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ABSTRACT 

This paper exploits a natural symmetry present in a 3D robot in order to achieve 

asymptotically stable steering. The robot under study is composed of 5-links and 

unactuated point feet; it has 9 DoF (degree-of-freedom) in the single support phase 

and six actuators. The control design begins with a hybrid feedback controller that 

stabilizes a straight-line walking gait for the 3D bipedal robot. The closed-loop 

system (i.e., robot plus controller) is shown to be equivariant under yaw rotations, and 

this property is used to construct a modification of the controller that has a local, but 

uniform, input-to-state stability (ISS) property, where the input is the desired turning 

direction. The resulting controller is capable of adjusting the net yaw rotation of the 

robot over a step in order to steer the robot along paths with mild curvature. An 

interesting feature of this work is that one is able to control the robot’s motion along a 

curved path using only a single predefined periodic motion. 

 

KEYWORD:3D underactuated bipedal robot; hybrid zero dynamics; orbital stability; 

Poincaré map;, steering; stride-to-stride control. 
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1. Introduction 

Research on bipedal walking can be roughly divided along the degree of actuation 

throughout the gait (full actuation versus underactuation), and whether walking 

motions are along a straight line or turning is considered. The primary objective of 

this paper is to study turning motions in underactuated 3D bipedal robots. In addition 

to the reduced number of actuators, the interest of studying underactuated robots is 

that the feedback control solution must exploit the robot’s natural dynamics in order 

to achieve balance while walking. In a previous paper1, we addressed the control of a 

3D bipedal robot with point feet, where the ground contact inhibited yaw motion, but 

pitch and roll were unconstrained and unactuated. Such contact conditions arise 

naturally as the limiting case when the surface area of the support foot tends to zero. 

The first objective of this paper is to remove the restriction on yaw and allow a 

completely unconstrained and unactuated 3D point foot contact model. The second 

and primary objective of the paper is to present an event-based controller that steers 

the robot along paths of low curvature. A novel feature of the solution is that steering 

is achieved on the basis of a single, predefined, periodic motion corresponding to 

walking along a straight line. 

The ability to turn is an essential feature for stepping around obstacles on a given 

surface. Honda’s ASIMO has demonstrated the important ability to walk forward, 
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backward, right, left, up and down stairs, and on uneven terrain2. Most of the works 

that have addressed turning are for bipeds with actuated feet3-7. A diverse set of 

methods for turning has been explored. For instance, by adjusting the swing leg center 

of mass and hip position trajectories in a trial and error fashion, it is possible to 

maintain the robot’s stability during turning3. Generating a turning motion of a 

bipedal robot by slipping the feet on the ground was presented4. To generate the slip 

motion, the authors predict the amount of slip using the hypothesis that the turning 

motion is caused by the effect of minimizing the power generated by floor friction. It 

has been shown that straight line and turning walks could be realized by nonlinear 

oscillator systems, and the turning motion leads to the change of the duty ratios of the 

legs5. Biped turning motions with ZMP-based footstep planning were studied6,7.  

The authors8-11 have developed an elegant and rigorous setting for stable walking 

and steering of fully actuated 3D robots on the basis of geometric reduction and 

passivity-based control. The controlled geometric reduction decouples the biped’s 

sagittal-plane motion from the yaw and lean modes. Passivity-based control is used to 

create and stabilize planar limit cycles that arise from the sagittal component of the 

reduction. Steering is achieved by adjusting the yaw set point of the within-stride 

passivity-based controller. 

We study here a 3D passive point contact at the leg end, and, for a 5-link robot, seek 
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a time-invariant feedback controller that creates an exponentially stable, periodic 

walking motion, along with the ability to steer the yaw orientation of the robot with 

respect to an inertial frame, that is, the robot’s direction of travel. In our previous 

studies on 3D bipedal robots, we assumed a model where the ground contact inhibited 

yaw motion, but pitch and roll were unconstrained and unactuated. Starting with a 

simple 3-link model12 and followed by a 5-link model1, we used the techniques of 

virtual constraints, hybrid zero dynamics and event-based control to achieve 

exponentially stable, periodic walking motions13. In the present study we extend these 

results to design and stabilize periodic orbits for a 3D bipedal robot with point feet 

modeled as a passive three degree of freedom pivot.  

The control approach presented in this paper allows us to change the direction of 

motion of the robot through the net yaw motion about the stance foot over a step. An 

event-based feedback controller distributes set point commands to the actuated joints 

in order to achieve a desired amount of turning, as opposed to the continuous 

corrections used9. The key property that allows this to work is based on a natural 

symmetry of the hybrid robot model that was identified14. 
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2. Model 

2.1. Description of the Robot 

The 3D bipedal robot discussed in this work is shown in Fig. 1. It consists of five 

links: a torso and two legs with knees that are terminated with “point-feet.” Each hip 

consists of a revolute joint with 2 degrees of freedom and each knee is formed by a 1 

degree of freedom revolute joint; these six joints ),,,( 843 qqq L   (three in each leg) 

are independently actuated. The stance leg end is assumed to act as a passive pivot, so 

the leg end is modeled as a point contact with 3 degrees of freedom ),,( 210 qqq  and 

no actuation. In total, the biped in the single support phase has 9 degrees of freedom, 

and there are hence 3 degrees of underactuation. The coordinate 0q  gives the 

absolute orientation of the biped with respect to the world frame. This variable will be 

called yaw in what follows. 

