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Abstract

This paper presents the experimental validation of a frame-
work for the systematic design, analysis, and performance
enhancement of controllers that induce stable walking in N-
link underactuated planar biped robots. Controllers designed
via this framework act by enforcing virtual constraints—
holonomic constraints imposed via feedback—on the robot’s
configuration which create an attracting two-dimensional in-
variant set in the full walking model’s state space. Stability
properties of resulting walking motions are easily analyzed in
terms of a two-dimensional sub-dynamic of the full walking
model. A practical introduction to and interpretation of the
framework is given. In addition, the paper develops the
ability to regulate the average walking rate of the biped to
a continuum of values by modification of within-stride and
stride-boundary characteristics, such as step length.

1. Introduction

The main factor contributing to the slow development of
usable legged machines is the difficulty of simultaneously
endowing legged machines with energy efficiency and stability,
two essential attributes of any autonomous vehicle. The two
means for addressing this problem are machine design and
gait control. Through mechanical design, legged machines can
be made efficient by using, for example, lighter materials
and more efficient actuators. To enhance stability, legged
machines can be designed to have morphologies that decrease
the possibility of overturn: feet can be made larger and the
number of legsincreased. Through the use of control, alegged
machine's gait may be designed and tuned to exploit the
mechanism’s natural dynamics to yield efficient locomotion.
Control may also be used to impose gaits that, under some
assumptions, have guarantees of stability. Typically, this has
been accomplished by controlling the machine's motion to be
dow to minimize inertial effects so that quasi-static stability
measures may be used.

The past forty years have seen the development and con-
struction of many mechanically sophisticated biped robot pro-
totypes [2] that, to varying degrees of success, have addressed
the efficiency-stability problem primarily through mechanism
design. The development of equally sophisticated control
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algorithms that address the efficiency-stability problem which
induce walking in these prototypes has not kept pace. This
is evidenced by the reliance on heuristics, such as the zero
moment point! (ZMP) principle [9], [30].

It is conjectured here that the development of control algo-
rithms that induce truly dynamic biped walking has been slow
for five reasons that are inherent to dynamic biped walking.
The five difficulties are divided into two groups. The first three
difficulties are common to all biped walking models while the
last two are common only to dynamic biped walking.

Thefirst difficulty is limb coordination. Bipeds are typically
high DOF mechanisms, but the task of biped walking is
inherently a low DOF task. That is, bipeds typically have
many links and joints that must be coordinated to achieve
locomotion—the moving of the robot’s center of mass (COM)
from one point to another. The second difficulty is effective
underactuation during the single support phase (the phase of
waking when only one leg is touching the ground). Unlike
traditional robotic manipulators which are securely fastened
to the environment, bipeds are designed to move with respect
to the environment. Unilateral constraints severely limit the
amount of torque that may be supplied at the stance leg ankle
joint; because of finite foot size, too large a torque supplied
at the angle joint results in foot roll-over. This has been
recognized in [7], [9], [14], [18]. The third difficulty is hybrid
dynamics. The presence of impacts and changing dynamic
congtraints during the walking cycle due to foot touchdown
and lift-off necessarily leads to models that are hybrid.

The last two difficulties are common only to dynamic
biped walking. The first is static instability of the biped
during portions of the walking cycle. That is, in dynamic
walking during portions of the walking cycle the projection of
the biped's COM—and usually the ZMP—onto the walking
surface is outside of the biped’s polygon of support. This
prohibits the use of the popular ZMP principle to ensure
stability. The second, and final, difficulty is the design of
limit cycles. Dynamically stable walking corresponds to the
existence of limit cyclesin the biped’s state space. The design
of controllers that induce limit cycles, while a challenge in its
own right, is made significantly more difficult by the first four
difficulties and by the need for energy efficiency.

The approach of this work (developed in [12], [33], [34])
has been to study a class of biped robots whose model
is only as complex as required to capture these inherent
difficulties. The class consists of planar biped robots that are
N-link—and thus have N DOF during the swing phase—
with walking taking place in the sagitta plane (the plane

1In the legged robotics literature, the center of pressure (COP)—the point
on the ground where the resultant of the ground-reaction force acts—is often
referred to as the zero moment point [9].



Fig. 1. A higher DOF planar robot model with its center of mass labeled.
Cartesian coordinates are indicated at the swing leg end. The COM is of mass
M with inertia J.

that divides the body into left and right halves; see Figure 1.
Restricting attention to the plane where forward progression
is achieved (the sagittal plane) is reasonable since the sagittal
plane dynamics are almost decoupled from those in the frontal
plane (the plane that divides the body into front and back
halves) in that stability in the frontal plane can be achieved
with only frontal plane control actions, such as step width
control [1], [20]. The model assumes point feet with no
actuation between the stance leg end and the ground and full
actuation at al internal joints. The model for the swing phase
of walking is therefore that of an underactuated mechanical
system. Without feet, the ZMP heuristic is not applicable, and
thus the effective underactuation must be explicitly addressed
in the feedback control design; see Figure 2. The phase of
double support (when both legs are on the ground) is assumed
to be instantaneous and is modeled by a rigid contact model
[15].

One of the fruits of studying a biped model of minimal
complexity has been the development of a rigorous framework
for the systematic analysis and design of efficient, dynamic,
stable walking motions [12], [34]. It is anticipated that the
results for a robot with point feet will lead to an equally
complete control theory for walking with anthropomorphic
foot action.

In addition to walking at a fixed rate, this framework pro-
vides two additional control features: 1) the ability to compose
such controllers to obtain walking at several discrete walking
rates with guaranteed stability during the transitions; and 2)
the ability to regulate the average walking rate to a continuum
of values by modification of within-stride characteristics [33].

The purpose of this paper is to provide experimental
validation of this framework on the biped robot prototype,
RABBIT constructed by the French project Commande de
Robots a Pattes of the CNRS - GdR Automatique [3], [4]. In
presenting the experimental validation, several implementation
issues will be discussed, and the control design framework will
be interpreted. The final contribution of this paper isto develop
atechnique to regulate the average walking rate to a continuum
of values by maodification of within-stride and stride-boundary
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Fig. 2. The zero moment point (ZMP) principle according to Goswami [9].
Idealize a robot in single support as a planar inverted pendulum attached
to a base consisting of a foot with torque applied at the ankle. Assume
adequate friction so that the foot is not dliding. In (), the robot’s nominal
trajectory has been planned so that the center of pressure of the forces on
the foot, P, remains strictly within the interior of the footprint. In this case,
the foot will not rotate (i.e, the foot is acting as a base, as in a normal
robotic manipulator), and thus the system is fully actuated. It follows that
small deviations from the planned trajectory can be attenuated via feedback
control, proving stabilizability of the walking mation. In case (b), however,
the center of pressure has moved to the toe, allowing the foot to rotate. The
system is now underactuated (two degrees of freedom and one actuator),
and designing a stabilizing controller is nontrivial, especialy when impact
events are taken into account. The ZMP principle says to design trajectories
so that case (a) holds; i.e., walk flat footed. Thisleads to awkward, quasi-static
walking motions.

characteristics, such as step length. This result is a nontrivial
extension to the event-based PI-control result given in [33]
and was developed in response to the within-stride scheme’s
inability to effectively regulate average walking rate on the
prototype.

The paper is structured as follows: Section 2 describes
the prototype RABBIT, gives the model for walking of [34]
speciaized to RABBIT, and describes three issues associated
with RABBIT’s construction which were addressed in the
control implementation. Section 3 summarizes, interprets, and
gives the experimental implementation of the control frame-
work presented in [34]. Section 4 reports on the experimental
validation of the control implementation for walking at a fixed
rate described in Section 3.4 and the experimental validation of
the transitioning technique presented [33] and the event-based
control for the regulation of average walking rate developed
in Appendix 2.

2. The prototype RABBIT

The five-link, planar prototype RABBIT (see Figure 3) is
located at the Laboratoire D’Automatique de Grenoble in
Grenoble, France. It was constructed jointly by several French
research laboratories, spanning Mechanical Engineering, Au-
tomatic Control, and Robotics [3], [4]. The RABBIT project
was initiated in 1997 and is funded by the French CNRS and
the French National Research Council. Its central mission isto
build a prototype for studying truly dynamic motion control. In
particular, the mechanism was designed to allow for high speed
walking and running. In its mechanical design complexity was



Fig. 3. The biped prototype RABBIT’s experimental setup.
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Fig. 4. Schematic of the prototype RABBIT with measurement conventions.

included only as required to accurately model biped walking.
(The theoretical development givenin[12], [34] was motivated
by a desire to control RABBIT.)

