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Abstract— For general hybrid systems, we develop new sta-
bilization results that can be used to achieve asymptotically
stable locomotion for bipedal robots with series compliant
actuation. The stabilization contributions build upon previous
results involving partially rapidly exponentially decaying con-
trol Lyapunov functions. Such functions are useful when the
dynamics that remain when the function is constrained to zero
exhibits an asymptotically stable set and the solutions starting
in this set have time domains that satisfy a uniform average
dwell-time constraint. In a new result of independent interest,
we establish that such an average dwell-time condition is robust;
in particular, it degrades gracefully under perturbations and
as the initial conditions move away from the asymptotically
stable set. From this robustness result and the existence of
a partially rapidly exponentially decaying control Lyapunov
function, we establish local asymptotic stabilization. The result
is then applied to robot locomotion. We conclude by showing
that, because of the high-gain nature of the feedback, it is
possible in some situations for the basin of attraction to become
arbitrarily small as the gain becomes arbitrarily large. Future
simulation studies will investigate whether this phenomenon
occurs for the robot application.

I. INTRODUCTION

This paper contributes new results on stabilization of

hybrid systems through feedback controls in the flow map;

as an application, it considers stabilization of a periodic

gait for a bipedal robot with series compliant actuation.

In the situation where controls appear only in the flow

map, some type of average dwell-time constraint [12] on

solutions is required to give the control signals suitable

time to influence trajectories. Recent examples of hybrid

stabilization in this context include the results in [22] and

[7]. Our contribution has significant connections to the

results in [22]. In the latter, a uniform average dwell-time

condition is assumed throughout the state space and control

is achieved by regulating, via high-gain output feedback,

a relative degree one output with respect to which the

hybrid system is globally minimum phase. A semi-global
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asymptotic stabilization result is achieved. In the current

paper, outputs with higher relative degree are allowed and we

assume only a local minimum-phase property. Moreover, the

average dwell-time condition is imposed only on the attractor

of the zero dynamics. With these relaxed assumptions, we

achieve only local stabilization rather than semi-global sta-

bilization. This result is expected in the absence of additional

structural assumptions, especially in light of classical results

on obstructions to semi-global stabilization for non-hybrid

systems [21]; see also the example in Section V of this paper.

Among the many formalisms for posing and analyzing

hybrid systems, we focus on two. Systems with impulsive

effects, introduced in [2] and expanded in [26], [11], [17],

[13] and [19], have been the basis for much of the work

in the legged robotics literature. This formalism constructs

solutions to hybrid systems by piecing together nontrivial

solutions of ordinary differential equations, with the final

value of one solution related to the initial condition of a

subsequent solution by a transition map. Hybrid models

permitting multiple unilateral contacts, by virtue of allowing

more general solutions, have been studied in [3], [5], and [4],

with potential applications to bipedal robots surveyed in [14].

This more general framework comes with more advanced

stability analysis tools, but so far, control design tools have

not kept pace. The other formalism we consider is the

hybrid inclusions of [10], [8], [9]. An objective of this paper

is to show how a Lyapunov-based control design method

originally developed for systems with impulsive effects can

be carried over to hybrid inclusions, where insights about

robustness can be exploited to generate stronger guarantees

on the properties of the closed-loop solutions.

Like in [22], our result pertains to the situation where the

trajectories of the zero dynamics converge to a set rather

than an equilibrium point. Periodic motion is ubiquitous

and represents the next level of attractor complexity beyond

equilibrium points. Arguably the quintessential example of

periodic motion in hybrid systems is steady-state bipedal

walking or running. The approach for bipedal locomotion

developed in [24], [23] designs an output function satisfying

a vector relative degree condition, a periodic orbit that lies

in the zero set of the output function, and moreover, the

periodic orbit is an exponentially stable solution of the

hybrid zero dynamics associated with the output. Prior to

the introduction of control Lyapunov functions to the hybrid

setting in [1], the only results on stabilizing the periodic

orbit in the full model (not just the invariant set given by the

hybrid zero dynamics), was input-output linearization [16].

An important limitation of [1] is the restriction to outputs of

vector relative degrees one or two, while the result of [16]



applied more generally, but once again, only for input-output

linearizing feedbacks. Here, we extend the definition of

rapidly exponentially decaying control Lyapunov functions

from [1] to remove the relative degree restriction of [1] and

the input-output linearizing feedback requirement from [16].