Assuming support on leg 1, a set of generalized coordinates [ ]Tqqqq 810 ,,, L=  is 

defined as shown in Fig. 1. The coordinates ),,( 210 qqq  are unactuated (passive 

contact), while ),,,( 843 qqq L  are independently actuated (active joints).  The 

position of the robot with respect to an inertial frame is defined by adding three 

variables ),,( 111 zyx , which  are the Cartesian coordinates of the stance foot and are 

constant during each single support phase. When leg 2 is the stance leg, then a new set 

of generalized coordinates q is defined as shown in Fig. 2, and the same notation is 
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employed as when leg 1 is the supporting leg. 
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Fig. 1.  A 3D point-feet bipedal robot when support on leg 1, the 3 degrees of 

freedom at the leg end are unactuated. For simplicity, each link is modeled by a point 

mass at its center. 
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Fig. 2.  The generalized coordinates of the bipedal robot when support on leg 2. 

 

2.2.  Dynamic Model and the Walking Gait 

A bipedal walking gait consists of a single support phase and a double support phase. 

The dynamic model for the robot in the single support phase on leg 1 is represented as 
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where )(qD  is the  positive-definite 99×  mass-inertia matrix, ),( qqC &  is the 

99×  Coriolis matrix, )(qN  is the 19×  gravity vector, B  is an 69×  full-rank, 

constant matrix indicating whether a joint is actuated or not, and u  is the 16×  

vector of input torques. The models for support on leg 2 can be written in a similar 

way by using a hip width of –W in place of W. 

During the double support phase, the biped’s configuration variables do not change, 

but velocities undergo a jump. The double support phase is assumed to be 

instantaneous, and to consist of two distinct subphases: the impact and coordinate 

relabeling. Analogously to Chevallereau et al.1, the overall impact model is written as 

)( −+ Δ= qq q         (2) 

and 

),( −−+ Δ= qqq q && & ,        (3) 

where ),( −− qq &  are joint angles and joint velocities of the bipedal robot for support 

on leg 1 just before the impact; and ),( ++ qq &  are joint angles and joint velocities of 

the bipedal robot for support on leg 2 and immediately after the impact. The 

calculation of ),( ++ qq &  includes the change of coordinates for the transfer of support 

onto leg 1 from 2. The transformation from one set of coordinates at the end of a step to 

the other set of coordinates is done as follows. Compute the orientation and the angular 
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velocity of the swing leg shin. From this, one deduces ),,( 210 qqq  that are 

compatible with this orientation; and then, one deduces ),,( 210 qqq &&&  yielding the 

angular velocity of the swing shin. The angles ),,,( 843 qqq L  exchange their role viz 

),,,( 378 qqq L . 
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subscript }2,1{∈j  denotes the stance leg number. Then a complete walking motion 

of the robot can be expressed as a nonlinear system with impulse effects and written 

as 
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where }0)(,0)(|),{( 221 <== qzqzqqS &&  is the switching surface, uu =1 , and 
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When leg 2 is the support leg, the same derivation produces 

}0)(,0)(|),{( 112 <== qzqzqqS && , 2u , )( 22 xf , )( 22 xg  and  

)( 221
−+ Δ= xx .         (6) 
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2.3 Nominal Motion of Walking Along a Straight Line 

A solution )(1 tx , 10 Tt ≤≤  and )(2 tx , 20 Tt ≤≤  of the model (4) for inputs )(1 tu  

and )(2 tu  is periodic with period 21 TT +  if ))(()0( 1112 Txx −+ Δ=  and 

))(()0( 2221 Txx −+ Δ= . A periodic solution is said to be a symmetric gait along the x-axis 

of the world frame if the duration of each step is equal, that is TTT == 21  for some 

0>T , and for all Tt ≤≤0  

)()( 21 txEtx = ,         (7) 

where 

⎥
⎦

⎤
⎢
⎣

⎡
=

×

×

S
S

E
99

99

0
0

        (8) 

and 

}1,1,1,1,1,1,1,1,1{ −−−−= diagS .       (9) 

 

Remark 1: If the condition (7) holds except for anti-symmetry of the yaw orientation 

)(0 tq  of the left and right legs, more precisely, if the condition (7) becomes 

ftxEtx += )()( 21  where f has only its first component different from zero, then the 

gait is still symmetric and corresponds to periodic walking along a straight line other 

than the x-axis of the world frame; indeed, the direction of motion is at an angle 

2/1f−  with respect to the x-axis. 
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2.4 An Invariance Property of the Model 

The yaw-symmetry defined here is a special case of the invariance under SO(3)14. 