RABBIT's five links are connected by revolute joints that
form two symmetric legs and a torso; see Figure 4(a). Actu-
ators supply torque between each of the four interna joints:
one at each knee and one between the torso and each femur.
All actuators are identical and capable of producing a peak
torque of 150 Nm. To prevent motions in the frontal plane,
RABBIT was constructed with a boom attached at the hip;
see Figure 3. RABBIT has no feet and no means of supplying
actuation between the stance leg end and the ground.

The link parameter values were identified by a group
associated with the project and are given in Table 1 with
the measurement conventions given in Figure 5. To obtain
configuration information, encoders are located at each internal
joint giving the robot’s shape, and between the boom and hip
giving the robot’s orientation with respect to a world frame.
Binary contact switches located at the leg ends are used to
detect whether or not a leg is in contact with the walking

Table 1. Identified link parameters for RABBIT.

Model parameter ‘ Units | Label | Value

Mr 12

Mass kg My 6.8

M 3.2

e 0.63

Length m ly 0.4

It 04

Ir 1.33

Inertia m2kg | Iy 0.47

I 0.20
qu 0.24

Mass center m p}V’ 111
pM | 024
Fou | 165
Viscous friction Ns Fox 548
Fyu 15.0
Static friction Nm Fox 8.84
Gear ratio - ng 50
Motor rotor inertia | m?kg I 0.83
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(a) Schematic of torso. (b) Schemétic of leg.

Fig. 5. Schematic of RABBIT's link parameter measurement conventions.

surface.

For a real-time control platform, RABBIT uses a dSPACE
DS1103 system. With the DS1103 system, run-time software
is created by automatic trandlation and cross-compiling of
Simulink diagrams for the system’'s 400 MHz PowerPC 604e
DSP, alowing the real-time controller software to be devel-
oped in a high-level language. This obviates the need for low-
level 1/O programming and facilitates debugging. In addition,
the system provides low-level computation, digital-to-analog
and analog-to-digital conversion, as well as a user interface—
al in a single package.

2.1. The mathematical model of RABBIT walking

The model of RABBIT walking used for controller design
assumes that all motions take place in the sagittal plane and
that a normal gait consists of symmetric, aternating phases



of single support and double support (see Appendix 1 for a
complete list of hypotheses). These two phases of the walking
cycle naturally lead to a mathematical model of the biped
consisting of two parts. the differential equations describing
the dynamics during the single support phase, and a discrete
model of the dynamics of the double support phase. The
biped model is thus hybrid in nature, consisting of continuous
dynamics and a re-initiaization rule at the contact event.

2.1.1. Swing phase model: a nonlinear underactuated con-
trol system

The dynamic model of RABBIT during the swing phase is
that of an underactuated, planar five-link inverted pendulum.
Let ¢ := (q1,---,g5)" be the set of angular coordinates
describing the configuration of the robot, given in Figure 4(a).
Since only symmetric gaits are of interest here, the same model
can be used irrespective of which leg is the stance leg if the
coordinates are re-labeled after each phase of double support.

The torques u;, ¢ = 1 to 4 are applied between torso
and femurs and between the femurs and the tibias. Using the

method of Lagrange and defining the state as « := (¢, ¢’)’,
the model is
. q
T _ N 1)
D~Y(q)[~C(g,4)d — G(q) + Bu]
= f(z) +g(@)u 2

The state space of the model is taken as TQ := {z =
(¢,¢") | g € Q, ¢ € R}, where Q is a simply-connected,
open subset of [0, 27)% x [, 7)3 corresponding to physicaly
reasonable configurations of the robot (for example, with the
exception of the end of the stance leg, al points of the robot
being above the walking surface; one could also impose that
the knees are not bent backward, etc.).

2.1.2. Double support model: a rigid impact

The double support phase—the transition from one leg
to another—is modeled with a rigid impact map. The rigid
contact model collapses the double support phase to an instant
in time resulting in a discontinuity in the velocity component
of the state, with the configuration remaining continuous.
In addition to modeling the change in state of the robot,
the impact model accounts for the relabeling of the robot’'s
coordinates that occurs after each phase of double support.

The result of the impact and relabeling of the states is then
an expression

ot = A7) ®)

where z7 := (¢*,¢") (resp. = := (¢~,¢7)) is state value
just after (resp. just before) impact and
Ayq™

A(z™) = o ] @
Aqla)d

where A, and A;(¢~) are linear maps (see Appendix 1 for
a complete list of hypotheses assumed for this rigid impact
model).

2.1.3. The complete model for walking: a hybrid nonlinear
underactuated control system

With the addition of an appropriately chosen switching
set, S, the swing phase model can be combined with the
double support model and expressed as a nonlinear system
with impulse effects [12], [36]

b= f(2) + 9o
= A(z)

Here the switching set is chosen to be the set where both legs
are on the ground,

S:={(¢,4) €TQ | p3(q) =0, p3(q) >0},  (6)

and z~(t) := lim, ~ z(7). The value of p}(q) is taken to be
positive so that for x € S the swing leg end is in front of the
stance leg at the end of a step (a step is only defined when
the swing leg progresses from behind to in front of the stance
leg). Dynamically stable walking corresponds to the existence
of alimit cycle in the state space of (5).

x- ¢S
x~ €S

®)

2.2. Implementation issues

This section presents three important aspects of RABBIT
that are not addressed by the model given in the previous
subsection. The effects are the additional dynamics introduced
by the boom used to constrain RABBIT's motions to be
planar, RABBIT's gear reducers, and RABBIT's irregular,
non-rigid walking surface. These effects were accommodated
in the design of controllers for the experiments presented
in Section 4 so that the closed-loop system’s experimental
dynamic performance would more closely match the design
specification.

2.2.1. Constraining RABBIT to be planar

The boom attached to RABBIT'’s hip constrains RABBIT's
motions to the sagittal plane and constrains the sagittal plane
to be tangent to a sphere centered at the universal joint
that connects the boom to the center stand (see Figures 3
and 6). RABBIT therefore walks in a circle whose radius
is determined by the length of the boom. The boom system
consists of the boom, center stand, counterweight, and cabling.
“Training wheels,” shown in Figure 11, but not drawn in
Figure 6, were attached to the boom to provide a measure
of safety. The training wheels' post has a prismatic joint with
a stop to prevent the robot’s hip from dropping too low but
otherwise does not support the robot’'s weight. The boom
system also includes two encoders at the universal joint to
measure horizontal and vertical angular displacement of the
boom about the center stand. A boom system of this sort was
also used for MIT Leg Lab’s Spring Flamingo [24], as well
as severa of their other robots. The other typical means of
constraining a biped robot’s motion to be planar is through the
use of wide feet. Thisideawas used in the design of Kenkyaku
[6] and Meltran Il [18], among others. The advantage of a
boom system over wide feet is that a boom is able to constrain
the robot’s motion even when none of the feet are on the
ground. This is important in the case of RABBIT, as one



(a) Overhead view of RABBIT'S experimental setup.
For clarity, the electronics are not drawn.
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(b) Side view of RABBIT’s experimental setup.

Fig. 6. Various dimensions of RABBIT's experimental setup.

of its stated purposes is to study running, which necessarily
has a balistic phase (when no feet are in contact with the
ground). The use of a boom, however, requires some means
of alowing the legs to move radially when in contact with
the ground. To accomplish this in RABBIT, wheels aligned
with the frontal plane were attached at the leg ends. Another
consideration with a boom system is how to connect power
and communications cabling to the experimental setup. Unless
a dip ring is used, cabling connected to the experimental
setup will become twisted or wound as the robot makes laps.
Unfortunately, a slip ring was not installed at the time when
the experiments reported here were performed, and RABBIT
had to be “unwound” after each experiment.

The inertia of the boom system used to constrain RAB-
BIT's motion to be planar results in additional inertia that
is significant enough to require incorporation into RABBIT’s
model. The inertia has four components due to 1) the boom
connecting RABBIT, the center stand, and the counterbalance,
2) the counterbalance, 3) the cabling connecting RABBIT to
the support electronics, and 4) the support electronics (see
Figures 3 and 6). Since the training wheels are not aways
used, and since they are relatively light, their inertia is not
included. The inertia may be approximated as

1mb 1

3 3 2 2
I 3T (lb,l + lb,2> + mylp, + 3 Me Iy (7)
b N——
boom counterbalance cabling

Table 2. RABBIT’s experimental platform parameters.

