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Event-based Stabilization of Periodic Orbits for
Underactuated 3D Bipedal Robots with Left-Right
Symmetry
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Abstract—Models of robotic bipedal walking are hybrid, with  to design stabilizing feedback controllers for periodibity
a differential equation describing the stance phase and a dérete  of the hybrid models [22], [23]. In particular, the paranete
map describing the impact event, that is, the non-stance leg oo he ypdated by an event-based controller when trajestori

contacting the walking surface. The feedback controllersdr these - , . .
systems can be hybrid as well, including both continuous andis- cross the Poincaré section. References [24]- [28] designe

crete (event-based) actions. This paper concentrates ondfevent- linear event-based controllers for stabilization of peito
based portion of the feedback design problem for3D bipedal walking and running on the basis of Jacobian linearizations
walking. The results are developed in the context of robusyl for the corresponding Poincaré return maps. Howevergther
stab|I|Z|ng periodic orbits for a simulation quel of.ATRIA 82.1, are important problems when extending this approacBio

a highly underactuated 3D bipedal robot with series-compliant biedal robot ith hiah d f d tuati a/
actuators and point feet, against external disturbances awell as Ipe "’_‘ robots wi 9 egrees or underac lfa 'orl ana’/or
parametric and nonparametric uncertainty. It is shown that left- compliant elements, such as ATRIAS. The Poincaré return
right symmetry of the model can be used to both simplify and maps for3D walking and running consist of two steps, that is,
improve the design of event-based controllers. Here, the ent-  the mapping from right stance, to left stance, and back tat rig

based control is developed on the basis of the Poindarmap, gtance (or the opposite order), which we write informally as
linear matrix inequalities (LMIs), and robust optimal cont rol

(ROC). The results are illg§trated by designing a controlle that Trio = Pror(xr, Br).
enhances the lateral stability of ATRIAS 2.1.
An event-based controller designed on this representation

changes the parametgrin a two-step manner, that is once
. INTRODUCTION per two steps as in [26]- [28]. Alternatively, the Poincaréap

HE MAIN objective of this paper is to present a time£an be *factored” as

.i.nva.riant and .evgnt—baged contro] scheme fpr r_obust Thio = PLoR(Tet1, Bes1),  Tho1 = ProL(Tk, Br),

stabilization of periodic orbits for3D bipedal walking in ) - . . .
the presence of external disturbances as well as parame"lrl]ﬁk'ng explicit both leg transitions, in which case the para
and nonparametric uncertainty. The results are developed gter § can be now updated_ In a one-step manner, th‘fﬂ Is at
illustrated on a simulation model of ATRIA.1 [1], [2] a €ach step. However, the discrete model arising in this case
highly underactuatedD bipedal robot with point feet and 'S Periodically time-varying with period-[28], making the
series-compliant actuators (see Fig. 1). During the Singqgntroller dées_lgn prpblehm ch;e challeng;ng. les in th
support phase, the robot ha8 degrees of freedom (DOF) A.secon d|ssue.|s the wi ef rangﬁ OI time scales In the
and7 degrees of underactuation (DOU). Bipedal walking Ca%ontmuous 'ynamics, arising from t_e arge springs in the
be modeled as a system with impulse effects [3]- [18], whi ne_s—compllant e_lctuators, the relatively heavy bodyd an
is a special class of hybrid systems. Steady-state walki I'g_ht Iegs,_ Wh'c_h tqgether render the rob(_)ts dynamics
locomotion corresponds to a periodic orbit in the model. n mer_lcally Stiff. Th|s_ stn‘frjess leads to uncertainty _whtae