Let G  denote the group of rotations about the z-axis of the world frame, which can 

be identified with the circle, or ).,[ ππ−  This induces an action on the configuration 

space Q  by QQG →×Φ :  where 

 ),,,()( 810 qqgqqg K+=Φ .       (10) 

This in turn lifts to an action on the state space TQ  by 

)),((),(),( qqqqTqq ggg &&& Φ=Φ=Ψ . A function kRTQ →:ϕ , 1≥k , is invariant 

under G  if for all Gg∈  and TQqq ∈),( & , ),()),(( qqqqg &&o ϕϕ =Φ ; and 

TQTQΓ →:  is equivariant under G if for all Gg∈  and TQqq ∈),( & , 

),(),( qqΓqqΓ gg &o&o Ψ=Ψ . 

 

Proposition 0: For all Gg∈ , 11: SSg →Ψ  and 22: SSg →Ψ . 

Proof:  

)(1 qz  and )(2 qz  are the heights of leg-1 and leg-2 above the ground, respectively, 

and hence are invariant under yaw rotations. It follows that 1S  and 2S  are invariant 

sets as well.                                                      Q.E.D 

 

Proposition 1: Let ),(1 qqu &  and ),(2 qqu &  be locally Lipschitz continuous state 
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variable feedbacks and let )( 0xxt  denote a solution of the resulting closed-loop 

hybrid model (4) with initial condition 0x . If 1u  and 2u  are invariant under G , 

then )(⋅tx  is equivariant under G . 

Proof:  

In Spong and Bullo14, it is shown that the kinetic energy term of the Lagrangian 

model and the impact surfaces are invariant under )3(SO , the group of rotations of 

the world frame, and the impact maps are equivariant under )3(SO . Hence, these are 

in particular invariant and equivariant respectively under G  the group of rotations 

about the z-axis. Because the z-axis of the world frame is aligned with the direction of 

gravity, the potential energy is invariant under G . From this and the hypothesis on 

the feedbacks, the vector fields of the closed-loop system are equivariant under G . 

Putting all of this together, the solutions of the closed-loop system are equivariant.  

                                                            Q.E.D 

In words, the proposition analyzes the situation where the within-stride feedback 

controller does not depend on the yaw orientation of the robot (i.e., rotations with 

respect to the z-axis). In this case, the following two motions will result in the robot 

having the same final pose: (a) the robot is initialized from a given pose and advances 

for T units of time in single support and its state is then rotated by g radians about the 

z-axis; (b) the initial pose is first rotated by g radians about the z-axis and then the 
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robot walks for T units of time. The state considered here does not include the three 

Cartesian variables ),,( 111 zyx  or ),,( 222 zyx  describing the absolute position of the 

robot. It includes only the angular variables ),,( 80 qq L . This proposition will have a 

consequence on stability and on the possibility to steer the robot as examined later in 

Section 5. 

 

3. Gait and Within-Stride Controller Design 

The nominal gait and controller designs proceed as in Chevallereau et al.1 and only 

the key points are summarized here. The new contributions are given in Propositions 

2–4 which state properties of the controller and closed-loop system that will be of 

great help in designing a steering controller. 

3.1 Virtual Constraints and Within-Stride Controller  

A direct form of the constraint is used  

),()(16 θda hqqhy −==×           (11) 

where T
a qqqq ],,,[ 843 L=  is the vector of actuated coordinates, )(qθθ =  is a 

quantity that is strictly monotonic along a typical walking gait, and )(θdh  is the 

desired evolution of the actuated variables as a function of θ . When the shin and 

thigh have the same length, the angle of the virtual leg is 2/32 qq −−=θ . The 

input-output linearizing controller  
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and appropriate choices for the gains pK , dK , and ε  will allow the errors in the 

virtual constraints to be driven asymptotically to zero.  

 

Proposition 2:  Because the virtual constraints in (11) are invariant under G , the 

input-output linearizing feedback u in (12) is also invariant under G . If )(θdh  is 

twice differentiable and the second derivative is Lipschitz continuous, then u  is 

Lipschitz continuous. 

Proof: This is immediate from the expressions for the controller in (12) and (13). 

 

3.2 Poincaré Map of the Full-model 

Consider the hybrid model (4) in closed-loop with the feedback (12). The flow map 

x  is the (partial) map defined by taking an initial condition in 1S , applying the 

impact )( 112
−+ Δ= xx  and following the evolution of the Euler-Lagrange equations 

until 12 )( Stx ∈ ; the flow map 1221 : SSP →  is defined similarly. The Poincaré map 

22: SSP →  is the composition of the two flow maps, 1221 PPP o= . The map 
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111 : SSP →  by 21121 PPP o=  is similarly defined. It is diffeomorphic to P  and 

hence the choice of one versus the other is arbitrary. 

 

A fixed point is defined by )( *
2

*
2 xPx =  and corresponds to a periodic walking 

motion. The fixed point corresponds to a symmetric gait aligned along the x-axis of 

the world frame if )( *
221

*
1 xPx =  satisfies *

2
*
1 Exx = , for E defined in (8). The 

Poincaré map gives rise to a discrete-time system 

))(()1( 22 kxPkx =+           (14) 

evolving on the switching surface 2S , where 2x  are the state variables.  

 

Proposition 3: Under the hypotheses of Propositions 1 and 2, the Poincaré map is 

equivariant under the action of G , the group of rotations about the z-axis of the 

world frame. In particular, for each Gg∈  and 2Sx∈ ,  

)()( xPxP gg oo Ψ=Ψ ,        (15) 

and hence if ∗x  is a fixed point of P , so is )( ∗Ψ xg  for every Gg∈ . 