Model parameter | Units | Label | Value

Constraint boom length m Iy 15

Hip to stand distance m b1 14

Stand height m ls 14

Constraint boom mass kg mp 50

Cable mass kg me 2.0

Counterbalance mass kg My 0.0

Support electronics mass kg Me 20.0
o= me? ®)

This results in additional kinetic energy,

Ka= 5k (8 +62) + 5L ©

where ¢, and ¢, are the horizontal and vertical angular
displacements of RABBIT about the center stand (see Figure
6). The angles ¢, and ¢, may be approximated by

_ pi(q) — phiqo)

¢n ~ and ¢, ~ ZM (10)

lva Iv1
where ¢q is RABBIT’s configuration at the beginning of a step
and p¥; and py; are the horizontal and vertical positions of the
hip.
There is also additional potential energy due to the boom,
the counterbalance, and the cabling,

1 my

Va= 90— (l%,l - lﬁ,z) sin(¢y)
277 Iy

boom

. 1 .
— goMy lp 2 sin(gy) + §g0mclb)1 sin(¢y). (11)
—_———

counterbalance .
cabling

Note that the counterbalance mass may be chosen to negate
the potentia energy due to the boom and cabling. In the
experiments described in Section 4, no counterbalance was
used; the required counterbalance of 52 kg could not be
securely fastened to the boom because of the short length of
lb$2.

The controllers used for the experiments reported in Section
4 were designed using equations of motion which included the
boom dynamics. These equations of motion were calculated
by first forming an updated Lagrangian—the planar model’s
Lagrangian with the kinetic energy K, added and the potential
energy V, subtracted—and then using the method of Lagrange.
Table 2 gives the parameter values for the boom system setup
used for the experiments.

Aside from the ability to counterbalance the boom, the
choice of boom length has other important considerations. The
longer the boom, the better the approximation of RABBIT as
aplanar mechanical system; however, the longer the boom, the
greater the dynamic effects of the additional kinetic (9) and
potential (11) energies, and the greater the flexibility of the
boom. Boom flexibility was found to be of great significance
experimentally. The boom was initially chosen to be 3 m
in length. Flexing of the tubular steel boom affected forces



on RABBIT'’s hip large enough to cause foot dlippage. In
response, the boom was swapped for a 1.5 m boom, and the
foot slippage problem subsided.

2.2.2. Gear reducers and joint friction

To alow smaller, lighter weight motors to be used, RABBIT
has gear reducers between its motors and links. The gear
reducers have two important effects on RABBIT’s dynamics.
The first effect is to add significant joint friction, which effec-
tively eliminates all passive motions of the joints. The second
effect is to approximately decouple the robot’'s dynamics,
leaving the motor’s rotor inertia as the only significant inertial
load on the motor. Both effects were taken into consideration
in the control implementation described in Section 3.4.

The joint friction was modeled by viscous and static friction
terms,

F(q> Q) = Fyq+ F sgn(q') (12)

where? F, = diag(FwH;FV7H7FV,K7FV,K) and F, =
diag(Fs u, Fsu, Fs x, Fsx). The identified values of RAB-
BIT’s frictional parameters are given in Table 1. Note that
both the viscous and static friction values are substantial; at
the hip, the static friction is approximately ten percent of the
motor/gear reducer system’s peak available torque of 150 Nm.

Another, in some ways desirable, effect of gear reducersis
to scale the inertial load seen by the motors. This scaling has
the effect of approximately decoupling the robot’'s actuated
dynamics so that the only significant dynamic terms are the
inertia of the motors' rotors and the unactuated dynamics.
Writing the model in motor coordinates makes this evident.

Define the motor shaft coordinates ¢ := Nyq where N, =
diag(ng, ng, ng, ng, 1) and ny are the gear reducers’ gear ratio
(the four gear reducers are identical). Since the torso, ¢s, is
unactuated, (Ng)s5 = 1. When the motors’ rotor inertias and
the gear ratios are included in RABBIT's swing phase model,
(1), and the model is written in the motor shaft coordinates,
the equations of motion become

1 1 1 1

—Di1+ 1 —Dip —Ci1 —Cie

n? Ng . n? Ng .
1 N 1
—D) D —C! C
Mg 1,2 ( )5,5 g 1,2 ( )575

1 1 _ p-
+N;'G - N;'F=Bu (13)

where u := (u1,us, us, us) are the torques supplied at the
output shafts of the motors and I, is the inertia of the motors’
rotors (the four motors are identical). The result is that the
actuated dynamics are approximately decoupled and the block
of actuated dynamics is approximately decoupled from the
unactuated dynamics. RABBIT s motors' rotor inertiaand gear
ratio are given in Table 1.

2As is commonly done to circumvent the difficulties associated with the
discontinuity of the signum function, in implementation, a scaled arctangent
function was used in its place, i.e., for large T,

2
sgn(z) ~ - tan~!(rz).

2.2.3. The walking surface

The floor on which RABBIT walks is concrete with 30 cm
wide cabling access trenches covered with 4 mm steel plates.
In preliminary experiments it was found that after stepping
on one of the four plates crossing RABBIT’s path, RABBIT
would slow significantly. Since the gait—change in the shape
over a step—was the same (see Section 3.1), thisindicated that
the energy dissipation due to impacting the concrete surface
is less than the energy dissipation due to impacting the steel
plates. To help make the walking surface uniform, the floor
was covered with 1.5 cm particle board, which was then
covered with a layer of 3 mm rubber (see Figure 3). Aside
from helping to make the walking surface uniform, the rubber
layer was added in hopes of extending the life of RABBIT by
providing a modest amount of compliance.

3. Controlling dynamically stable walking

The approach to the control of walking taken here is to
encode the task of walking as a set of holonomic constraints
on the robot’s actuated DOF parameterized by the robot's
unactuated DOF. With this approach, the closed-loop system
is rendered autonomous (time-invariant) and formal anaysis
of the stability properties of the resulting gait is possible
[12]. Beyond analysis, in [33], [34] a framework using this
approach was developed for systematic design and perfor-
mance enhancement of controllers that induce walking with a
priori known kinematic and dynamic properties. This section
provides a succinct summary of that work and interprets the
use of holonomic constraints as imposing virtual constraints—
holonomic constraints imposed via feedback. “Virtual con-
straint” is used to differentiate these constraints from phys-
ical constraints that are imposed via, for example, a geared
mechanism or a cam and link system.

3.1. Virtual constraints and hybrid zero dynamics

Since the model for walking is underactuated—due to no
ankle torque—the dynamics compatible with the constraints
being exactly imposed are nontrivial. During the single support
phase these dynamics correspond to the inverted pendulum-
like dynamics of the center of mass about the stance leg
end. A means for calculating these dynamics—called the zero
dynamics—via an output design problem is given in [34].
It is shown that the zero dynamics can be designed to be
an invariant sub-dynamic of the full hybrid model in spite
of the discontinuous dynamics introduced by impacts. In this
case, existence of alimit cycle of the zero dynamics is easily
determined. This is interesting because exponentialy stable
periodic orbits of the hybrid zero dynamics are exponentially
stabilizable periodic orbits of (5).

The main results of [34] are now summarized. Consider the
model (2) with the following output function

y = h(z) := ho(q) — hao0(q)

where ho(q) specifies 4 independent quantities that are to be
controlled and hy o 6(q) specifies the desired evolution of
these quantities as a function of the scalar, monotonic quantity

(14
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Fig. 7. Block diagram of atime invariant controller. The controller I" forces
the signal y = ho(q) — hq 0 6(q) to zero so that the signal ho(q) tracks the
function hg 0 0(q).

6(q). Driving y to zero will force ho(q) to track hy o 6(q);
see Figure 7. Intuitively, the posture of the robot is being
controlled by virtual constraints—here a holonomic constraint
parameterized by 6(g). Unlike physical constraints, virtua
constraints may be reconfigured electronically via change in
feedback law, whereas reconfiguration of physical constraints
requires mechanism redesign; the next section discusses their
difference in detail. Note that the control of walking using
virtual constraints is not a trgjectory tracking scheme since
the desired evolution of ho(q) is slaved to a function of 6(q)
and not time. For this reason, the resulting closed-loop system
is autonomous.
Choosing

ho(q) Hogq (15)

0(q) = cq (16)

where Hy € R>*4, ¢ € R>*! dlows hypotheses HH1)-HH4)

to be easily satisfied, which guarantees the existence of the

swing phase zero dynamics,

2.: = fzero(z)y (17)

which evolves on the two-dimensional embedded sub-manifold

Z:={xeTQ| h(z) =0,Lsh(zx) =0} (18)

where O C Q is the set where® L,Lh(x), the decoupling
matrix, is invertible. The feedback control

w*(@) = —(LyLyh(a) " L3h(x) (19

3(This definition of the Lie derivative is taken from [16, pp. 496-496].)
Let f be a smooth vector field, NV a smooth manifold of dimension n, and
A a smooth real-valued function on N. The (Lie) derivative of A aong f is
afunction N — R, written L\ and

(LsN)(P) == (f(p))(N)

(i.e, (LfA)(p) isthe value a X of the tangent vector f(p) a p). In local
coordinates, L\ is represented by

7%):(&» 5 m)