The most basic tool to investigate the stability of periodi.‘(]:"‘“iOdb.'f";mS Otf tthe P?'nCiLe map z;re cailculate_d tusmg ”“t".*er'
orbits for hybrid systems is the method of Poincaré sestio '?f nerentia ||on algonthms zuch a;s Vr\:p hpom Symimetri
which replaces the flow of hybrid systems with a discretesti Ifierences or east squares, Ot. o which are sen3|.t|ve to
system given by the Poincaré return map, which maps t perf[urbatl_on values l_Jsed during calculatlon. Adddlon
evolution of the system’s state from a point on a hyperplaHQgetr,ta:jnty arises when e'thﬁr ex:r? rnalk? |fturbancesm?hg)
transversal to the periodic orbit (called the Poincaré&isec robots dynamics (e.g.,_ pushing the ro 0? of parametr an
[19]- [21]) back to the hyperplane [5]. If the continuoudlonParametric uncertainties are present in the model.lIn al
dynamics of the hybrid model depend on a set of adjustal% these cases, the evolution of the system on the Poincaré

parameters, the approach of Poincaré sections can alssebe gection is uncertain. .
To overcome the above challenges, this paper proposes a
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1The name is an acronym which stands for Assume The Robot Isharsp and nonlinear feedback laws to interact with the bipedal
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robot in both the sagittal and frontal planes. These feddbe
laws are assumed piecewise continuously differentialile;

is further assumed that they are parameterized by a set ATR;”;—S,“
finite-dimensional parameters referred to as the stahgizi
parameters. It is shown how symmetry leads to the ability
design a general class of time-invariant one-step evesaea
controllers. To robustly stabilize desired walking gaitise
one-step event-based controller consists of two loops fif$te
loop, referred to as the robust stabilizer, introduces an-LM
based static update law for the Poincaré maps designed
be robust against numerical and parametric uncertainties.
second loop of the discrete action aims to increase the ba
of attraction and robustness of the closed-loop systermagai PsL
parametric uncertainty and to reject external disturbanc

acting on the robot. In particular, the second loop, reterre.. q e8D binedal robot with
to as the ROC, updates the parameters of the continuof§: 1: ATRIAS 2.1, an underactuat ipedal robot wit

time feedback laws by solving a min-max problem to Optimizﬁenes-cqmpllant actu_ators e_md p0|_nt feet. The |somdafft:),(
the worst case performance, while considering the sauuratPaCk _(mlddle) ‘F?md s_|de (”th) views are shown with the
of the discrete-time controller for all possible disturbas associated configuration variables.

and polyhedral parametric uncertainties in the Poincat@n

maps. All of these results are illustrated on a simulatiomleho . . .
of XTRIAS 21 and twodiscrete transitiondetween the continuous phases to

The paper also extends the analytical results to feedb&gﬁdel the right-to-left and left-to-right transitions givby the
laws arising from virtual constraints and hybrid zero dyim impact of the non-stance legs [30]. Theuble support phase

(HZD) as special members of this general class. Virtugprresponding to both legs being on the ground during impact

. . . . IS assumed to be instantaneous.
constraints are a set of holonomic constraints, defined B

output functions in the configuration space of the mechanica ) o

system, used to coordinate the links of the robot and therefly Basic definitions

to reduce the dimension of the system. These constraintshis section presents basic definitions to describe theidhybr

are asymptotically satisfied through the action of a feeklbamodel of walking by ATRIAS. To achieve this goal, a con-

controller within the step. They have been employed foraianvenient set of configuration variables is chosen. During the

[5], [6, Chap.5] and rigid3D bipedal robots [8], [26], [28], single support phase, the mechanical system1BaBOF. In

and a rigid3D monopedal runner [27]. One part of the LMIparticular, assume thabzoyozo is an inertial frame attached

results was already presented in [29] for two-step evesetba to the ground which is referred to as therld frame Next,

update laws. This paper adds the symmetry in the hybmddtach thetorso frameorztyrzr to the torso link with the

model, continuous-time feedback laws, Poincaré maps aorgin at its base. The orientation of the torso frame with

corresponding Jacobian matrices to present a generalafasgespect to the world frame can be expressed by the rotation

one-step correction laws. Next, it extends the LMI stahtizn  matrix R € SQ(3) as

for the one-step laws and adds the ROC formalism to increase 0o

the basin of attraction and to reject external disturbanices Br = R(¢21) By (ay7) Ba(g07),

addition, it extends the results to the HZD hybrid controlle whereR,, R, and R. represent the basic rotations about the
This paper is organized as follows. Section Il presenis y andz axes, respectively. Moreover,r, ¢,v andg, are

the Lagrangian and impact models for ATRIAS. Section lileferred to as thgaw, roll andpitch angles. According to Fig.