The extensions achieved for bipedal locomotion are further

enabled by casting the dynamic model in the hybrid systems

framework of [10]. Within this framework, we can rely on

a wealth of analysis machinery that has been developed (see

[8], [9]) as well as a new result on robustness of average

dwell-time constraints provided in Section III-A. Robustness

of the average dwell-time condition is useful for passing from

the natural average dwell-time condition that is consistent

with a periodic gait to an average dwell-time condition close

to but not exactly on the periodic gait.

The paper is organized as follows. In Section II, we

review a modeling framework for hybrid systems, and define

asymptotic stability and the average dwell-time condition. In

Section III-A, we provide a new result on robustness of the

average dwell-time condition. In Section III-B, we give a

stability result for a parametrized class of hybrid systems.

The result is expressed in terms of an average dwell-time

condition and a rapidly exponentially decaying Lyapunov

function where the decay rate can be tuned through the

parameter that characterizes the class of systems. The result

depends heavily on the result of Section III-A. Section III-

C exploits the results of Section III-B to generate a “high-

gain” stabilization result for a class of hybrid systems. This

stabilization result is applied to bipedal locomotion for robots

with series compliant actuation in Section IV. Finally, in

Section V, we use an example to demonstrate that the basin

of attraction may possibly shrink with the decay rate used

in the stabilization algorithm. All proofs of theorems have

been omitted due to space constraints.

II. HYBRID SYSTEMS REVIEW

Let O ⊂ R
n be open. A hybrid system has state x ∈ O

and data (C,F,D,G) where C,D ⊂ O, and F : O ⇉ R
n,

G : O ⇉ O are set-valued mappings. This data satisfies the

basic conditions if C and D are closed relative to O, F and

G are outer semicontinuous and locally bounded (see [18,

Chapter 5]), F (x) is nonempty and convex for each x ∈ C,

and G(x) is nonempty for each x ∈ D. Formally, the hybrid

system (C,F,D,G) is written

x ∈ C ẋ ∈ F (x) (1a)

x ∈ D x+ ∈ G(x). (1b)

A solution to this hybrid system is a hybrid arc1 φ :
dom φ → O such that

1) if (t1, j), (t2, j) ∈ dom φ with t2 > t1 then φ(t, j) ∈
C and φ̇(t, j) ∈ F (φ(t, j)) for almost all t ∈ [t1, t2];

1That is, a function φ defined on a hybrid time domain and such that
t 7→ φ(t, j) is locally absolutely continuous for each j ∈ Z≥0. A compact

hybrid time domain is a set of the form ∪J−1

j=0
[tj , tj+1] × {j} for some

real numbers 0 = t0 ≤ t1 ≤ . . . ≤ tJ ; a hybrid time domain is a set E
such that, for each (T, J) ∈ E, E ∩ ([0, T ]× {0, . . . , J}) is a compact
hybrid time domain.

2) if (t, j), (t, j + 1) ∈ dom φ then φ(t, j) ∈ D and

φ(t, j + 1) ∈ G(φ(t, j)).

For more details, see [10]. Given x ∈ C ∪ D, the set of

solutions starting from x is denoted S(x).
In the case where (C,D,G) satisfy the basic conditions

and f : C → R
n is a locally bounded function, generalized

solutions are the solutions to (C,F,D,G) where F is the

smallest set-valued mapping such that f(x) ∈ F (x) for

all x ∈ C and such that (C,F,D,G) satisfies the basic

conditions. In particular, F is the convex hull mapping

applied to the outer semicontinuous hull mapping of f , the

latter being the mapping whose graph is the closure of the

graph of f ; see [18, p. 154-155]. Equivalently, F (x) :=
co

⋂
δ>0 f((x+ δB) ∩ C), where x + δB is the closed ball

of radius δ > 0 centered at x. For more details, see [20]. At

times we also consider solutions of a system with perturbed

data (Cδ, Fδ, Dδ, Gδ), δ > 0, derived from (C,F,D,G) as

Cδ := {x ∈ O : (x+ δB) ∩ C 6= ∅} (2a)

Fδ(x) := coF ((x+ δB) ∩ C) + δB (2b)

Dδ := {x ∈ O : (x+ δB) ∩D 6= ∅} (2c)

Gδ(x) := (G((x + δB) ∩D) + δB) ∩O. (2d)

A compact set A ⊂ O is said to be stable if, for each

ε > 0, there exists δ > 0 such that, for each x ∈ A + δB
and φ ∈ S(x), φ(t, j) ∈ A + εB for all (t, j) ∈ dom φ.