87961 " Ozn

f1
(LX) (1, ...
In
If f1, f2 are vector fields and X is a real-valued function, then
Ly LA = Ly (L A)

and )
L3 X:i=Lg Ly A

renders Z invariant under the swing dynamics; that is, for
every z € Z, fuero(2) == f(2) + g(2)u*(2) € T.Z. When
expressed in coordinates (£1,&2) = (6(q),v(q,q)) where
v(q,49) == v0(q) ¢ and vo(q) is the last row of D, the mass-
inertia matrix, the zero dynamics (17) take the form [34,
Thm. 1]

& = m(&)é
§2 = Ka(&)
If SNZ isasmooth, one-dimensional, embedded sub-manifold

of TQ, and if A(SNZ) C Z, then the nonlinear system with
impulse effects,

z = fzero(z)
2t = A(z7)

(20)
(21)

2~ ¢8SNZ

22
z-eSNZz, (22)

with z € Z, is an invariant sub-dynamic of the model (5) and
is caled the hybrid zero dynamics of (5). In the coordinates
(¢1,¢2) = (8, 372), the Poincaré return map of the hybrid zero
dynamics, p: SNZ — SN Z, is given by

P(C5) = 6ero Co — Vaero(67), (23)
with domain of definition
{CQ_ >0 | 5391"0 <2_ - ‘/zl\e/lr/gx Z O} (24)

where §,er0, Vaero, and VMAX gre constants calculated from

zero

(22),and 0~ :=0(q"), ¢ € SN Z. If §2,., # 1 and
* ‘/;ero(o_)
G = 152 (25)

zero

is in the domain of definition of p, then it is the fixed point
of p [34, Thm. 3]. Moreover, if ¢; is afixed point, then (5 is
an exponentially stable equilibrium point of

Ca(k +1) = p(Ca(k))

if, and only if, 0 < 62, < 1, and in this case, its
domain of attraction is (24), the entire domain of definition
of p. Therefore, the hybrid zero dynamics admit a non-trivial,
exponentialy stable periodic orbit if, and only if, the following

two inequality constraints hold [34, Cor. 1]

(26)

0<d2 <1

Zero

(27)
and
52
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zero

Viero(07) + VMAX <,

zero (28)
Exponentialy stable periodic orbits of the hybrid zero dynam-
ics are exponentialy stabilizable periodic orbits of (5), [34,
Sec. IV.C].

Speciaization of hy to a vector of Bézier polynomials
makes achieving the invariance condition, A(SNZ) C Z, sim-
ple as well as providing a finite parameterization of the zero
dynamics. Finite parameterization alows h(x)—and thus the
hybrid zero dynamics—to be tuned using standard parameter
optimization techniques [34, Sec. VI].



Fig. 8. A horizontal, variable length pendulum used to explain virtual
constraints.

3.2. Virtual versus physical constraints

Though virtual constraints and physical constraints impose
the same kinematic behavior, the resulting dynamic behavior is
different. To illustrate this difference, consider the horizontal
variable length pendulum depicted in Figure 8. The distance
from the point mass m to the rotation point is ! and may vary.
Since the pendulum is horizontal, its Lagrangian is equal to
the kinetic energy,

L=—K-=— %m (z2 + 1292) . (29)
Two different scenarios will be considered. First, the length,
1, will be constrained to be a function of ¢ via a physical con-
straint. Second, [ will be constrained via a virtual constraint.

In the first case, suppose that a physical constraint is
designed such that [ = [4(6). Then, the equation of motion
is

2
m ((%‘”) +<ld<9>>2>é

() <a?zd(e)

00 06?

Now suppose that [ is constrained via a virtual constraint. In
this case, the length [ istreated as a controlled quantity, and the
equations of motion may be calculated from the Lagrangian
(29) to be

+ zd(9)> 6> =0. (30)

io= —2ij

[ = 162+ %u
where v is an input used to control the length /. To do so, an
output on the system (31) is formed as

y=1—14(6) (32)

such that y = 0 implies [ = [4(6). As long as 014(0)/00 #
0, the output (32) is of relative degree two [16]. Hence,
differentiating twice yields

(1)

o O12(0) . 2004(0).. 1
s 2 d 2 = -
ij=10 902 0 +l 50 10+mu 33)
The output dynamics (33) may be stabilized with
o 013(0) . 2014(0) - )
u=m (—192 + 592 6> — T ZO—KDy—pr)
34)

for Kp, Kp > 0. Under the constraint | = [4(0), the system
state must evolve on the set* Z := {(0,6,1,1) € Sx R? | | —

4Here S is the topological space the unit circle, not the walking surface;
see Section 2.1.3.
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Fig. 9. Kinematic and dynamic behaviors of the horizontal pendulum. The
dashed lines correspond to the constraint | = sin(¢) + 1.5 imposed via
a physical constraint, whereas the solid corresponds to the same constraint
imposed via a virtual constraint.

14(#) = 0}. The maximal internal dynamics compatible with
the output being identically zero, the zero dynamics, are

Ila(0)
00

and the unique control required to enforce | = 14(0), u*, is
readily calculated from (34).

While the kinematic behavior of the zero dynamics resulting
from the virtual constraint I = [4(f) is identical to that
resulting from the physical constraint I = [4(0), their dynamic
behavior is different, cf. (30) and (35). Figure 9 illustrates
this difference for the constraint I[; = sin(f) + 1.5. For
this example, m = 1 and the system (30) was initiaized
with (6,0) = (0,1) and the system (35) was initialized with
(0,6,1,1) = (0,1,1.5,1) € Z. The difference between these
two realizations lies in u*, the energy entering the system in
the virtual constraint realization which does not appear in the
physical constraint realization.

m (14(0))° 6 + 2m 14(0)6? = 0 (35)

3.3. Interpreting the (swing phase) zero dynamics

Much in the way that it has been proposed that the spring
loaded inverted pendulum is a template for running [26], [29],
it has been proposed, though less formally, that an inverted
pendulum is the template for walking [7], [17]-{19], [22].
From Figure 1 it might seem that the dynamics that result from
imposing virtual constraints—the swing phase zero dynamics,
(20) and (21)—should be the dynamics of a length and inertia
varying inverted pendulum, i.e., the length, [, and the inertia
about the center of mass (COM), J, vary as function of &;.
If this were true it would suggest this pendulum as a new
control template (or target) in the design of future controllers.
Unfortunately, it is not true.

Using the angular momentum balance theorem [27], the rate
of change of the angular momentum of the robot about the
stance leg end during the swing phase, &, is equa to the
external applied torque,

& = go Mplowm (36)
where g, is the acceleration due to gravity, M is the robot’'s
mass and pl,, is the horizontal position of the robot’s center
of mass; see Figure 1. Suppose &; is defined as in Figure 1.



Then, for output (14), if y = 0, then ploy = Phon(&1) and

k2(€1) = go M1(&1) sin(&y).

Expressing (20) as & = lpero(&1)€1, Where® Ieo(&1) =
1/k1(&) is an inertial term, allows the zero dynamics (20)
and (21) to be written as a second order system,

- Izero
Izero(€1 )61 + 8851(61)

The equation of motion for a length and inertia varying
pendulum can be easily derived using the method of Lagrange.
The kinetic energy is K (&) = 1/21(&)&7 where

9l(&1)
06

The potential energy is V(&) = Mgol(&1)cos(&1), and,
hence, the equation of motion® is,

(37

(61)* — go M1(&1) sin(&1) = 0. (39)

I(&):M( )+M<Z<51>>2+J<§1>. (39)

191(&1) ;

1(51)5..14-5 a6, &

+ Mgo <ala(§11)

Comparing the swing phase zero dynamics (38) and the
dynamics for the length and inertia varying pendulum (40),
it is evident that what is suggested by Figure 1 does not hold,
which aso implies that the swing phase zero dynamics are
not those of an inverted pendulum, or an inverted length and
inertia varying pendulum. It is interesting to note, however,
that if the length and inertia varying inverted pendulum had a
torque, u, acting between the pendulum and ground, i.e.,

cos(&1) — l(ﬁl)Sin(€1)> =0. (40

101(8)

€&+ 55 &
+ 0t (e coste) ~ i) snier) ) =, (a1
where
— 3 e g s G s, @2

then, the forms of (38) and (41) with u as in (42) would be
identical.” Matching the inertial terms, I and I, however,
does not yield a positive definite J. That is, supposing I c;o
has the form of I given in (39) implies J(&1) = ILero —
M (01(&1)/0¢&1) — M(1(&1))* where [ is the distance from the
stance leg end to the COM. For every example worked by the
authors, J is sign indefinite.

5The proposition [34, Prop. 1] ensures that x1(£1) is never zero whenever
the robot successfully completes a step.

61f 1 and J do not vary as a function of &1, then I(&1) = I, (&) =1
and (40) reduces to the equation of motion for an inverted pendulum, 7 &; —
Mgolsin(§1) = 0.

"The justification for this input is to account for the energy entering the
robot’s dynamics via the control u* given in (19).