addresses the symmetry between the right and left staricethe angles of the right and left hips relative to the torso

phases. Section IV presents the proposed nonlinear hybirigime are denoted bysg and g3, respectively. In addition,

control strategy on the basis of one-step event-based @pdate angles of the shin and thigh links relative to the torso ar

laws. In Section V, a robust one-step event-based update lapresented by;r and g for the right leg, andy;. and go,

is presented on the basis of LMI and ROC. It also addresdes the left leg (see once again Fig. 1). We note that since the

the push recovery and robust stabilization issues. Sedtlon four-bar linkage of the leg structure forms a parallelogram

extends the analytical results to feedback laws, arisiogfr it consists of two pairs of parallel links and hengg: and

the virtual constraints. Section VIl presents detailed atioal ¢, denote the angles of the shin links with respect to the

simulations to confirm the analytical results. Section VIlorso frame. The hip motors are connected to the body through

contains concluding remarks. fixed gear ratios and we denote their torquesuby andug .
Consequently, the angles of the hip motors can be determined
Il. HYBRID MODEL OF 3D WALKING based onysg andgs.. On the other hand, the motors driving

The evolution of the mechanical system durBig walking the legs in the sagittal plane are connected throsigtings
can be expressed byltebrid systencomposed of twacon-  (i.e., series-elastic actuators). For each of these motbes
tinuous phaseso represent the right and left stance phaseangle of the output shaft of the harmonic drive is represente
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by the subscriptr”. In particular, we introducey,1r, ¢4ror, 10 the yaw motion of the right foot with respect to the world
dgriL, @ndggroL. Furthermoreyu g, uor, uiL andug. denote frame. It is assumed that the yaw friction about the stange le
the torques generated by the corresponding motors. Finadnd can be expressed as the viscous model

the generallzed coordinates of the mechanical system glurin fricton(@:d) = ~rcton @7 (4, 4) = Aiction En(q) d 3)
the right and left stance phases can be expressed as friction\q, §) == Triction WsR\Y> ) -= Triction £ yr\G) 4

q = (T QT Q> G1Rs G2Rs Q1L 2L where~gicion > 0 is the viscous friction coefficient and
) z
dgr1Rs dgr2R; G3R: dgriLs dgraLs 43L) € Q, 2a() = aggR c RIX13. 4)

in which Q is the configuration spaceelated to physically

feasible configurations and prime represents matrix trasesp (Uncertainty in the friction coefficient is addressed in the
We note that the first seven componentsyadre unactuated control design.) Considering the principle of virtual wptke
whereas the remaining six components are actuated. Ttee s¥&ctor [ (q, ¢) in (2) together with the friction at the stance
vector of the system is defined as= (¢, ')’ € X c R, leg end is revised as followis

where X' is the state manifoldtaken as theangent bundle H(q,d) = C(q,d) d + G(q) + Kspringd -+ Kcamperd

of 9, e, X = TQ := {(¢,¢)]q € Q¢ € R”}. o S (5)
Furthermorey := (1R, u2R, usR, t1L, uaL, usL) € U denotes + ricion Efr(4) Efr(a) ¢-

the torque input, wher& C R® is the set of admissible control Finally, the evolution of the mechanical system during igatr
Inputs. and left stance phases can be represented by fr(z) +