Proof:  

The proof is almost immediate from Proposition 1. The Poincaré map is computed 

by sampling the solution of the model when the swing leg impacts with the ground13. 

From Proposition 1, the solution is equivariant under G . As noted in the Proposition 
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0, the impact surface is invariant under G , and hence the time-to-impact map is 

invariant under G . These two facts together prove the proposition.         Q.E.D 

It follows that if the within-stride feedback controller is independent of 0q , 

periodic orbits cannot be asymptotically stable. Asymptotically stable equilibrium 

points must be isolated; however, Proposition 2 shows that equilibrium points cannot 

be isolated as they belong to a one-parameter family of equilibrium points 

corresponding to rotations about the z-axis. At best, they can be asymptotically stable 

“modulo G ”. This could be formalized by defining the quotient of the closed-loop 

hybrid model by G , but this will not be pursued here.        

The linearization of (14) about a fixed-point *
2x  gives rise to a linearized system, 

)()1( 22 kxAkx δδ =+ ,        (16) 

where  

[ ] 171717310 ×= AAAAA L  

is the Jacobian of the Poincaré map P. The lack of asymptotic stability manifests itself 

in the linearization of the Poincaré map as follows. 

 

Proposition 4: Under the hypotheses of Propositions 1 and 2, the first column of A is 

given by 

[ ]TA 0010 K=  



 16

and hence A always has an eigenvalue at 1.0. Recall that the exponential stability of a 

fixed-point is equivalent to the eigenvalues of A having magnitude strictly less than 

one13. 

 

3.3  The Restricted Poincaré Map 

Following the method used in Chevallereau et al.1, it can be shown that in ZS ∩2  

the state of the robot can be represented using only five independent variables 

[ ]Tz qqqqx θ&&& ,,,, 1010= , where }0),(,0)(:),{( === qqyqyqqZ cc &&& , if the output for 

the feedback control design is modified as 

),,()(),,( iicdaiic yyhhqyyqhy && θθ −−== .    (17) 

The correction term ch  is taken to be a three-times continuously differentiable 

function of θ ,  
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,    (18) 

where iy  and iθ  are the initial value of output y  and 12P  for the current step, 

and fθ  is the final value of θ  for the current step. The restricted map 

ZSZSP z ∩→∩ 22: , induces a discrete-time system 

)(1
z
k

zz
k xPx =+ . 

Defining *zz
k

z
k xxx −=δ , the restricted map linearized about a fixed point *zx , 
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[ ]Tz qqqqx −−−−−= θ&&& ,,,, 1010
* , gives rise to a linearized system 

z
k

zz
k xAx δδ =+1 .         (19) 

Remark 2: It can be easily shown that the restricted map has the same G  

equivariance properties as the full map. 

 

4.  Nominal Stable Walking Along a Straight Line 

The physical parameters of the 3D biped used in this study were chosen as in Table 

I. The parameters result in the center of gravity of the biped being located below the 

midpoint of the hips. 

 

TABLE I 
PARAMETERS FOR THE 3D BIPEDAL ROBOT (in MKS) 

W 1L  2L  3L  1m  2m  3m  

0.15 0.275 0.275 0.10 0.875 0.875 5.5 

 

4.1  A Periodic Motion 

A nominal periodic walking motion corresponding to a symmetric gait along the 

x-axis of the world frame is used. An optimal state ),(*
2

−−= qqx &  that minimize a 

given cost criterion, such as energy consumed per step length, is found1.13. The search 

procedure is carried out in MATLAB with the FMINCON function of the 
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optimization toolbox. For these parameters, a periodic orbit was obtained and defined 

by ),(*
2

−−= qqx &  below 

=*
2x  [ 0.3151,   -0.0838,   -0.1317,    0.0997,   -0.7543,   0.1948,     

-0.0592,   -1.0471,    0.1809,  -0.1260,   0.2088,   -0.8899, 

0.3175,    0.0449,   0.5374,   -1.5619,    0.9187,    0.6288]’. 

Stick diagrams for the first step of the periodic walking gaits are presented in Fig. 3. 

The walking cycle has a period of 4477.0=T  seconds, a step size of 0976.0=L m, 

and an average walking speed of 0.218 m/sec (or 0.396 body lengths per second). The 

nominal gait’s joint profiles and angular velocities over two consecutive steps are 

shown in Fig. 4. 
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(a) x-z plane (unit:m) 
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(b) y-z plane (unit:m) 

Fig. 3.  Stick diagrams for the first step of the periodic walking gait. 
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Fig. 4.  Joint profiles of the obtained periodic motion over two steps, where the small 

circles represent −q . Joint angles iq , i=0,1,…,8, are shown in the first half in which 

leg 1 on support, and joint angles iq , i=0,1,…,8, are shown on the second half in 

which leg 2 on support. 
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4.2  Stability Analysis 

First, the control law (12) for the full model of the 3D biped was used with virtual 

constraints ),,()( iicda yyhhqy &θθ −−= ; the PD control gains used are 0.50=pK , 

0.10=dK  and 1.0=ε . To test the stability of this control law around the periodic 

motion, the eigenvalues of the restricted Poincaré map are numerically estimated with 

o0750.0=Δ iq , 13750.0 −=Δ sqi
o& . The linearization of the Poincaré map A  and zA  

were computed, and their eigenvalues are shown in Table II and Table III, respectively, 

where only the 8 largest eigenvalues of A are shown. 