3.4. The control algorithm implementation: imposing the
virtual constraints

The swing phase zero dynamics (20) and (21) are indepen-
dent of the feedback used to zero the output that gives rise to
them. The feedback introduced in [34, Sect. 1V-C], acomputed
torque pre-feedback plus finite time converging controllers,
is one possible feedback. The input-output linearization of
the computed torque pre-feedback decoupled the dynamics
resulting in a chain of four double integrators. The finite-
time converging controllers stabilized the origin of the double
integrators in finite time, enabling the stability of the robot’s
walking motion to be assessed via the hybrid zero dynamics
scalar return map. In light of the decoupling effect of the
reducers (see Section 2.2.2) and the likely inaccuracy of the
parameter identification, high-gain decoupled PD controllers
were used in place of the feedback given in [34, Sect. IV-C]
to impose the virtua constraints on RABBIT. It was found
that this control was able to zero the outputs sufficiently well
to induce walking with dynamic characteristics similar to the
theoretical design.

For the experiments described in this paper, outputs of the
form (14) with hy(q) and 6(q) as in (15) and (16) were used
with

Hy = [I 0] (43)
c = [-10 -1/2 0 -1 (44)

which results in the output
y=(q1, a2, g3, @) —hao0(q). (45)

Figure 4(b) gives 0(q) corresponding to this choice of c.
The Bézier polynomial order, M, was chosen to be 6, which
left five free parameters to be chosen for each output (two
parameters per output are used to impose invariance; see [34,
Rem. 4]). Thisimplied atotal of 20 output function parameters
to be chosen via optimization. The optimization problem was
posed as described in [34, Sec. VI] to choose the 20 free
parameters of « by approximately minimizing the cost

1 Tr(&5) i} )
J(o): / [ (£)| 3t

B Plzj(qf) 0

(46)

where ¢~ € SN Z, T;(& ) corresponds to the step duration,
ph(qo ) corresponds to step length, and u*(¢) is the result of
evaluating (19) along a solution of the hybrid zero dynamics.
The hybrid zero dynamics used in the optimization process
were updated to accommodate the effects of the additional
dynamics caused by the inertia of the boom system and friction
of the gear reducers. The effect of the non-rigidity of the
walking surface was also important to accommodate.

The tradeoff between the dissipation due to impacts and
the energy gained through shape change (cf. [34, Thm. 3])
determine the closed-loop system’s average walking rate and
stability. Imperfections in the model parameters and unmod-
eled dynamics during the swing phase affect the energy gained
through shape change. Imperfections in the impact model
affect the amount of energy dissipated. To study the latter,
RABBIT was simulated using a compliant ground contact
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Fig. 10. Average walking rate verses impact map scaling constant a. The
solid line is a least sguares fit to empirically determined impact scalings
(indicated by circles). This apparently linear relationship between average
walking rate and impact scaling is reminiscent of the classical coefficient of
restitution relation, e = 1 — awvg, where e is the coefficient of restitution,
a is some material-dependent constant, and wvg is the impacting velocity [8,
p. 258]. It is hypothesized that this approximately linear relation will hold for
other walking surfaces, suggesting it as a means of identifying the surface to
determine how the rigid impact model, i.e., d,ero, Should be modulated as a
function of ».

Table 3. Experiment control parameter values.

Control parameter ‘ Units | Label ‘ Value
Kpy | 2000
Proportiona gains N Kpx 1500
K D,H 10
Derivative gains Ns Kpx 10

model described in [23]. It was found that stability was pre-
served, but the steady-state average walking rate differed from
the average walking rate designed assuming rigid impacts.
This was also found experimentally.

For the wood and rubber walking surface, it was found
that in the design of walking motions, the amount of energy
dissipated at impact had to be scaled to be less than the
rigid model predicted at low walking speeds and more at
higher walking speeds. This was accomplished through trial
and error by scaling d,.. (see[34, Sec. IV-A] for its definition)
by some constant a. A series of controllers over a range
of values of a were generated and then evaluated using the
experiment procedure described in Section 4 to determine their
steady-state average walking rates. The value of a resulting
in a controller that induced the desired average walking rate
was recorded. Figure 10 gives a plot of these values of a
verses the corresponding average walking rate. Surprisingly,
the relationship is approximately linear; the least squares fit is
a(7) = 1.2957 — 0.42507.

To zero the output resulting from optimization on the hybrid
zero dynamics updated to accommodate the implementation
issues, the decoupled, PD controller with friction compensa-
tion®

u=—Kpe— Kpé+ F,hgo é((j) + Fysgn(e) 47
was used where the terms F,hy o 6(q) and Fjsgn(e) cor-
respond to feed-forward viscous and static friction compen-
sation terms and Kp = diag(KRH, KP,H, KP,K; KP,K) and
Kp = diag(Kp u, Kpu, Kpx,Kpx) are the proportiona
and derivative gains given in Table 3. The error signals are

8The friction compensation terms are due to C. Canudas-de-Wit.
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defined as

R Ara . o Ohgj,:
e:=HyG—hgo00(§) and ¢é:= Hypq — a—;@(q) (48)
where (¢, ¢) is RABBIT's state with relabeling,
. (¢,4) if stance leg isright leg
(Agq,Agg) if stance leg is left leg.

A simple state machine was used to determine the current
stance leg as required by (49). Since hy is only designed for®
0<(6(q) —07)/(6= —0T) < 1, where = := 6(¢q~) and
6t =00 A,(q7), ¢ € SN Z, the scaar function of the
robot’s states 6(q) was saturated,

. .
. (0(g).6(q)) 0 < G2 <1
(6(q),0(q)) == (6-,0) ba)67 - g (50)
(6+,0) Ba-07 <.

The velocities were estimated using a five-point numerical
differentiator described in [5] applied to the encoder outputs.

The PD based feedback (47) was chosen over a dliding
mode, or finite-time converging controller because of its ro-
bustness to noise and uncertainty. The feedback (47) provided
surprisingly good joint-level tracking (see, for example, Figure
12).

The feedback (47)—<50) was implemented on the dSPACE
DS1103 system running with a sample period of 1.5 ms
(667 Hz). To provide high-level control, the feedback imple-
mentation has a state machine which provides an interface
between the user and the lower-level, continuous control.
The implementation also has safety mechanisms which set
the commanded control signals to zero in the event of an
anomalous condition, such as a joint exceeding a position
limit, or upon user request.

4. Experiments

This section describes six experiments which highlight the
capabilities and robustness of controllers designed via the the-
oretical framework summarized in Section 3 and the additional
tools presented in [33] and Appendix 2. The experiments
reported were performed during a three week research visit
lasting from February 24th until March 14th 2003. At the start
of thevisit, RABBIT had just been installed into its permanent
location, pictured in Figure 3, where about 200 consecutive
steps (6 to 7 laps about the center stand) are possible; the
limit on the total number of steps is due to the winding of the
power and Ethernet cabling about the center stand. During the
visit, many small details had to be addressed to improve the
experimental platform before the reported experiments could
be performed.

The experiments were conducted as follows: the experiment
began with the robot suspended in the air, lifted by an
experimenter. After an encoder calibration phase, the robot
was servoed to a configuration (¢, ¢) = (q0,0) € A(S N Z,,)

9The parameterization of Bézier polynomials is such that they are only
defined on the unit interval.



Fig. 11.  Video frames of RABBIT taking a step. The interval between
frames is 120 ms. Note the “training wheels’ attached to the boom to provide
a measure of safety.

and then placed on the ground. Once on the ground, data
collection was initiated and the control was switched to the
virtual constraint based feedback controller (47)—(50). This
was possible because (¢,) = (q0,0) € A(S N Z,) is an
asymptotically stable point under the hybrid zero dynamics
based controller. To initiate walking, an experimenter pushed
the robot’s torso—temporarily fully actuating the robot’s un-
deractuated dynamics—supplying the energy required to land
the robot’s state in the basin of attraction of the Poincaré
return map. Once in motion, the robot reached steady state
walking within ten to twenty steps. To stop the robot, an exper-
imenter grabbed the torso—again, fully actuating the robot’s
dynamics—slowing the robot to a stop in double support. This
ability to interact with the robot’s dynamics by pushing on the
robot is a consequence of the zero dynamics parameterization
by 6(q). Through mechanical coupling, forces on the robot
drive 6(g) which, in turn, determine the evolution of the robot’s
actuated DOF. Figure 11 gives video frames of RABBIT
taking a step for a typical walking motion. Videos of these
experiments are available at [31].