. Throughout this paper, the sub_s_cripts “R” and L stand fofe () u and @ = f(z) + gL (2) u.
right and left, respectively. In addition, the subscriggs—> L”

and “L — R” will be used to represent the right-to-left andD Impact model
left-to-right impact maps. According to Fig 1, letr := ' .p _ . . .
(pﬁR,pgR,pfcR)/ € R® andpy = (Pﬁupzﬁapﬁ)/ c R3 This section addresses the impact maps during the right-to-
denote the Cartesian coordinates of the ‘right and left poilgft and left-to-right transitions. It is assumed that thepacts

feet with respect to the world frame, where the subscripg™ are instantaneous and inelastic. In addition, we assunte tha
and “fL” denote the right and left feet, respectively. Next, théhe impact preserves the yaw orientation of the swing leg end
right-to-left switching manifoldcan be defined asz_,. := To develop the impact map during the left-to-right tramsii
((d.d) e TQ|p% (¢) = 0}, on which the right-to-left we make use of thextended modgin which the generalized
impact occurs during walking on flat ground. In an analogo@®ordinates vector of the mechanical system is augmented by
manner, we can defin§ g := {(¢,¢) € TQW}R(Q) =0} adding the Cartesian coordinates of the stance leg end. An
as theleft-to-right switching manifold analogous approach can be presented during the righftto-le
transition. Following the approach of references [30] a2&1 [

(1) conservation of momentum during the impact togethen wit
(2) the swing leg neither slipping nor rebounding, and (3)

The evolution of the mechanical system during the singjgeserving the swing foot orientation results in
support phase can be expressed by

B. Single support phase

—1
oy _ , _ N
.. de De(qe ) _EfR e(qe ) De(qe )qe
D(q){+ H(q,4) = Bu, 1 = ’ 7 . (6)
(9) 4+ H(q,q) @D sm Eymo(qs) Ouns 0,
in which D(q) € R'3*13 denotes the positive-definite mass- Sy 5 .
inertia matrix andB € R'**6 represents the input matrix!n (6) ¢e := (@', pj )" € Q@ x R* = Q. and . :=

with the property rank = dim ¢ = 6. Moreover, the vector (¢:57)" € R'® denote the extende;j generalized coordinates
H(q,¢) in (1) contains the Coriolis and centrifugal terms, th@nd velocities, respectivelyifr € R” is also the Lagrange
gravity vector, and the spring-damper forces arising from t multipliers vector referred to as thenpulsive forces and

compliant elements. In particular, momgr?t at the right leg end’he subscript ¢ represents_the
guantities related to the extended model. The supers¢rigts
H(q,q) :== C(q,q) ¢ + G(q) + Kspringg + Kdamperd,  (2) and “+” denote the quantities just before and after the impact.
FurthermoreD, € R16x16 js the extended mass-inertia matrix
and Efr. € R**!0 is the extended Jacobian matrix at the
ﬁwing (right) leg end as follows

6pr(

40 Qe)

Efre(ge) == [af;R ] :
Bde (ge)

where C(q,¢) ¢ € R'® contains the Coriolis and centrifugal
terms, andG(q) € R'3 is the gravity vectorKspingg € R'?
and Kgamperg € R'? denote the force terms associated wit
the series elastic elements.

()

C. Single support phase with yaw friction about the stance . T .
leg end We note that the angular velocity; is linear with respect

The objective of this section is to consider the yaw frictioFl0 Ge- Thus, according to [8], [31] the position and orientation

about the stance leg end during the right stance phase. %]:nthe foot being fixed during impact can be expressed as

analogous analysis can be presented du_ring the left S_tanc@\ccording to the principle of virtual work, the friction ter appears as
phase. Letw]iR € R be the angular velocity correspondlngE;R(q) Jricion (4, 4) = Yiriction E7r(q) E7r(q) ¢ in the dynamical equation.
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Efr.e(ge) ¢+ = 04. Finally, the right-to-left and left-to-right IV. HYBRID CONTROL STRATEGY ON THE BASIS OF
impact maps can be expressed/&s . : Sp. — T'Q and ONE-STEP EVENT-BASED UPDATE LAW

Aor i Sior = TQ. In order to asymptotically stabilize periodic gaits 8D

walking by ATRIAS, this section presents a time-invariapt h
E. Hybrid model brid control strategy on the basis of symmetry. Toatinuous-