  

TABLE II 
EIGENVALUES OF Poincaré MAP A  

i  iλ  iλ  

1 1 1 

2 0.7733 0.7733 

3 6287.04492.0 j+−  0.7727 

4 6287.04492.0 j−−  0.7727 

5 0.3071 0.3071 

6 0.0063 0.0063 

7 0.0014 0.0014 

8 0.0001 0.0001 
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TABLE III 
EIGENVALUES OF HZD RESTRICTED Poincaré MAP zA  

i iλ  iλ  

1 1 1 

2 0.7873 0.7873 

3 5949.04415.0 j+−  0.7408 

4 5949.04415.0 j−−  0.7408 

5 0.3225 0.3225 

 

To illustrate the orbit’s local stability of the fixed-point *
2x , under the continuous 

controller, a perturbation of 6/π  is added to the initial value of 0q  and very small 

initial errors are introduced on other joint angles. All joint velocities are also 

perturbed by very small amounts. The use of small perturbations is due to the fact that 

the region of attraction is relatively small. Fig. 5 shows the evolution of the final 

values of the uncontrolled variables ),,( 210 qqq  at each step. These variables 

converge slowly to their desired values except that 0q  moves to an offset value 

different from the desired one. Fig. 6 shows phase-plane plots of ),,,( 210 θqqq . The 

convergence toward a periodic motion is clear for each variable. Note that the value of 

0q  does not change signs from one step to the next; therefore, the robot is following a 

straight line path that is not aligned with the x-axis of the world frame (the path will 
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be shown in Fig. 11 for comparison with the case of having an additional 

stride-to-stride controller). 
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Fig. 5.  Evolution of continuous control of unactuated joints ),,( 210 qqq  at the end 

of each step when a perturbation of 6/π  is added to 0q . The small circles represent 

the values on the desired periodic orbit.  
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Fig. 6. Phase-plane plots for continuous control ),,,( 210 θqqq  when a perturbation of 

6/π  is added on the initial value of 0q . Each variable converges to periodic motion. 

The small circles represent the initial state. 
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4.3 Event-Based Feedback Stabilization 

If a desired periodic gait is not exponentially stable or the region of attraction is too 

small, then event-based control can be designed and integrated with the continuous, 

stance-phase controller. The idea is to introduce a vector of parameters that is held 

constant during the stance phase and updated at each impact. Here, it will be updated 

on the basis of the state of the hybrid zero dynamics. The output is augmented with an 

additional term, 

),(),,()( βθθθ siicda hyyhhqy −−−= & ,    (20) 

in which ),( βθsh  depending on a vector of parameters 0Β∈β , where 0Β  is an 

open neighborhood of the origin of 6R , and where 

0)0,( =θh , fi θθθ ≤≤  

with 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≤≤+=
=+

=
∂
∂

=

ffis

fis

i
s

is

h
h

h
h

θθθθβθ
ββθθ

βθ
θ

βθ

9.01.0,0),(
),5.05.0(

0),(

0),(

.    (21) 

Specifically, ),( βθsh  is taken to be a fifth-order polynomial for 

fii θθθθ 9.01.0 +≤≤ . 

The restricted Poincaré map can now be viewed as a nonlinear control system on 

ZS ∩2  with input kβ , namely  

),(1 k
z
k

zz
k xPx β=+ ,        (22)  
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where kβ  is the value of β  during the step k. Linearizing this nonlinear system 

about the fixed point and the nominal parameter value 16
* 0 ×=β  leads to  

k
z
k

zz
k FxAx βδδ +=+1       (23) 

where F  is the Jacobian of the map zP  with respect to β . 

 Next, design a feedback matrix 

z
kk xKδβ −= ,        (24) 

such that the eigenvalues of )( FKAz −  have magnitude strictly less than one. This 

will exponentially stabilize the fixed point. Then a 56×  gain matrix K is calculated 

via discrete linear quadratic regulator (DLQR) theory. The eigenvalues of the 

linearized map with closed-loop stride-to-stride controller are shown in Table IV. All 

the eigenvalues have magnitude less than 1.0, and thus the obtained nominal orbit *
2x  

is locally exponentially stable for ε  in (12) sufficiently small17.  
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TABLE IV 

EIGENVALUES OF STRIDE-TO-STRIDE CONTROL 

i  iλ  iλ  

1 0.5891 0.5891 

2 0778.03284.0 j+−  0.3375 

3 0778.03284.0 j−−  0.3375 

4 0.2026 0.2026 

5 0.0688 0.0688 

 

To illustrate the orbit’s local stability at the fixed-point *
2x , an initial error of °−1  

is introduced on each joint and a velocity error of 13 −°− s  is introduced on each joint 

velocity. Fig. 7 shows phase-plane plots of ),,,( 210 θqqq . The convergence toward a 

periodic motion is clear for these variables. Fig. 8 shows evolution of the center of 

mass in the x-y plane, for the 3D biped’s full model under closed-loop walking 

control, with the initial condition perturbed from *
2x . The value of 0q  is symmetric 

from one step to the next; therefore, the robot is following a straight line along the 

x-axis of the world frame. 
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Fig. 7.  Phase-plane plots for ),,,( 210 θqqq . The small circles represent the initial 

state. Each variable converges to a periodic motion. 
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Fig. 8.  Evolution of the center of mass in the x-y plane, for the 3D biped’s full 

model under closed-loop walking control, with the initial condition perturbed from 

*
2x , where the small circle denotes the starting position. 