4.1. Walking at a fixed rate

These first two experiments illustrate the performance of
controllers designed viathe theoretical framework summarized
in Section 3.
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4.1.1. Walking at 0.7 m/s

In this first experiment, RABBIT was controlled with a
feedback designed to induce walking at 0.7 m/s. The experi-
ment lasted approximately 93 seconds during which RABBIT
took 170 steps. Figures 12-17 are plots of various quantities
of interest over a representative time interval containing ap-
proximately five steps. Figures 12 and 13 give the tracking
performance. Figure 15 gives the commanded control signals.
The peak commanded torque is less than 100 Nm, two thirds
of the actuators’ 150 Nm maximum. Figure 14 gives the trace
of the torso angle. Note the torso angle is not a directly
controlled quantity. Figure 16 gives the trace of the horizontal
angular displacement of the boom, ¢,,. Asindicated by Figure
16, the robot took approximately six laps about the center
stand to complete the 170 steps. Note the constant slope and
monotonicity of the trace of ¢y, indicating smooth, horizontal
motion of the hip. Figure 17 gives the step length, step
duration, and the ratio of step length to step duration, step
rate. The data points of Figure 17 were calculated upon swing
foot touchdown declaration. The step lengths given in Figure
17 were calculated using the measured joint angles and the
robot’'s identified link lengths. In each plot of Figure 17,
squares indicate data points corresponding to the inner leg—
the leg closer to the center stand—and circles indicate data
points corresponding to the outer leg—the leg further from
the center stand. Labeling the data points in this way reveals
differences between the inner and outer legs in step length,
step duration, and step rate. Since the two legs are, to within
close approximation, identical, the difference is likely due to
the non-sagittal plane dynamics created by the boom system.
Aside from the differences between the inner and outer legs,
the variances in step length and step duration have severa
contributing factors. The ones believed to be most significant
are nonuniformity in the walking surface, variance in the
declaration of leg touchdown, and flexibility in the robot’s
joints. Careful comparison of Figure 17 with Figure 16 reveals
that the step rate is periodic in ¢y,. The periodic change with ¢,
is due to nonuniformity in the walking surface: one section of
the wood and rubber walking surface was not firmly lying on
the ground because of unevenness in the underlying concrete
floor.

4.1.2. Demonstration of robustness to perturbations

This second experiment demonstrates the robustness of
controllers designed via the theoretical framework. Two types
of perturbations were applied to RABBIT controlled by a
feedback designed to induce walking at 0.9 m/s. The first
was a 10 kg mass added to the torso, which resulted in a
shift of the average walking rate from 0.9 m/s to 1.0 m/s.
(In the fifth experiment, described in Section 4.2.3, it will be
demonstrated that the designed fixed average walking rate may
be recovered through the use of event-based integral control.)
In addition to the sizable perturbation to the robot’s model (the
robot’s nominal weight is 32 kg), the second perturbation was
aperiodic, short duration forces applied to the RABBIT s torso
by an experimenter in both the forward and reverse directions.
Despite both these significant perturbations, RABBIT did not



fall during the experiment which lasted approximately 74
seconds where RABBIT took 164 steps.

Figures 18 and 19 are plots of the actua and desired
joint trajectories and the commanded control signals over a
representative time interval in which the robot was pushed in
the forward direction (at approximately 20.5 seconds) and in
the reverse direction (at approximately 29 seconds). Note that
the change in the reference motion, A4, during the application
of these forces. The commanded control signals are within the
actuators' limits, except during the force perturbations when
they saturate (see Figure 19).

4.2. Transitioning and event-based within-stride control

The four experiments below illustrate the transitioning
controller developed in [33] and the event-based controller
developed in Appendix 2. Both techniques exploit freedom
in the output function parameter choice while respecting
invariance of the associated zero dynamics manifold.

4.2.1. Transitioning between controllers

This third experiment demonstrates the use of the one-step
transition controllers presented in [33, Sec. I11]. A transition
controller designed according to [33, Thm. 1] is able to effect
a transition from the region of attraction of one walking
controller to another by steering the state of the system
using the same technical machinery used to render the zero
dynamics invariant. The application of the transition controller
is synchronized with swing leg touchdown.

For the experiment, the controller applied to RABBIT was
transitioned between controllers at 0.1 m/s intervals from 0.5
m/s to 0.8 m/s and then back from 0.8 m/s to 0.5 m/s twice
(see Figure 22). The transitioning controllers were designed
according to [34, Eqgns. (12) and (13)]. The experiment lasted
approximately 86 seconds during which RABBIT took 139
steps.

Figures 20 and 21 are plots of the actual and desired
joint trajectories and the commanded control signals over a
representative time interval of approximately twenty-six steps
where the control was transitioned from 0.6 m/s to 0.8 m/s.
Note the change in the reference motion, hg, with no visible
difference in error, or in commanded control signal.

4.2.2. Using event-based integral control to modify the fixed
point

In this fourth experiment, the same feedback used in the
first experiment to induce walking at 0.7 m/s was applied
with the addition of an event-based Pl control, developed in
Appendix 2, to modify the steady state average walking rate
from 0.7 m/s to 0.6 m/s. The event-based control acts through
modifications of the Bézier polynomial coefficients at double
support events.

The event-based control was performed on the stance and
swing leg relative angles, ¢; and g2, which results in a change
of the torso angle; see Figure 4(a). This was accomplished by
setting d« to zero except for

504;:1; forl:172andj:2vaM (51)
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The controller (71) with set-point n* = 0.6 and control gains
K; = 0.06 and Kp = 0 was applied on the 15th step (at
approximately 11 seconds). The proportional gain, Kp, was
set to zero because of the noise introduced by the variance in
step rate. The experiment lasted approximately 110 seconds
during which RABBIT took 181 steps. Figure 26 gives the
value of w given in (71) versus time. Note that the ringing in
w and, consequently, in average walking rate is likely due to
the integral gain being set too large; see Figure 27. Yet, if that
is indeed the case, it till took over 50 steps for the average
walking rate to converge to 0.6 m/s.

Figures 23-25 are plots of various quantities of interest for
the entire experiment. Note the change in the reference motion,
hg, for ¢; and go with no visible difference (in particular, no
spikes) in commanded control signal. Figure 24 gives the torso
angle change resulting from the changing of ¢; and ¢» (see
the measurement conventions given in Figure 4(a)).

4.2.3. Using event-based integral control to reject a pertur-
bation

In this fifth experiment, the same feedback used in the
first experiment to induce walking at 0.7 m/s was applied but
with a 10 kg mass attached to the torso. This perturbation
resulted in a shift of the average walking rate from 0.7 m/s
to approximately 0.85 m/s (the change in average walking
rate was determined in a separate experiment not reported
here). The average walking rate of 0.7 m/s was recovered
using the event-based integral control described in the previous
experiment but with K; = 0.04 and n* = 0.7 applied on
the 14th step (at approximately 11 seconds). The experiment
lasted approximately 95 seconds during which RABBIT took
164 steps.

Figure 29 gives the value of w given in (71) versus time.
Again, note that the ringing in w and, consequently, in average
walking rate (see Figure 30) is likely due to the integral gain
being too large. The torso angle trace reflecting the action of
the event-based integral control is given in Figure 28. This
regulation of the torso angle by integral control was able to
recover the 0.7 m/s average walking rate (see Figure 30).

4.2.4. Using event-based integral control to stop the robot

In this sixth and final experiment, event-based integral
control was used to stop RABBIT from a steady state average
walking rate of 0.5 m/s. This was achieved by slowing
the average walking rate of RABBIT to where it did not
have enough kinetic energy to successfully complete a step;
see Figure 33. The integral control described in the fourth
experiment (Section 4.2.2) with K; = 0.04 and n* = 0 was
applied on the 34th step (at approximately 29 seconds) and
RABBIT was stopped by the 39th step (at approximately 34
seconds). After stopping, RABBIT rocked back and forth until
all kinetic energy from walking was dissipated.

Figure 31 is a plot of the torso angle for a time interval
including a portion of the steady state walking cycle and the
stopping of RABBIT. The increase in the torso angle reflects
the action of the integral control; see Figure 32.



5. Conclusion

This paper presents the experimental validation of a novel
framework for the control of walking in a class of planar
bipeds using a 5-link biped prototype, RABBIT. The frame-
work builds on previous work by formalizing an approach
common to most schemes for the control of biped walking.
That approach is to structure the control in such a way as to
simplify the controller design process. The approach can be
found, for example, in the regulation of angular momentum by
Sano and Furusho [28], of total energy by Goswami, Espiau,
and Keramane [10], of the robot’'s center of mass trgectory
by Kgjita and Tani [18], via virtual model control by Pratt et
al. [24], [25], and of the ZMP by many [13], [21], [30], [35].
This framework is an attempt to give a rigorous formulation
of this common approach.

After incorporation of three implementation issues, the ex-
perimental performance of the closed-loop system was found
to be robust to both a sizable torso mass perturbation and
aperiodic, short duration force perturbations applied to the
torso. Two additional features of the framework were also
validated. The first is the ability to compose two fixed-
rate walking controllers to obtain walking at several discrete
walking rates with guaranteed stability during the transitions
using a one-step transition controller. The second is the ability
to regulate average walking rate to a continuum of values by
modification of stride characteristics using an improvement to
a previously published technique. The improved technique is
given in Appendix 2.