The overall model oBD walking can be expressed as dime portion of the hybrid controller employs a general class

hybrid system consisting of two continuous phases and tghtime-invariant feedback laws assumed to be piecewise con
discrete transitions between them as follows tinuously differentiable. Furthermore, they are paramzstel

_ by a set of finite-dimensional parameters referred to as the
g ) E= fr() + gr(z)u, = ¢ SroL stabilizing parameterslt is also assumed that there exists a
RN ot = ArsL(z7), 7 € SroL set of nominal parameters for which the periodic of®its an
(8) integral curve of the closed-loop hybrid model. Ttliscrete-
. — ¢S time portion of the hybrid controller is designed on the basis of
R fu@) +gu(@)u, 27 ¢ SR left-right symmetry to update the parameters of the feekibac
ot = ALsr(T), z” € SLor laws in a one-step manner.

I1l. SYMMETRY BETWEEN THE RIGHT AND LEFT STANCE . . . .
PHASES A. Continuous-time portion of the hybrid control strategy

This section allows for a general class of piecewise-defined

nd parameterized continuous-time feedback laws for which

gflsymptotic and robust stabilization will be addressed ic-Se

along they-axis of the world frame, the direction of forward"°"S I\,/'D aqd V. respectively. The motivation behind a
walking as indicated in Fig. 1. The® can be decomposed asmec:_erse—defn_'led feedback law is that we would like to
O = OrU O, in which Og and O, are the orbits during the begin attenuating the effects of an external push by upglatin

right and left stance phases, respectively. In additiosyae coEtroller paramete;rs within tfhe st(;p the d|stuhrba;)nce_ 1eeeu
that T* is the common elapsed time to complete a step oht'€ Parameter update is performed either at the beginming

Or and O, . The gait being symmetric along theaxis of the end of the current step, the controller is effectively posipg
world frame means that o action to the step following the disturbance. Such a control

policy can be expressed as a feedback law whose parameters

q(t+T")=Sq(t), Vt, (9) are updated when a real-valued function of the state vasabl
. ) ] . referred to as thehasing term passes a specific threshold
in which S := block diag S, S;} € R#x1% is the symmetry yajue and hence, the feedback laws are piecewise-defined. In
matrix. In addition, S, := diag{—1,—1,1} considers the naricular, before the phasing term reaches the threslatiey
symmetry for the yaw, roll and pitch angles of the torso “”&e controller employs a set of nominal parameters corre-
during consecutive steps @l and S, € R'**! is a matrix - sponding to the periodic orbit, whereas when the phasimg ter
that swaps the role ofqir, g2r, 4grir, dgror, @3r} (relative  reaches the threshold value for stabilization, the parerset
right variables) by{qiL,qaL, qgr1L, qgraL, gsL} (relative left 56 ypdated. To present the main idea, we assume that the

variables) and vice versa. For later purposes, we rematk “ﬂﬂlowing hypothesis is satisfied for the periodic orbit
SS= li3x13-

Theorem 1 (Symmetry in the Hybrid Modebet Dg, D,
Cr, CL, Gr, G, Hr, andH denote the dynamic terms during
the right and left stance phaseMoreover, define

The objective of this section is to present the symmetr
between the right and left stance phases. Qetz X be a
symmetric periodic orbit corresponding to ATRIAS walkin

H1) There areC! real-valued functionsrgr(q) and 7 (q),
referred to as thephasing terms which are strictly
increasing functions of time o®g and O, , respectively.
Moreover, for everyg € Q andi,j € {R,L} with the

S:= block diag S, S} € R26%26 (10) propertyi # j,

as the full-state symmetry matrix. Assume that the model of mila) = 7(Sa)- (11)
ATRIAS is symmetric with respect to the:-plane of the torso Hypothesis H1 is not restrictive and it implies the exisenc

frame. Then, the following statements are true. of strictly increasing holonomic quantities which are ingat
1) For every (¢/,¢') € TQ, D.(q) = S Dr(Sq)S, under theS action during the right and left stance phases of

Ci(q,q) = S Cr(Sq¢,S¢)S, GL(q) = S Gr(Sq), and walking. For typical walking motionsr;(q), i € {R,L} can