 

With the stride-to-stride controller, there is no longer an eigenvalue with magnitude 

one, meaning that the closed-loop system is no longer invariant under rotations by 0q . 
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In particular, the asymptotic value of 0q  will return to the fixed point if an initial 

error is introduced, which was not the case without the feedback gain K. For instance, 

when a perturbation of 6/π  is added to the initial value of 0q , 0q  converges to the 

desired value quickly. Fig. 9 shows the evolution of the final values of the 

uncontrolled variables ),,( 210 qqq  from one step to the next. These variables 

converge quickly toward the periodic motion. Fig. 10 shows phase-plane plots of 

),,,( 210 θqqq . The convergence toward the periodic motion is also clear for these 

variables. Fig. 11 shows the evolution of the center of mass in the x-y plane; the robot 

returns within 2% of the desired direction after 3 steps. 
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Fig. 9.  Evolution of unactuated joints ),,( 210 qqq  at the end of each step when a 

perturbation of 6/π  is added to 0q . The small circles represent the values on the 

desired periodic orbit. 
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Fig. 10.  Phase-plane plots for ),,,( 210 θqqq  when a perturbation of 6/π  is added 

on the initial value of 0q . Each variable converges to the desired periodic motion. 

The small circles represent the initial state. 
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Fig. 11.  Evolution of the center of mass in the x-y plane for a perturbation of 6/π  

is added on T
a qqqq ],,,[ 843 L= , cases of with and without stride-to-stride 

feedback control are shown. 
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Remark 3:  

The event-based controller developed in (22)-(24) holds the feedback correction β  

constant over two steps. This is because the parameter β  is updated at each impact 

of leg-1 with the ground, consistent with the use of the Poincaré map zP . It is 

straightforward to provide feedback corrections with each leg impact. For simplicity, 

this is explained using the Poincaré map of the full-order model (4), but applies 

equally well to the restricted Poincaré maps. The map 22: SSP →  factors as noted 

before as 2112 PPP o= , with 2112 : SSP →  and 1221 : SSP → , where here we have 

ignored any dependence on β . The maps 12P  and 21P  define a periodically 

time-varying control system with period-2 via 

  ),()(1 kkkik xPx β=+         (25) 

where, 12)( =ki  for k odd and 21)( =ki  for k even. Analogous to (22) and (23), the 

Jacobian linearization of the system (25) can be computed on the basis of a fixed 

point 2
*
2

*
2 )0,( SxPx ∈=  and 1

*
212

*
1 )0,( SxPx ∈=  yielding a linear-time varying, 

period-2 control system 

kkk kFxkAx βδδ )()(1 +=+ .       (26) 

The solution of an LQR problem with constant weights yields a time-varying, 

period-2 feedback kK , replacing the constant gain matrix used in (24). 
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5. Steering Along a Curved Path 

This section modifies the stride-to-stride controller in order to achieve steering 

along a desired direction. The controller is then enhanced to achieve steering along a 

desired path of low curvature. The results are based on two properties of the 

closed-loop system designed in Sections 3 and 4. The first property is the inherent 

total stability, or what is now called in the control literature (local) input-to-state 

stability16, of exponentially stable fixed points. The second property is a feedback 

symmetry14 that exists with respect to changes in the desired yaw. 

 

5.1 Stability Properties 

We return to the interpretation of a Poincaré map as a time-invariant discrete-time 

control system evolving on the Poincaré section 2S . Extension to a period-2 

time-varying control system is possible as in Remark 3. 

Consider 202 Β: SSP →×  with the associated control system introduced in (22) 

),(1 kkk xPx β=+          (27) 

and feedback in (23). Define 

))(,(),( ** xxKxPxxP −−= ,      (28) 

and let QQG →×Φ :  be the group action on the configuration space Q  (based on 

yaw rotation) introduced in Section 2.4, and let Ψ  be its lift to the state space TQ . 
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Proposition 5: For all Gg∈ , 

  ))(),((),( ** xxPxxP ggg ΨΨ=Ψ o        (29) 

and consequently, 

1) )( *xgΨ  is a fixed point of 

))(,( *
1 xxPx gk Ψ=+          (30) 

2) the linearization of (30) about the fixed point )( *xgΨ  is independent of g , and 

thus if K  in (28) exponentially stabilizes the nominal fixed point *x , it also 

stabilizes )( *xgΨ . 

Proof: 

We start by noting that for all Gg∈ , **)()( xxxx gg −=Ψ−Ψ , and for all β , 

)),((),( ββ xPxP gg Ψ=Ψ o , where the later holds in particular for )( *xxK −−=β . 