The paper also interprets the action of the fixed-rate walking
controllers as imposing virtual constraints and discusses how
virtual constraints differ from physical constraints by means
of a simple example. It is further discussed that the seem-
ing equivalence of the dynamics that result from imposing
virtual constraints to induce walking—the (swing phase) zero
dynamics—and the dynamics of a length and inertia varying
inverted pendulum does not hold.
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Appendix 1
Hypotheses

A complete list of hypotheses assumed for the N-link
robot model and the desired walking gaits taken from [34]
is enumerated.

Robot hypotheses: The robot is assumed to be:

RH1) comprised of N rigid links with mass, connected by
revolute joints with no closed kinematic chains;

RH2) planar, with motion constrained to the sagittal plane;

RH3) bipedal, with symmetric legs connected at a common
point called the hip;

RH4) actuated at each joint;

RH5) unactuated at the point of contact between the stance
leg and ground; and

RH6) modeled with N — 1 relative angular coordinates,
(¢1,-..,qn—1), plus one absolute angular coordinate, ¢y .

Gait hypotheses: Conditions on the controller will be imposed
and shown to ensure that the robot's consequent motion
satisfies the following properties consistent with the intuitive
notion of a ssmple walking gait:

GH1) there are alternating phases of single support and double
support;

GH2) during the single support phase, the stance leg acts
as a pivot joint; that is, throughout the contact, it can
be guaranteed that the vertical component of the ground
reaction force is positive and that the ratio of the horizontal
component to the vertical component does not exceed the
coefficient of static friction;

GH3) the double support phase is instantaneous and can be
modeled as a rigid contact [15];

GH4) at impact, the swing leg neither dlips nor rebounds;

GHb) in steady state, successive phases of single support are
symmetric with respect to the two legs;

GH6) walking is from left to right, so that the swing leg starts
from behind the stance leg and is placed strictly in front of
the stance leg at impact.

RH1), RH2), and GH2) imply that the robot has N-DOF
during the swing phase. RH4), RH5) and GH2) imply that
when walking the robot has one degree of underactuation, i.e.,
one less control than DOF.

Impact model hypotheses: The impact model of [15] is used
under the following assumptions:

IH1) the contact of the swing leg with the ground results in
no rebound and no slipping of the swing leg;

IH2) at the moment of impact, the stance leg lifts from the
ground without interaction;

IH3) the impact is instantaneous;

IH4) the external forces during the impact can be represented
by impulses;
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IH5) the impulsive forces may result in an instantaneous
change in the velocities, but there is no instantaneous change
in the configuration; and

IH6) the actuators cannot generate impulses and hence can be
ignored during impact.

Appendix 2
Event-based PI control of average walking rate

The goa of this appendix is to design an event-based
controller® that adjusts the parameters in the output (14) to
achieve walking at a continuum of rates. This result is an
extension to the event-based PI-control result given in [33].
The extension is nontrivial because of the difficulty of ensuring
invariance of the hybrid zero dynamics in the presence of step-
to-step stride-boundary parameter adjustments. The control
technique was developed in response to the within-stride
scheme's inability to effectively regulate average walking rate
during experimentation. The controller design and analysis are
based on the hybrid zero dynamics. A one-parameter curve
will be defined in the set of parameters appearing in (14).
Conditions will be identified so that this one-parameter curve
will yield an effective control for the associated Poincaré map.
Updating this control at each impact event of the walking cycle
will yield a means to control average walking rate.

For a given controller'® T, satisfying the hypotheses of
CH2)-CH5) [12, Sec. 1V-B] so that Z,, is invariant under the
swing phase zero dynamicsin closed loop with T, the average
walking rate is computed from the model (5) as follows. Let
P, : S — S be the Poincaré return map and let Ty ,, : TQ —
R>o U {oo} be the time to impact function [34, Eqn. (81)].
Formally, the average walking rate is the (partial) map 7,, :
S — R,

_ phoh,

Uy = —Tl,a A (52

where, pl, when evaluated on S, computes step length; see
Figure 1. On the open subset S C S where 0 < Ty ,0A < 00
and the associated impacts are transversal to S, both P, and
T1 o0 A are well-defined and continuous (see [12, Sec. 111.B]).
It follows that 7, restricted to S is continuous. Since ', is
continuous but not Lipschitz continuous, 7,, is not smooth on
any open subset of S. However, if*2 o is a regular parameter
value®® of output (14) with ho, hy, and 6 as in Section 3.1,
giving rise to a hybrid zero dynamics that evolve on the
associated zero dynamics manifold Z,,, then 7, restricted to
S N Z, depends smoothly on the states and the parameter
values a used to define the outputs (14).

Let A = RIN-Dx(M+1) phe the set of all Bézier polynomial
coefficients, «, for the output (14) with hg, hy, and 0 as in
Section 3.1. For this appendix, it is important to note that the

10That is, one that acts step-to-step with updates occurring at impacts.

n this appendix, to emphasize the dependence of quantities upon their
associated Bézier polynomial parameters, the associated Bézier polynomial
labels will be used as subscripts.

12The Bézier polynomial parameters, o, are grouped into an (N — 1)
(M+1) matrix, o, and denote the columns of a by ay, := (af, .. ., akN_l) .

13That is, the output corresponding to & satisfies HH1)-HH5).

~ X



degrees of the Bézier polynomialsin hy are fixed. Partition A,
and, consequently, each a = [y, ..., ap] € A, into two sets:

o R N-1)x2
Qinvar += [Oéo,aﬂ S Ainvar - R( ) )

(53)

the parameters chosen to render the swing phase zero dynam-
ics invariant under the impact mapping and

Qfree = [0[2, o 7aM] S Afree = R(N_l)X(]V[_l)7 (54)

those freely chosen to affect the shape of the walking motion.
Note that A = Ainvar X Afree and o = [ainvau afree]-

The natural geometric object to use in the analysis of event-
based, step-to-step parameter modifications is a fiber bundle.
The fiber bundle structure will elucidate the interaction be-
tween parameter modifications and the evolution of a Poincaré-
like mapping, the flow map. To that end, define the trivial fiber
bundle

T AxTQ — A (55)

by m(o,2) — a for o € A and x € TQ. Consider S C
A x TQ defined by

S:={(a,z) € AXTQ | a€ A, py(x)=0,pi(z) > 0}.

(56)
which is a fiber bundle with base A and fiber 75'(a) = S
for ech o € A ¢ A where 7g = n|g and A = 7(S) is
the set of parameters such that there exists at least one point
where py(z) = 0 and p4(z) > 0. Define A C A to be the set
of regular parameters, i.e., for each a € A the corresponding
output satisfies HH1)-HH5). The set A is open since HH2),
HH3), and HH5) are rank conditions** and since condition
HH4) requires a zero of a function that depends continuously
on & to remain in an open set. With A, Z ¢ A x TQ may be
defined as

Z:={(a,z) € AXTQ | a € A ho(x) =0,Lshy(x) =0}

(57)
which is a fiber bundle with base A and fiber 7' (a) = Zs
acAandnz = 7| z. The fiber bundle Z corresponds to the
set of parameters giving rise to well-defined swing phase zero
dynamics along with the associated zero dynamics manifolds.
Since, by assumption, for each @ € A, the output satisfies
HH5), the intersection S N Z is aso a fiber bundle with base
A C Aand fiber 75} 2 (&) = SN Za, @ € A where mgnz =
7lsnz-

In what follows, the fiber bundle structure of S N Z will
permit the creation of event-based Pl controllers which modify
parameters step-to-step—even those that change S N Z step-
to-step. Let @ € A and suppose that §ow € RW-Dx(M+1) jg
such that

da#0 and (da)g = (da);1 =0 (58)
and that the function
OAéinvar(dy v, w) = [dinvar,O(da U)7 @invar,l (da v, w)] (59)

AN equivalent condition for a square matrix to be full rank is for its
determinant to be nonzero. The determinant is a continuous function of matrix
entries which, in the case of HH2), HH3), and HH5), are functions of a.
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is defined to ensure invariance of the zero dynamics step-to-
step. Then, for v, w € R sufficiently small in magnitude

(60)

is also regular. The following lemma will be used to calculate
OA‘invar,O(O_[a ’U) and OA‘invar,l(O_éa U)-

Lemma 1 (Achieving A(S N Z,) C Zg): Assume the exis-
tence of two outputs h, and hg as defined above. Then,
hgo A(SN Z,) =0if, and only if,

Bo | o,
[m]:HAqH 1[ - |
B «
Moreover, if §,er0.0 # 0, then Lyhg o A(SN Z,) =0 if, and
only if,

&(6‘7 v, ’LU) = [é(invar(éh v, w), @free] + woa

(61)

Mq

6o 6T OMa ~ OMas1) ]
1

Oy =05 kia(07) 1
Mg

B = HoAzH™*

+ 6o (62)

lilyﬁ(gg) 5zero,a
That is, if (61) and (62) hold, then A(SN Z,) C Zs.
Proof: The proof follows from direct calculation. The com-
plete details are given in [32]. ]
To ease the cumbersome notation, for the remainder of this
appendix define &, := a+vda and, similarly, a,, := a+wda.
Using this notation and Lemma 1, &invar,0 and 9:{ may be
calculated as

(av)M

OAlinvar,O(dvv) -1
[ ]|

to ensure that for each x € S if hg(xz) =0, then hg o A(x) =
0. If 0zero.a 7 0, then &invar,1 May be calculated as

1 (63)

Ay

A _ L 1
Qinvar,1 (057 v, ’LU) — HOAQH

N (@)~ @) ]

Yz, — 04, Fra,(%a,)
M K16, (ng) 6zero,6¢v

which together with &invar,0 ensures that for each z € § if
Lhg(z) =0, then Lyhg o A(x) = 0.