Hi(q,q) = S Hr(Sq,Sq). be chosen as the horizontal displacement of the center of mas
2) For everyz~ € S| R, (COM) in the sagittal plane relative to the stance leg end. Fo
_ later purposes, we assume that on each phase of the periodic
ALsr(g,47) = SAr-L(Sq,S¢). orbit, the phasing termr;(¢),7 € {R,L} belongs to the set

[Tmins Tmax ), Where 7min < Tmax- Next, let Bg € R? and
BL C RP be finite-dimensional parameter spaces, referred to

3Since ¢ and u vectors are same for the right and left stance phases, RS theright and left stabilizing parameter spf’:\ceespect_ively,
input matrix B is same during the right and left single support phases. ~ for somep > 0. For everyi € {R,L}, define a family of

Proof: See Appendix A.
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piecewise-defined and parameterized feedback IaysY x  satisfied. Then, the periodic orbit is symmetric in the sense

B; — U by the following policy of (9) if and only if for every(q¢’,¢") € O,
fcni(xvﬂ;c)a Tz(Q) < Tth BfC”L(Qaq'vﬁ*) = S,chnR(S(Lquﬁ*) (15)
PA%BH:={ oo, B, m(q) > t (12) ) "
i@, 6i), 7ila) 2 7in, Proof: (Necessity Part) Under the symmetry condition of

wheres; € B; denote thestabilizing parameterto be used for the periodic OfPitv for everyq’,¢')" € O, it can be concluded
7:(q) > 7. In (12), fon - X x B; — U for i € {R,L} areC! that ((Sq_)’, (_Sq)’)’ € Og. This together with hypotheses H1
functions with respect téz, 3;) on X x B;. Moreover,3; ¢ and H3 implies that

B;,i € {R,L} denotes a set afominal stabilizing parameters Di(q) i + Hy(q,4) = Bfen, (g, 4, 5;) (16a)

which are used for;(¢) < Tin. Tih € (Tmin, Tmax) FEPresents a N ) .
to-be-determined threshold value gf Next, associated with Dr(Sq) SG + Hr(Sq,Sq) = Bfenr(Sq, Sq, fr).  (16b)

7; and 7, the event-based control surface during phasen g rthermore, from (16a), in view of Part (1) of Theorem 1, it
be defined as follows follows that

Tini o= {(d', ') € X[ 7i(q) = 7in} (13) ' Dr(Sq)Si+S Hr(Sq,Sq) = Bfen,(¢. ¢, 5). (A7)

on which the parameters are updated from the nominal Va'é’émparing (17) and (16b) yields (15) for every, ¢')’ € Oy.
B to p; for stabilization and disturbance rejection. For later (Sufficiency Part) Equations (16a) and (15) together with

purposes, this surface will be taken as the Poincaré $edtio payt (1) of Theorem 1 result in (16b). This in combinatiortwit
is further assumed that the following hypothesis is satisfie uniqueness of solution, rising from hypothesis H2, implrest

H2) On the surfacém;, i € {R,L}, if (q(t),q(t)),t > 0 is the solution of the left stance phase on
. . O, then(Sq(t),Sq(t)),t > 0 is the corresponding solution
(i) femi(z, 57) = femi(z, 5i) on Or which completes the proof. ]
(i) M) = DM )
az P T Tag P )
ofen; B. Two-step Poincd map

iii ,B7) = 06xp, ) i ) ) i
Ly 0B; (. 57) oxw This section presents the parameterized two-step P@ncar
which in turn implies that the feedback laiy is C* with U map for the hybrid model (14). According to the
respect toz, 3:) on X x B; _constru_ctlon procedure of the cpntlnuous-tlme feedbaﬂs la
. T B in Section IV-A, the two-step Poincaré map can be defined on
By employing the parameterized feedback law (12), t’;@m i € {R,L}. We note that dinfs,; = dim(X) — 1 = 25.