A compact set A is attractive if there exists µ > 0 such

that, for each x ∈ A + µB, each φ ∈ S(x) is bounded

and if dom φ unbounded then limt+j→∞ |φ(t, j)|A = 0. A

compact set is said to be asymptotically stable if it is stable

and attractive. The basin of attraction for an asymptotically

stable compact set is the set of points x ∈ O such that

each φ ∈ S(x) is bounded and if dom φ is unbounded then

limt+j→∞ |φ(t, j)|A = 0. When (C,F,D,G) satisfies the

basic conditions, the basin of attraction of a compact set

A contains A and is an open set. See [6, Theorem 3.14].

Let (C,F,D,G) satisfy the basic conditions, let BA denote

the basin of attraction for an asymptotically stable compact

set A, and let ω : BA → R≥0 be a continuous function

that is zero on A, positive outside of A, and that grows

unbounded as its argument approaches the boundary of BA or

as its argument grows unbounded. Then there exists β ∈ KL
such that, for all x ∈ BA and all φ ∈ S(x), ω(φ(t, j)) ≤
β(ω(x), t + j) for all (t, j) ∈ dom φ. For more details see

[6, Proposition 7.3].

Let ρ > 0 and N ∈ Z≥1. The time domain of a hybrid arc

φ is said to satisfy the (ρ,N) average dwell-time condition

if every (s, i), (t, j) ∈ dom φ with t+ j > s+ i satisfies

j − i ≤ ρ · (t− s) +N.

Such a property was introduced in [12] and has been used

extensively in the switched and hybrid systems literature.

III. MAIN RESULTS

A. Robustness of average dwell-time condition

We use a preliminary result, which is novel and of

independent interest. It asserts that an average dwell-time



condition (on the time domains of solutions that remain in a

compact set) degrades gracefully under perturbations.

Proposition 1: Suppose (C,F,D,G) satisfies the basic

conditions, K ⊂ O is compact, and ρ > 0 and N ∈ Z≥1 are

such that the time domain of every solution φ of (C,F,D,G)
with rge φ ⊂ K satisfies the (ρ,N) average dwell-time

condition. Then, for each ρ̂ > ρ, there exists δ > 0 such

that the time domain of every solution φ to (Cδ, Fδ, Dδ, Gδ)
with rge φ ⊂ K+δB satisfies the (ρ̂, N) average dwell-time

condition. �

B. Main stability result

We study the behavior of a family of hybrid systems with

data (C,F ε, D,G) parametrized by ε > 0.

Assumption 1: For each ε > 0, (C,F ε, D,G) satisfies the

basic conditions. �

We are interested in additional conditions to guarantee

local asymptotic stability of a compact set A ⊂ O that has

a particular structure clarified in the next assumption.

Assumption 2: (Structure and coupling conditions) The

following conditions hold.

1) n0, n1 ∈ Z≥1, n0 + n1 = n, A0 ⊂ R
n0 is compact,

A := A0 × {0} ⊂ O, R0 := R
n0 × {0}, and there

exist L > 0 and δ > 0 such that

x ∈ D ∩ (A+ δB)
g ∈ G(x)

}
=⇒ |g|R0

≤ L|x|R0
.

2) There exist set-valued mappings F̃0 : Rn ⇉ R
n0 and

F ε
1 : Rn ⇉ R

n1 such that F ε(x) = F̃0(x) × F ε
1 (x)

for all x ∈ C ∩ (A+ δB) and there exists M > 0 and

for each ε > 0 there exists δε > 0 such that, for all

x ∈ C ∩ (A+ δεB), F
ε
1 (x) ⊂ MB. �

Based on the assumed structure of the set A, we construct

a “hybrid zero dynamics” and impose an asymptotic stability

assumption on these dynamics. Recall the definition of R0

in Assumption 2, define Π0(x0, x1) := x0,

C0 := Π0 (C ∩R0) (3a)

F0(x0) := Π0(F
ε(x0, 0)) = F̃0((x0, 0)) (3b)

D0 := Π0 (D ∩R0) (3c)

G0(x0) := Π0(G(x0, 0)), (3d)

and impose the following assumption.

