are modi-
m(y?;)\x(q(s))oi—k fied.Equation (24) becomes

0; = 0Ocm + M ((Xcrn - Xi)}.’cm - (YCm - Yi)xcm) . (105)
s+ S—\ 5—\2 __ s+ _ 8—
Xemy (u(a57)01)? = 29(yeh ycm>> » (192) The fifth row of (18) is

o
which, after simplification, completes the proof. ot =0 = M [Yem — Y2 | — Xem + X2] Xim B ;C_m ,
(106)
APPENDIX IV since 322 = [yem(q) — y2(q) | — Xem(g) +x2(g))', and using
PROOE OETHEOREM 3 (105) results in (27). Consequently, Appendix Il is modifie
as follows. The angular momentum about the center of mass
¢From [3, Sec. 1V], in the coordinate®;, K ,eco = Can be determined from (105) to be
1(01)?) for Z,, the stance-phase zero dynamics can be in- . o NN o  s—
tegrated as i = 00+ m (Vi Ae(@)oT — XAy (g3 )03 ).
(107)
Ks,zero(es) = K&zero (9:) - Vvs,zero(gs)- (103) Thls ylelds
o1 =01 +m (Yande (g )0t —XemAy(ag )or) —

Evaluating the above af; and applying (67) yields the

restricted Poincd& map m <ys+/\ (7)o +
cm ' T \10 1

p(() = 68(() - Vs,zero(es_)v (104)

x5/ (@5 7)05 )2 — 29(yih — yim) | (108)
where ¢ = 1(077)%. The domain ofp follows from [3, (Ay(a7)o17) (

Thm. 3]. Thus
Remark 7: The integration of the stance phase zero dy- sy s S—\2
namics can also be expressed as §(077) =xo7 +4/(Bo17)? +q, (109)
with
a = —2m’g(xZh)* (veh — yem)
for - < 6, < 6=, which is conservation of total “pseudo- 3= mXanAy(a )
energy” during the stance phase; see also Fig. 5. x=1-mx (g5 ) —m(yst — yim) () 7)-

Ks,zero(gs) + ‘/;,zero(es) = Ks,zero (9:)»
(110)
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and equations (65) and (66) must be changed accordinglyymeo!

Meaning

Defined

Since the sign of the angular momentum is different, thessign s, ;, f. .

closed-loop system

Secs. VI-A, VI-B

of A, and ), are changed. The numerical evaluatiomoind
X gives the same value whether the positive direction is define .
clockwise or counter-clockwise. The sign ¢f is changed,

but it does not play any role. The main difference is the sign

vector function defining the
Cartesian coordinates of the mas
center with respect to the
Cartesian coordinates of leg

5

Egs. (8), (16)

drift vector fields in flight and

before the square root; thus the evolution of the absoluteeva f:, fs stance phase models Egs. (7), (15)
of the angular momentum given py (65) for positive angular o) stance-phase zero dynamics Sec. VIA
momentum and by (109) for negative angular momentum is th . _
same. The remainder of the analysis is based on the evolution fl?:;'t'f;']eﬂggdp;r?&eﬁﬁgﬁﬁghase
of ¢ = L(057)?, and since the sign of the angular momentumfe® controller, g ¢ (Xcm, a) = Sec. VIII-C
does not affect;, the analysis and formulas are valid for any fen(a, - -+, a5)(7)
choice of positive direction. F, F normal and tangential componentsg . |y
w of the ground reaction force
APPENDIXVII Fr, Fr open-loop flow on state manifold | Sec. IV
NOMENCLATURE Fe g Fers | closed-loop flow on state manifold Sec. VI-C
The subscript f” corresponds to the flight phase and the g gravity constant

subscript §” corresponds to the stance phase. The superscriptgsf g control vector fields in flight and Egs. (7). (15)
“+" and “~" define the beginning and end of a phase respec- stance phase models '
tively. When they are applied to a variable that is only definedG:. Gs gravity vector Sec. III-B
for a single phase, such &, then there is no ambiguity, Iy T, vector of generalized forces and | ¢. .« 1.8 ji1.C
as in@3*. For a variable such as..,, which is used in both ' torques '
flight and stance phases, the notatidy,, x5, xtr, andxly 5. 5. output functions in flight and Secs. VI-A, VI-B