closed-loop hybrid model of walking (8) can be expressagithout loss of generality, we study the right-to-right Pciré

as map for asymptotic and robust stabilization. To achievs thi
i = fur(z, Br), — 28 gqal, for a given initial conditionz(0) and a given stabi-
2.0R Br { L chR( R)_ _ # SR_H_ lizing parameters; € B;, i € {R,L}, let p;(¢;2(0),5;)
vt = Apo (@), T EoRaL denote the unique solution of the parameterized closepl-loo

(14) differential equationi: = f;(, 4;) with the initial condition
5 &= far(z, BL), x~ ¢ SLR x(0) over the maximal interval of existerfteNext, for every
cl,L, B ot = ALr(z), € S, z(0) € X, the flow F,” : X — T, is def_lned as the solution
wi(t; z(0), 5F), evaluated orffy, ;. In particular,
in which fc|7i($,ﬂi) = fl(I)‘FQZ(I) Fl(I,ﬂl) fori e {R,L} _ -~ N
For simplicity, we denote the parameterized hybrid model of Fi (@(0)) =i (Ti (x(O));:c(O),ﬂi) )
(14) by H(EcLngR, ECLLH_@L)' Throughpu_t this paper, we shallin which T ((0)) := inf{t > 0| cpi(t;x(0)7ﬁ;‘) c ﬁh,i} rep-
assume that the following hypothesis is met. resents the time of the first impact of with the hypersurface
H3) Associated with the nominal stabilizing parametéfss 7y, ,. In an analogous manner, for eveiy# j € {R,L},
B;, i € {R,L}, the periodic orbitO = Or UOL is an z(0) € Tyn; and B; € B;, the flow F;" : T x Bi — Siey;j
integral curve of the hybrid systef(Xcir sz, YeiL,s:)- is defined as the solutiop; (¢; x(0), 3;), evaluated orsS;_, ,
Moreover, for everyi,j € {R,L} andi # j, the orbit j.e.,
O; is transversal to the switching manifol§_,; and N .
also to the event-based control surfgge;. In particular, FH((0), 8i) = i (T (x(0), 8;); 2(0), Bi)

{27} = 0i N Sy and {azgy;} := 000 Tini &€ ot (4:(0), 8) 1= inf{t > 0] @i(t;2(0), 8;) € Sims}
singletons, wher®; is the set closure aD;. denotes the time of the first impact ¢f with the switching
The following theorem presents the symmetry between theanifold S, ;. Now, we are in a position to present the two-
right and left feedback laws on the periodic or6it step Poincaré map. Let represent local coordinates for the
Theorem 2 (Symmetry in Continuous-Time Feedback Laws)dimensional hypersurfac@y ;. In particular, there exist
Assume that the model of ATRIAS is symmetric with respect
to theyz-plane of the torso frame and hypotheses H1-H3 are*Hypothesis H2 implies the uniqueness of the solutions.
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projection and lift mapsryroj,; and it ;, ¢ € {R,L} such that H4) There exists matris € RP*P such thatSg Sg = I«

for everyz € T, and for everyx € X andf_ € B,

Z = Tproj,i (I) (183) B fCﬂL (:17, ﬂL) =SB anR(SI, Sﬁ BL) (25)
@ = it,i(2)- (18D) 1t is remarkable that the symmetric condition of the perodi
The right-to-right Poincaré mapk_r : ThrxBrxB. — Tnr Orbit O together with hypotheses H1-H3 implies (15), which
can then be defined as is fulfilled on O. However, hypothesis H4 is a special require-

ment to be satisfied for alt € X and 8. € B.. In addition,

Pror(%, Br, L) 1= Tprojr© Fr © ALR (15) and hypothesis H4 imply that
o Fi' (FL o ArsL o FR (minr(2), Br), BL), (19) Bt =S58, Br=SsBs (26)

yvhere b” denotes the function co_mposition.aﬁgi € {,R’ L} The following theorem obtains the left-to-left and leftright

is employed forri(q) > 7 during phasei. According 10 35:0hians based on the right-to-right and right-tcleftes.

the construction procedure of the continuous feedback IaWSTheorem 3 (Symmetry in the Jacobian Matrice&lsume

(12) and* hypothe|5|s Ha’DRHR(Z;*’ffS’ BL) = zr, WhETezz :=  ynat the model of ATRIAS is symmetric with respect to the

Tproj (i ) FOT later purposes, let yz-plane of the torso frame. Suppose further that the periodic
Zkr2 = Pror(2k, Br) (20) orbit O is symmetric and hypotheses H1-H4 are satisfied.