Assumption 3: The compact set A0 of Assumption 2 is

locally asymptotically stable for (C0, F0, D0, G0) defined in

(3), and ρ > 0 and N ∈ Z≥1 are such that the time domain of

each solution φ of (C0, F0, D0, G0) that starts in A0 satisfies

the (ρ,N) average dwell-time condition. �

Finally, we impose a Lyapunov condition on the flow

data (C,F ε), corresponding to what results from a partially

rapidly exponentially stabilizing control Lyapunov function

as developed in the next subsection.

Assumption 4: There exist strictly positive real numbers p,

c1, c2, c3 and, for each ε > 0, a continuously differentiable

function Vε : O → R and δε > 0 such that, for all x ∈
(C ∪D) ∩ (A+ δεB),

c1|x|
2
R0

≤ Vε(x) ≤
c2
εp

|x|2R0

(where R0 was defined in Assumption 2) and, for all x ∈
C ∩ (A+ δεB) and f ∈ F ε(x),

〈∇Vε(x), f〉 ≤ −
c3
ε
Vε(x).

�

Our main stability result is stated next.

Theorem 1: If Assumptions 1-4 hold then the compact set

A defined in Assumption 2 is locally asymptotically stable

for the hybrid system (C,F ε, D,G) for each sufficiently

small ε > 0, in particular, for each ε > 0 satisfying

exp

(
−
c3
ερ

)
1

εp
c2L

2

c1
< 1 (4)

with L > 0 from Assumption 2, ρ > 0 from Assumption 3,

and p, c1, c2, and c3 from Assumption 4. �

C. Partially rapidly exponentially stabilizing control Lya-

punov functions

Consider a control system with state x := (x0, x1) ∈
R

n0 × O1, where O1 ⊂ R
n1 is open, and control u ∈ U ⊂

R
m of the form

x ∈ C

{
ẋ0 ∈ F̃0(x)

ẋ1 = f1(x, u)
(5a)

x ∈ D x+ ∈ G(x) (5b)

under the following assumption.

Assumption 5: The following conditions hold:

1) (C, F̃0, D,G) satisfy the basic conditions, U is closed,

and f1 : C × U → R
n1 is continuous.

2) Condition 1) of Assumption 2 holds.

3) Assumption 3 holds. �

In order to guarantee condition 2) of Assumption 2 and

Assumption 4, we adapt the definition of a rapidly exponen-

tially stabilizing control Lyapunov function given in [1].

Definition 1: For the system (5), a one-parameter family

of continuously differentiable functions Vε : O1 → R

is said to be a partially, rapidly exponentially stabilizing

control Lyapunov function (PRES-CLF) with the locally

bounded control property if there exist positive real numbers

c1, c2, c3, p, M̂ and for each ε > 0 there exists δε ∈ (0, 1]
such that for all x = (x0, x1) ∈ (C ∪D) ∩ (A+ δεB),

c1|x1|
2 ≤ Vε(x1) ≤

c2
εp

|x1|
2

and, for all x = (x0, x1) ∈ C ∩ (A+ δεB),

inf
u∈U∩M̂B

[
〈∇Vε(x1), f1(x, u)〉+

c3
ε
Vε(x1)

]
≤ 0. (6)

�

This definition above can be extended to allow Vε to depend

on x0; such an extension is not needed for our application.

Consider the set-valued mapping Kε : R
n ⇉ R

m defined as

Kε(x) := (7){
u ∈ U ∩ M̂B : 〈∇Vε(x1), f1(x, u)〉 +

c3
ε
Vε(x1) ≤ 0

}
.



Theorem 2: Under Assumption 5, if the family of continu-

ously differentiable functions Vε is a PRES-CLF with the lo-

cally bounded control property then, considering generalized

solutions generated by any control selection uε(x) ∈ Kε(x),
the set A is locally asymptotically stable. �

IV. APPLICATION TO BIPED LOCOMOTION

In the analysis of biped locomotion we naturally encounter

robotic hardware and feedback controllers that are appropri-

ately modeled as hybrid control systems (5). For the purpose

of illustration, we apply the main stability result of Theorem

1 to the planar bipedal robot with series compliant actuation

shown in Figure 1 and studied previously in [16, Sect. V]

with a different controller. The dynamic model is based on

adding series compliance to the actuation of the robot Rabbit;

see [23, Table 6.3] or [25, Table 1] for complete details on

the dynamic model, including parameter values.