Hence, 

)))()((),(())(),(( ** xxKxPxxP ggggg Ψ−Ψ−Ψ=ΨΨ  

))(),(( *xxKxP g −−Ψ=  

))(,( *xxKxPg −−Ψ= o  

),( *xxPg oΨ=  

proving (29). Part (1) is immediate and part (2) holds because, for all g , the Jacobian 

of )(xgΨ  with respect to x  is the identity; see (10).                     Q.E.D 

It is important to note that if the nominal fixed point *x  corresponds to walking 
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parallel to the x-axis, for example, then )( *xgΨ  corresponds to walking at an angle 

g  with respect to the x-axis. We now wish to treat the desired yaw angle g  as an 

input to the control system, and vary it “step-to-step” in order to steer the robot. With 

this in mind, consider the system 

))(,(),(~ *
1 xxPgxPx gkk Ψ==+       (31) 

The new function ),(~ gxP  is introduced to make explicit the use of the yaw-direction 

Gg∈  as a variable that can be changed event-to-event. The control action rotates the 

set point in (27) and (28), which results in the rotation of the robot, that is, steering. 

The next result describes the stability properties of the steering process. 

 

Proposition 6 (Local input-to-state stability) : 

 For every 01 >ε , there exist 01 >δ  and 02 >δ  such that, for every Gg∈ , 

every initial condition satisfying 1
*

0 )( δ≤Ψ− xx g  and all input sequences satisfying 

2δ≤− ggk , the solution of (31) exists for all 0>k  and satisfies 

1
*)( ε≤Ψ− xx gk         (32) 

If, in addition to the above, the input sequence kg  converges to g , then the state 

converges to )( *xgΨ ; that is, 

0)(lim * =Ψ−⇒→
∞→

xxgg gkkk      (33) 

Proof: 
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These properties are immediate from restricting the input-to-state stability (ISS) 

theorems of Jiang and Wang16 to an open neighborhood of the equilibrium. In 

particular, Example 3.4 of Jiang and Wang16 shows that exponential stability of the 

linearization implies the existence of a quadratic ISS-Lyapunov function about an 

open neighborhood of the equilibrium point, and then Lemma 3.5 of Jiang and Wang16  

establishes input-to-state stability.                                    Q.E.D 

 

In words, the first part of Proposition 6 states that small changes in desired rotation 

will not destabilize the robot. The second part states that if the commanded rotation 

settles to a constant value, the robot will asymptotically settle to a new heading 

corresponding to the commanded rotation, say g . At this point, the first part of 

Proposition 6 applies again, so the robot can be further rotated; moreover, by 

Proposition 5, the linearization about the new equilibrium point )( *xgΨ  does not 

depend on g , so the rate of convergence to the equilibrium is uniform in g . From 

this, it follows that there exits 03 >δ  such, if 31 δ≤−+ kk gg , the robot will turn and 

not fall. This will be demonstrated in simulations in the next section. 

 

5.2 Stride-to-Stride Controller for Controlling Orientation 

Proposition 6 can be used to plan a turning motion for the bipedal robot. The change 
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of orientation can be implemented through a change of the desired fixed point at each 

step, and as a consequence, through a modification of the reference trajectory for the 

controlled output via (24). The stride-to-stride controller is modified as 

))(( *z
g

z
kk xxK

k
Ψ−−=β )( 1

* egxxK k
zz

k −−−= )( 1egxK k
z
k −−= δ ,     (34) 

with [ ]Te 0011 L=  and kg  is the desired absolute yaw rotation. If kg  is 

slowly varied step to step, then the robot can execute a more complex path. The 

feedback gain K distributes changes to all of the actuated joints as needed for 

achieving turning. 

In order that the robot’s motion will converge to a circular path, the desired angle 

kg  can be modified by a constant value at each step per α+=+ kk gg 1 . As an 

illustration, to induce the 3D point feet bipedal robot to follow a circle in the 

counter-clockwise direction, the commanded value of  kg  was incremented by 

1.0=α  rad. at each leg touchdown. Fig. 12 shows the evolution of the final values of 

the uncontrolled variables ),,( 210 qqq  from one step to the next. These variables 

update automatically to new command values in order to follow a circular path. Fig. 

13 shows phase-plane plots of ),,,( 210 θqqq . Fig. 14 shows the evolution of the 

center of mass in the x-y plane; the radius of the circle is about 1.0 m and it takes 30 

seconds to complete one lap of the circle. 
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Fig. 12.  Evolution of unactuated joints ),,( 210 qqq  at the end of each step when the 

robot changes commanded direction at each step in order to follow a circle. The small 

circles represent the values on the desired periodic orbit. 
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Fig. 13.  Phase-plane plots of ),,,( 210 θqqq  when the robot changes commanded 

direction at each step in order to follow a circle; variable 0q  steps through o360 . 

The small circles represent the initial state. 
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Fig. 14.  Evolution of the center of mass in the x-y plane for that the robot changes 

direction of following a circular path, where the small circle denotes the starting 

position. 