Assume that there exists some a* € A such that there
exists a corresponding exponentialy stable periodic orbit of
the restricted Poincaré map, defined in Section 3,

+ CAVinvar,() (C_Vv ’U) (64)

pPar SN Zge — SN Zgx. (65)

Let z%. € mg2t - (a*) be the corresponding fixed point of pg-.
For a*, v, and w fixed, define the induced, restricted flow map

ﬁé‘(@*ﬂ)xw) : Wgrlwz ° é‘(@*r ~,1}) - 7T'gr%Z 0 (3[(5(*,1),111) (66)

by ﬁ(Z, d(@*, v, w)) : @d(&*,v,w)(Tl,d(&*,v,w)(Z)v Z) where
Va(a*vw)(t, z) is the maximal solution of the hybrid zero
dynamics (22) with initial condition z € 751, oa(a*,-,v) a
time ¢ty = 0 associated with parameter &(a*, v, w). Unlike the
restricted Poincaré map, p, which maps from a single fiber to



itself, the induced, restricted flow map, p, maps from one fiber
(parameterized by vda) to another (parameterized by wda).
The parameters da, v, and w will now be used to implement
event-based PI control on the induced, restricted flow map
(66).

Define the single-input, single-output dynamic system on
SN Z xR?,

2(k+1) = p(z(k),a(k))

a(k) = a(a*,v(k),w(k))
v(k+1) = w(k) (67)
nk+1) = v(z(k),a(k))

y(k) = n(k)

with input w € R and output y € R equal to the average
walking rate. It's linearization is

0z(k+1) = an1dz(k) + a120v(k) + brow(k)
da(k) = da(a*,v(k),w(k))
ov(k+1) = dw(k) (68)
mk+1) = az10z(k) + az2dv(k) + bsow(k)
dy(k) = on(k)
where
_Op . _ov
a1y = ?(z(k‘),a) asy g% (z(k), &)
._ 9P A _ oy .
ayp = %—U_(z(k),oz) agg = g—q(z(kz),a) (69)
_9r A _ oy .
by = %(z(k),a) bs = %(z(k),a),

& = a(a*,v(k),w(k)), and the right hand sides of (69) is
evaluated at z = 2., v = 0, and w = 0. The linearized
system (68) is exponentially stable if, and only if, |ai1| < 1.
The DC-gain is non-zero if, and only if,

az1(by + a12) + (asz + b3)(1 —a11) # 0. (70)

Theorem 1: Let a* € A be a regular parameter value for
which there exists an exponentially stable periodic orbit in
Zs+. Denote the corresponding fixed point of the Poincaré
return map by zX.. Assume there exists da satisfying (58)
and such that the non-zero DC-gain condition (70) holds.
Then, average walking rate can be regulated via Pl control.
In particular, there exist € > 0, and scalars Kp and K; such
that for al n* such that |n* — (z%.,a*)| < e, the system
consisting of (67) in closed-loop with the proportional plus
integral controller

e(k+1)
w(k) =

e(k) + (n* —n(k))

Kp(n* —n(k)) + Kre(k)

has an exponentially stable equilibrium, and thus, when initial-
ized sufficiently near the equilibrium, limy_ .. (n* —n(k)) = 0.

Proof: The linear system (68) is exponentially stable because
the exponential stability of the fixed-point z%. implies that

(71)
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la11] < 1. This, combined with the DC-gain being non-zero,
implies the existence of a PI controller of the form

de(k+1) = de(k)+ (on* —dn(k))
dw(k) Kp(dn* —dn(k)) + Krde(k)
such that the closed-loop system (68) with (72) is exponen-
tialy stable and satisfies limy . (dn* — dn(k)) = 0, where
n* := (n* — v(z%.,a*)). Since the closed-loop of (68) with
(72) is the linearization of (67) in closed-loop with (71), the
result follows. ]

(72)
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Fig. 17. Walking at 0.7 m/s: step length, step duration, and average walking
rate versus time. Circles represent steps taken by the outer leg, squares
represent steps taken by the inner leg.

3.6
34
32

q1 (rad)

28

Fig. 18.

trajectories are solid and hg,.

3
2l
o
20 25 30
t (sec)
g
=
o
20 25 30
t (sec)

3.6
3.4
32

2.8

—-0.1
—-0.2
—-0.3
—0.4
—-0.5

20 25

t (sec)

30

Robustness demonstration: joint angles versus time. Actual joint

is dashed.



18

100 100 . _
5 £ g g
£ o £ o = =
— Il o o
3 3

—100 —100
20 25 30 20 25 30
t (sec) t (sec)

100 100
£ £ E 8
£ o0 £ o e e
) <+ o o
3 3

—100 —100
20 25 30 20 25 30 0 f(z%) 100 0 f?sec) 100
t (sec) t (sec)
) . . . Fig. 23. I-control to change fixed point: joint angles versus time. Actual
Fig. 19. Robustness demonstration: control signals versus time. joint trajectories are solid and h.. is dashed.

3.6 3.6 021 1
= i = . | = 01t ! I i (el I ]
3 34 3 34 g
T a2 = 32 g 0
o o

701 F - 4
3 3 i i i ; ;
o 45 50 55 o 45 0 55 0 0 40 , € 8 100
t () ¢ (s (9
_0.1 _0.1 Fig. 24. |-control to change fixed point: g5 versus time.
—0.2 : _. —0.2 :
E —0.3 f Fi, —-0.3 ] ] 100 100
& —0.4 3 —-04 B E
—-0.5 —0.5 £ o Z o0
3 g
40 45 50 55 40 45 50 55 100 ~100
t (se0) t (sec)
Fig. 20. Transitioning: joint angles versus time. Actua joint trgjectories are 0 50 100 0 50 100
solid and k.. is dashed. ¢ (sec) t (sec)
100
£ E

100 100 Z 0 £
£ £ 3 3
€ o W"WMMNW =Y ~100 ~100
5 &)

—100 —100 0 50 100 0 50 100
t (sec) t (sec)
40 * %0 % 40 ® 50 % Fig. 25. I-control to change fixed point: control signals versus time.
t (sec) t (sec)

100 100
£ £ =)
£ o £ o E
s 3 3

—100 —100
40 45 50 55 40 45 50 55
t (sec) t (sec) t (sec)
Fig. 21. Transitioning: control signals versus time. ) ) ] .
g 9 g Fig. 26. I-control to change fixed point: w versus time.

2 g

€ £

- A

[

0 i i i i
0 20 40 60 80 .
t (sec) (se0)
Fig. 27. I-control to change fixed point: average walking rate versus time.

Fig. 22. Transitioning: average walking rate versus time. Circles represent

steps taken by the outer leg, squares represent steps taken by the inner leg. Circles represent steps taken by the outer leg, squares represent steps taken

by the inner leg.



qs (rad)
o

—-0.1

t (sec)

Fig. 28. I-control to reject a perturbation: g5 versus time.

t (sec)

Fig. 29. I-control to reject a perturbation: w versus time.

7 (m/s)

Fig. 30. I-control to reject a perturbation: average walking rate versus time.
Circles represent steps taken by the outer leg, squares represent steps taken
by the inner leg.

5 (rac)

L L L

20 25 30 35
t (sec)

Fig. 31. I-control to stop the robot: g5 versus time.

w (rad)

0 T 10 20 30 40
t (sec)

Fig. 32. I-control to stop the robot: w versus time.

08 © 1
Q2 06 [%Em D\%\%OWUDUD ]
2 ol 53 <SR
[N
02 r J
0 @) ; ; ; P i)
0 10 20 30 40

t (sec)

Fig. 33. I-control to stop the robot: average walking rate versus time. Circles
represent steps taken by the outer leg, squares represent steps taken by the
inner leg.

19