A. Dynamic Model of Stance

For qa := (q1, q2, q3, q4) and qm := (qm1
, qm2

, qm3
, qm4

),
let q := (qa, θ) be the vector of generalized coordinates

that determine the posture of the robot. We define the

configuration vector as (q, qm) ∈ Q, where Q is the (closed)

subset of R
9 such that the swing ’point’ foot has a vertical

height (y2 in Figure 1) greater than or equal to zero. Let

u ∈ U be a vector of control inputs, with U being a closed

subset of R
4. The swing phase dynamics of the robot can

now be written as

M(q)q̈ +H(q, q̇)−BK(qm − qa) = 0
Jq̈m +K(qm − qa) = u.

(8)

To design feedback controllers, define a vector of control

parameters β ∈ B, where B is a closed subset of R
p on

which a feedback law may depend. During the stance phase,

the vector of parameters β is held constant: β̇ = 0. Thus, for

the stance phase, the flow set is contained in the closed set

Ĉ := Q× R
9 ×B ⊂ R

18+p.

The gait design procedure discussed in Section IV-C below

provides a set of parameterized output functions of the form

y = h(x) := qa − hd(θ, β) (9)

for hd : R×B → R
4. Let R0 ⊂ R

18+p be the set where

these outputs vanish, and let O ⊂ R
18+p be the open set

on which the outputs uniform vector relative degree 4 with

respect to the dynamics (8). At all points x ∈ O we then

have a change of coordinates2 such that

x := (x0, x1)
x0 := (θ, σ, β)

x1 := (y, ẏ, ÿ, y(3)),
(10)

where σ is the angular momentum of the linkage about the

stance foot. Let the flow set be C := Ĉ ∩ O, so that the

stance phase dynamics becomes

x ∈ C

{
ẋ0 = F̃0(x)

ẋ1 = f1(x, u),
(11)

2See Section 3.4.5 of [23] for further discussion of this coordinate system.

q2

q1

q4

q3

θ (x1,y1)

(x2,y2)

qm
i

q i

Fig. 1. (Left) A coordinate diagram of an example of the class of N -link
biped robot models considered. (Right) A schematic of a rotational joint
with series compliant actuation.

where

F̃0 =




θ̇
σ̇
0


 , f1(x, u) =




Lfh(x)
L2
fh(x)

L3
fh(x)

L4
fh(x) + LgL

3
fh(x)u


 .

(12)

B. Dynamic Model of Collisions

When a rigid link with nonzero velocity encounters the

ground plane, the interaction is modeled as a fully plastic,

instantaneous collision, as in [15]. The post-impact joint state

(q+, q̇+, q+m, q̇+m) can be calculated from the pre-impact joint

state (q, q̇, qm, q̇m) by the following equations

q+ = R ◦ q q+m = Rm ◦ qm
q̇+ = R ◦∆q̇(q, q̇) q̇+m = Rm ◦ q̇m

(13)

where R and Rm are appropriately defined joint relabeling

operators. The impact dynamics (13) and stance dynamics

(8) can together be written as a hybrid system,

x ∈ C

{
ẋ0 = F̃0(x)

ẋ1 = f1(x, u)
(14a)

x ∈ D x+ ∈ G̃(x, v) (14b)

For the open loop reset map G̃, the parameter vector β+ = v
for a reset input v : D → B. All other elements of x+ are

found by applying a change of coordinates to the impact

equations (13) and are thus independent of the reset input v.

Let y2 be the vertical clearance between the ground and tip

of the swing leg. Let the jump set be D := D̂ ∩O, where

D̂ = {x ∈ Ĉ : y2(x) = 0, ẏ2(x) ≤ 0}

For outputs of the form (9) and rigid impacts of the form

(14), a discrete parameter update function v : D → B is

typically needed to satisfy the impact invariance property

∀x ∈ D ∩R0, G̃(x, v(x)) ∈ R0. (15)

A continuously differentiable parameter update v satisfying

this condition can be constructed using output augmentation

polynomials described in [16]. Define the closed-loop reset

map G(x) := G̃(x, v(x)).