is used. The superscript™ occasionally is used to denote

stance phases

part output function defining a

the value of a variable on a periodic orbit; an exception iSh,, hy . virtual constraint Sec. VI-A, VI-B
u*, which is a feedback control rendering a zero dynamics — R~
. . : £ switching condition from
manifold invariant. Hj, H} “subscript” to “superscript” Sec. IV
Symbol Meanin Defined inerti ]
Y 9 I gseudq inertia, defines the zero Eq. (40)
— - ynamics
o parameter in flight-phase virtual Sec. VI-B ‘ _ i
f constraints; is up-dated each stef ' intensity of the ground reaction
—— — Ir impulses at impact Sec. lII-D
part of inertia matrix in flight
Algp) phase,A; : i — th row of A, Eqg. (3) gains of the stride-to-stride
Ay = A, 5) ki, ko controller Sec. X
space where; takes values ) derivative and proportional gains )
A A := IRP, p number of parameters Sec. VI-B Ka, Kp of the flight-phase controller Sec. VI-B
a parameter defining the functioh | Eq. (66) K¢, Ks total kinetic energy Secs. IlI-B, llI-C
sensitivities of restricted Poindar kinetic energy for the zero
b1, by map w.r.t. variationav; andws Sec. X K zero dynamics in stance phase Eq. (44)
B¢, B transformsu into I'y or I" Egs. (5), (13 art of zero dynamics in flight
f s U | f s gs. (5), (13) K1f Ehage y g Egs. (49), (50)
8 parameter defining the functioh | Eq. (66) : : :
Ct, Cs coriolis and centrifugal terms Secs. lI-B, llI-C leg-1 sur?portlng. leg in stance Fig- 1
X parameter defining the functioh | Eq. (66) leg-2 isn\gvr;r;%tf%tlgr?(tjagfﬁiglﬁg that Fig. 1
Dy, Ds inertia matrices Secs. IlI-B, IlI-C Lo Lo Lagrangian Secs. I1I-B, Ill-C
Dy domain of definition ofp Eq. (70) - Lagrangian for the stance phase Sec. VIA
D, domain wherep has positive slopg Eq. (76) mere zero dynamics '
function that defines the change of PV normalized velocity of the center | - . 15y (46
5 angular momentunar; in the Eq. (65) woy of mass as. (45). (46)
restricted impact map m total mass of the biped Sec. III-B
same asj, but expressed in terms slope of the restricted Poincar
Oe of energy instead of momentum Eq. (67) I retBrn map at its fixed point Eq. (75)
A generalized impact map Thm. 1 U desired value of Sec. X
¢ impact maps determining new N natural numbers Sec. VI-B
As A initial conditions at transitions Sec. IV —— —
- - periodic orbit viewed as a subset
Agero restricted impact map Egs. (63), (64) @ of the state space Sec. VIl
A change in velocity at impact Sec. llI-D P Poincaé map Eq. (61)
xs A#% extended to include the i incé
s £ R generalized Poincarmap for a
Af parameters Sec. VI-C Py, Ps single phase Sec. VII-A
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Symbol Meaning Defined Symbol Meaning Defined
canonical projection that picks off ) scaled time for flight phase, varies
g the configuration variable Sec. VII-B T from O to 1 Eq. (84)
wel,£(t, o), | integral curve of closed-loop dy- Sec. VII-A 0 in stance phase, angle of the hips Fig. 1
@el,s(t, o) | namics with initial statecg ’ s with respect the stance leg end 9-
coordinate change on configurati ) ) _ value offs just before transition td
By, By space Secs. VI-A, VI-B 03 fiight phase Sec. IV
body coordinates, - + value of @ just after transition
K a = (91,92, 93,94)’ Flg. 1 Os from flight phase Eq. (65)
generalized coordinates in the 0 desired value ob; at the transition Sec. IV
g, q flight ¢¢ := (q1,, g5, Xcm, Yem)' Sec. llI-B $,0 from stance to flight; a constant :
— / !/