 

5.3 Stride-to-Stride Controller for Motion Along a Desired Path in the World Frame 

In Fig. 11, the stride-to-stride controller (24) can only stabilize the orientation angle 

of the walking direction but leaves the y-component of the COM (center of mass) 

uncontrolled. A high-level supervisory control can be integrated into the overall 

controller to resolve this problem. For example, suppose that it is desired to steer the 

robot’s COM along a path consisting of the world-frame’s x-axis, 0=rθ , with 

ryy = .  Let [ ]Tccc zyx ,,  be the mass center of the robot, a simple strategy to realize 

this goal is to augment the stride-to-stride control law (24) with an additional 

proportional correction term kγ ,   

)( 1exK k
z
kk γδβ −−= ,       (35) 
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where 

⎪
⎩

⎪
⎨

⎧

−
−<−−

>−
=

otherwiseyyk
QyykQ

QyykQ

cr

cr

cr

k

)(
)(
)(

1

010

010

γ , 

with a proportional gain 1k  and a  saturation level 0Q  in order to take into account 

that the amount of turning that can be realized in one step is limited. Fig. 15 shows the 

evolution of the COM in the x-y plane for this example (Case 1). The robot not only 

converges to the orientation angle of the x-axis but also controls its y-coordinate of its 

COM to within a small range of 0== ryy . Fig. 16 provides an expanded view of 

the evolution of the COM. 

In the next example, it is desired that the robot move along a path consisting of the 

world-frame’s y-axis, 2πθ =r , at the location of rxx = . With a similar supervisory 

steering control strategy, the stride-to-stride controller (34) for controlling robot’s 

orientation is also augmented with an additional term as shown below 

))(( 1exK kk
z
kk γθδβ +−−= ,       (36) 

in which kθ  is the desired orientation angle of the motion at step k,  

∑
=

=
k

i
ik

1

αθ ,  

where 

⎪
⎩

⎪
⎨

⎧

−
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>−
=

−

−

−

otherwisek
QkQ

QkQ

kr

kr
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and 0k  is a constant gain. The position correction term kγ  is a proportional control 

with saturation 

⎪
⎩

⎪
⎨

⎧

−
−<−−

>−
=

otherwisexxk
QxxkQ

QxxkQ

rc

rc

rc

k

)(
)(
)(

1

010

010

γ . 

Fig. 16 also shows the evolution of the COM in the x-y plane for the above example 

(Case 2). The robot not only turns to the orientation angle of the y-axis but also 

controls the x-coordinate of its COM to within a small range of 0.1== rxx . 
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Fig. 15.  Evolution of the center of mass in the x-y plane under steering control. Case 

1: along a path of the x-axis in the world frame, and Case 2: along a path of the world 

frame’s y-axis at location of x =1. The small circle denotes the starting position and is 

the same as in Fig. 11. 
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Fig. 16.  Enlarged version of Case 1 in Fig. 15. 

 

6. Conclusion 

A 3D point-feet bipedal model has been studied, with the objective of steering the 

robot in addition to creating a stable walking motion. The model assumed rigid links, 

a passive 3 DoF point contact between the stance leg end and the ground, with all 

other degrees of freedom actuated. The controller design exploits a natural symmetry 

present in a 3D robot14 in order to achieve asymptotically stable steering. The method 

of virtual constraints was first used to design a time-invariant, within-stride feedback 

controller that stabilized all but the yaw motion of the robot. The closed-loop system 

(i.e., robot plus controller) was shown to be equivariant under yaw rotations. A 

supplemental event-based feedback controller was then designed that asymptotically 

stabilized the yaw motion, resulting in the existence of exponentially stable periodic 
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orbits in the closed-loop hybrid system.  

The symmetry property was used to establish that the supplemental controller 

provided local, input-to-state stability that is uniform in the desired yaw (steering) 

angle. By adjusting the set point of the event-based controller, it was possible even to 

direct the motion of its center of mass along a given path. This was achieved without 

designing a new periodic orbit for turning. Instead, the controller could be designed 

on the basis of a single motion designed for walking in a straight line. The 

event-based controller distributes commands to all of the actuated joints in order to 

achieve a sufficiently small, desired amount of turning. The restriction on the amount 

of rotation that can be achieved in a single step arises from the fact that the nominal 

periodic orbit of the closed-loop system is only locally exponentially stable. 

A more energy efficient modification of the actuated joints could probably be 

proposed if a change in the impact configuration is allowed; this was not studied here. 

A controller similar to the one developed in this paper is applicable to the model 

treated in Chevallereau et al.1, which assumed a passive 2 DoF point contact between 

the stance leg end and the ground, with no yaw motion. In this case, the change of the 

yaw angle comes only from the impact phase, when the stance leg changes, and not 

from the single support phase; nevertheless, a similar strategy of steering control and 

stability analysis can be developed. 
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There are several ways in which the result can be extended. To achieve turning with 

a more aggressive turning rate, solutions of the model can be specifically designed to 

achieve a large amount of turning in one step. These solutions could then be pieced 

together as in Westervelt et al.15 to achieve maneuvers that steer the robot around 

obstacles. Treating a model without feet may make it difficult to design controllers 

that allow the robot to stop, take a step backward and redirect its motion. Hence, 

another interesting extension of the control strategy developed here is to consider a 

model with feet and to compare with ZMP based methods18,19. 
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