C. Remarks on Gait Design

As developed above, the full dynamic model of walking is

a hybrid system with data (C,F,D,G). We are interested in

stabilizing a periodic gait that involves one jump per period

with ordinary time period T ∗ > 0 and that is contained in the

set R0. Such a periodic gait is generated by a hybrid arc φ∗

and stabilization corresponds to stabilizing the set compact

A := ∪(t,j)∈dom φ∗ {φ∗(t, j)}. Note that A = A0×{0}. The

solutions from this set are assumed to be unique and thus the

time domain of every solution that starts in this set satisfies

the average dwell-time condition with ρ = 1/T ∗ and N = 1.

A periodic walking gait and an accompanying set of output

functions (9) can be found using a variety of optimization

procedures, such as those in Sections 3.6.2 and 6.5.1 of [23].

A stability constraint can be included in such an optimization

procedure to ensure that any resulting periodic orbit will have

an associated compact set A0 is asymptotically stable in the

restricted hybrid system with data (C0, F0, D0, G0).
The next subsection outlines the construction of a pa-

rameterized family of PRES-CLFs, each defined in an open

neighborhood of A.

D. Control Lyapunov Functions

Choose constants k0, k1, k2, k3 such that the matrix

A =




0 I 0 0
0 0 I 0
0 0 0 I

−k0I −k1I −k2I −k3I


 . (16)

is Hurwitz. Then, for any Q = QT > 0 there exists P =
PT > 0 satisfying ATP + PA = −Q. By the Raleigh-Ritz

inequality there exists some γ > 0 such that

ATP + PA+ γP ≤ 0. (17)

For such a value of P and for 0 < ε < 1, define a candidate

control Lyapunov function

Vε(x1) := ηε(x1)
TPηε(x1) (18)

where

ηε(x1) := col

[(
1

ε3

)
y,

(
1

ε2

)
ẏ,

(
1

ε

)
ÿ, y(3)

]
.

For each x ∈ C, where the coordinates (10) are well-defined,

c1|x1|
2 ≤ Vε(x1) ≤

c2
εp
|x1|

2, where p = 6, c1 = λmin(P ),
and c2 = λmax(P ). For Vε to be a PRES-CLF, the set-

valued control mapping (7) must be non-empty at all points

of interest. We prove this non-emptiness by construction.

Consider the feedback

uε(x) = LgL
3
fh(x)

−1
(
−L4

fh(x) + vε(x)
)

vε(x) = −(k0/ε
4)h(x) − (k1/ε

3)Lfh(x) . . .
−(k2/ε

2)L2
fh(x)− (k3/ε)L

3
fh(x),

applied to the open loop subsystem (12). Due to the definition

of A and (10), there exists M > 0 and for each ε > 0 there

exists δ > 0 such that |vε(x)| ≤ M for all x ∈ A+ δB. The

resulting closed loop dynamics η̇ε(x1) =
1
ε
Aηε(x1) can be

substituted into the PRES-CLF condition (6),

〈∇Vε(x1), f1(x, u)〉 +
c3
ε
Vε(x1) =

1

ε
ηTε (x1)(A

TP + PA)ηε(x1) +
c3
ε
Vε(x).

Applying (17) with c3 = γ shows that there exists M̂ > 0
and for each ε > 0 there exists δε > 0 such that the set-

valued control mapping (7) is non-empty on A + δεB and

that Vε is a PRES-CLF on this open neighborhood of A.

Apply Theorems 1 and 2 together to conclude that for the

family of partially rapidly exponentially stabilizing control

Lyapunov functions Vε, for any ε > 0 satisfying

exp

(
−γT ∗

ε

)
1

ε6

(
λmax(P )

λmin(P )

)
L2 < 1 (19)

the control selection uε(x) ∈ Kε(x) will render the compact

set A locally asymptotically stable in the full hybrid system

with data (C,F,D,G).

V. ON THE BASIN OF ATTRACTION

The state component x1 in the systems that we have ana-

lyzed typically exhibits the so-called “peaking phenomenon”.