and stancey := (g, 95)" phases o+ desired value ob at the beginning Eq. (65)
e reference configuratioa at the end Eq. (83) s,0 of stance; a constant a-
L 1.5 .
0 of flight; equalsR™" ¢ u vector of actuator torques Sec. llI-B
a g?fgtraer?gg configuration at the eng Eq. (41) feedback control that renders
ud stance-phase zero dynamic Eq. (38)
s reference configuration at the manifold invariant
a5 beginning of stance Secs. VIFA, VIII-A
9 9 control after partial feedback Eq. (35)
angle of torso referenced to worlg v linearization Q.
95 gﬁ?ﬁ;ﬁ:ﬁ hence biped's absoluteFig. 1 relative velocity of the end of the Sec. IX-A
v leg with respect to the ground '
a5 tnhoerrgzgl(ljzggsrtgfséznce velocity at Eq. (42) Vi, Vs total potential energy Secs. IlI-B, llI-C
: - potential energy for the stance
qg* trlho(el’rgzg?r?rc]iir:gfg;esr:;ﬁcveelocny at | sec. VIII-A Vs zero phase zero dynamics Eq. (43)
function determining the velocity j/max Znnegr'ma]!o\:atwg :;rt:z pnoéaqggl Eq. (71)
do before impact as function of Eq. (83) 8,zero duringystance hase y a-
velocity after impact 9 P
- - transition function for the
B - £ -
Of, 9Os configuration space Secs. IlI-B, 1I-C wy flight-phase parameters; Sec. VI-C
relabeling matrix to take into - — -
R Eqg. (31) functions defining the landing
account the change of leg number w1,w2 configuration Sec. X
P restricted Poincér return map Eq. (68) . state variables for flight and secs. 1B G
S topological circle £ &s stance,(q;, ¢;)" and (¢, ¢’)’ ’ ’
switching hyper-surface, also e e state on intersection of periodic Sec. ViII
S called an impact hyper-surface, | Thm. 1 Tg o s orbit and switching hyper-surface ’
.— gf
S:=5 extended state in flight phase,
st St switching hyper-surface Sec. IV Tt includes the parameters, Sec. VI-B
= domains where associated Poir&ar, or = (@, ap)
st' sz’ S maps are well defined Sec. VII-A, VII-B horizontal Cartesian coordinate o .
— - Hem the center of mass Fig- 1
~ switching hyper-surface in the . - -
S8 extended closed-loop model that | Sec. VI-C horizontal Cartesian coordinates of _.
f . X1, X2 Flg. 1
includes the parameters as stateg the leg ends
- angular momentum of the biped sec. III-E Af, Xs state space Sec. IV
cm : -
about its center of mass 2 state space including the Sec. VI.C
) angular momentum of the biped sec. IIl-E f parameters ’
7i about the end of leg- ’ " ;
output used to define the desired Secs. VI-A. VI-B
o value ofo}™ on a periodic orbit | Sec. VII-C yt b coordination of the limbs ' '
flight and stance portions of vertical Cartesian coordinate of th Crig. 1
¢, B open-loop hybrid model Eq. (29) Yem center of mass 9
flight and stance portions of vertical Cartesian coordinates of Fig. 1
St Vsl | closed-loop hybrid model Eq. (56) yi ¥z leg end 9
ts duration of flight Eg. (100) . 3tyarrz r;/;icr;able for hybrid zero Eq. (39)
time-to-impact function for one
Tr60 Trs hase Ea. (57) penetration depth of leg end in
p z . Eqg. (89)
at . . o compliant ground model
state space, tangent space - -
TQr TOs | jndo. Secs. II-B, 1II-C Zt gy Zs | zero dynamics manifold Secs. VI-A, VI-B
T coordinate transformation matrix | App. | kinetic energy for the stance-phase
. — ¢ zero dynamics just before Sec. VII-B
f T ransition function ifrom transition to flight,¢ := 1 (c%7)2
LT “subscript” to “superscript” Sec. IV : : 9 C 2 1 )
: ion function T I fixed point of restricted Poincar Eq. (74)
T, 7t ransition function from Sec. VI-C map .

“subscript” to “superscript”