See [21]. As long as Assumptions 2 and 4 hold even for

large values of x1 and the average dwell-time condition

does not degrade significantly for large x1, there exists a

neighborhood of A that is contained in the basin of attraction

of A for all sufficiently small ε > 0. Without such extra

assumptions, it is possible to construct an example where the

basin of attraction does not contain points arbitrarily close

to A for ε > 0 arbitrarily small. For example, define

J :=

[
0 1

−1 0

]
, A :=

[
0 1

−1 −1

]

and consider the situation where n0 = 2, n1 = 2,

C := (R≥0 × R)× (R× (−∞, 1]) (20a)

F ε(x) := diag(J, diag(1, ε−1) · A · diag(ε−1, 1))x (20b)

D̂0 := ({0} × R≤0)× R
2 (20c)

D̂1 := (R≥0 × R)× (R× [1,∞)) (20d)

D := D̂0 ∪ D̂1 (20e)

ĝ0(x) := diag(0.5, 0.5, 2, 2)x+ (0, 0.5, 0, 0)T (20f)

ĝ1(x) := 2x (20g)

G(x) :=





ĝ0(x) x ∈ D̂0\D̂1

ĝ1(x) x ∈ D̂1\D̂0

ĝ0(x) ∪ ĝ1(x) x ∈ D̂0 ∩ D̂1.

(20h)

It is immediate that Assumption 1 holds. For any compact

set A0 ⊂ R
2, condition 1) of Assumption 2 holds with L =

2 and any δ > 0, since |g|R0
= 2|x|R0

for all x ∈ D
and g ∈ G(x), and it is also easy to see that condition 2)

of Assumption 2 holds with δε = ε2 and some M > 0
independent of ε. The definitions in (3) give

C0 = R≥0 × R, F0(x0) = Jx0

D0 = {0} × R≤0, G0(x0) = diag(0.5, 0.5)x0 + (0, 0.5)T



With A0 := S
1 (the unit circle), Assumption 3 holds with

N = 1 and ρ = 1/π. Moreover, Assumption 4 holds with

Vε(x) := xTPεx where

P = PT > 0, Q = QT > 0, ATP + PA = −Q

Pε := diag(0, 0, diag(ε−1, 1) · P · diag(ε−1, 1))

and p = 2, c1 = λmin(P ), c2 = λmax(P ), c3 = λmin(Q).
To see that the basin of attraction of the set A := A0×{0}

does not contain some points arbitrarily close to A for ε > 0
arbitrarily small, consider the coordinate transformation x̃ :=
diag(1, 1, 1, ε)x. In the new coordinates, we get the data

C̃ := (R≥0 × R)× (R× (−∞, ε]) (21a)

F̃ ε(x̃) := diag(J, ε−1A)x̃ (21b)

D̃0 := ({0} × R≤0)× R
2 (21c)

D̃1 := (R≥0 × R)× (R× [ε,∞)) (21d)

D := D̃0 ∪ D̃1 (21e)

g̃0(x̃) := diag(0.5, 0.5, 2, 2)x̃+ (0, 0.5, 0, 0)T (21f)

g̃1(x̃) := 2x̃ (21g)

G(x̃) :=





g̃0(x̃) x̃ ∈ D̃0\D̃1

g̃1(x̃) x̃ ∈ D̃1\D̃0

g̃0(x̃) ∪ g̃1(x̃) x̃ ∈ D̃0 ∩ D̃1.

(21h)

Let a 6= 0 be such that from the point (a, 0), the solution

of the differential equation ξ̇ = Aξ reaches a point (b, c)
such that c > 1. Such a value a 6= 0 exists since the

eigenvalues of A are complex. Consider the initial condition

x = (0, 1, εa, 0)T , i.e., x̃ = (0, 1, εa, 0)T . which satisfies

|x|A = εa. Then it is straightforward to verify that the

solution of the hybrid system with data in (21) reaches D̃1,

from which point there is a solution that forever jumps, with

each jump scaling the state by the factor 2. Thus the point

(0, 1, εa, 0) is not in the basin of attraction for (20).

VI. CONCLUSIONS

We have established a local asymptotic stabilization result

for a class of hybrid systems that includes dynamic mod-

els of bipedal locomotion for robots with series compliant

actuation. The key assumptions, which hold for the robot

application, is that the hybrid trajectories that start on the at-

tractor of the zero dynamics satisfy a uniform average dwell-

time condition. We have established that such a condition

is robust, namely that it holds close to attractor as well.

This fact permits establishing a local asymptotic stabilization

result. We have given an example to show that, in the absence

of additional structural assumptions, it is possible that the

basin of attraction is quite small and even vanishes with a

parameter in the feedback control algorithm. Future work

will investigate, through simulations, the size of the basin

of attraction achieved for the bipedal robot model using the

control laws provided here.
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