Then,
represent a discrete-time system defined on the basis of the |

right-to-right Poincaré mapPr_r given in (19). Here,k (i) LR = §A6R—>L % Bir=SBr.LSs
denotes the step number which is updated on the event-based(ii) A{_,, = SAg_rS,

control surfaceTm ;,7 € {R,L}. In order to have a compact
equation, 3, € R?" also includes both the right and left
stabilizing parametersi* is the corresponding set of nominal
parameters associated with Next, linearization of (20) about

(z,;‘, ﬂ*) results in 5$k+1 = AeR_H_ oxy + BI%—)L 5ﬂR,k7 (28)

(27)

whereS was defined in (10).
Proof: The linearization of the extended right-to-left
Poincaré map can be given‘y

0242 = AR-R 02k + BroR 05k, (21) wheredfr . represents the right components &f applied

i th
wheredzy, := zx — 25 661 = Br — B, Aror € R2%% and during thek'" step. In an analogous manner,

25%2 e e
Br_r € R#%°P, 0xpy2 = Al ,r0Zky1 + BP_,rOBL k41, (29)

is the linearization of the extended left-to-right Poirecanap
anddp 41 is the corresponding components applied during

This section addresses the symmetry among the Poincgs stance  + 1" step). Next, (28), (29) and
maps and the corresponding Jacobian matrices to present the

C. Symmetry in the Poincamrmaps and Jacobian matrices

one step correction law in Section IV-D. From Section 1VzB, 5B = O BR K
is a set of local coordinates fof ;, ¢ € {R,L}. By defining ke 8BL k1

or =« — xf,; € R?6, §z = z—z € R?5 and z; :=

mproj.i(2.), while considering the projection and lift maps invhile considering (23), yieldlg g = Af_,r Ak, and

(18), it can be concluded that Bir = [Af g Bio. Bfgl-
ox = %(z;‘) 0z (22a) Similar reasoning also results Y ,| = Ag .| A . and
57— M(ﬁh,ﬂﬁ (22b) Bf L = [BisL Ago Biog-
Oprojyi , w « OTifti, o Moreover, Part (1) of Theorem 1 together with= S *,

o (i) 02 (27) = I25x25. (22¢) 5_5"' and hypothesis H4 yields

Next, (21) in the extended coordinai®s can be expressed as q
0xpy2 = AR r 02k + BR,Rr 0Bk, (23) file) = l_Dfl(Q) H (q, Q)]

in which B l s'sg ]

- —1 -1 _ .
¢ i ZEIER (2) Arm 87T§;j’R(It*h,R) € R26%26 (243) ) S;RS(S:))R (Sq) (S)~1S Hr(Sq,Sq)
BEHR = (;ZVR (zfﬁ) Bror € R (24b) 5The right-to-left Poincaré map is defined froff, g during right stance to

are the extended Jacobian matrices. In this section WGETESSII?M during left stance. Similar definitions can be presentedittier left-to-
) ’ right as well as the left-to-left Poincaré maps.

that the following hypothesis is satisfied for the feedbakd "6 according to hypotheses H1-H3 and [6, p. 89], the Poincaapsrarec!
of (12). in an open neighborhood of the periodic orbit
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and Theorem 4 (One-Step Event-Based Lawssume that the
Orsc1 model of ATRIAS is symmetric with respect to the-plane
gL(x) T (z, L) = [ . * ] of the torso frame. Moreover, suppose that the periodict orbi
D (q) BT (x, Bu) O is symmetric and hypotheses H1-H5 are satisfied. Then,
013%1
= _ B 2,0Rr,BL) =S. B S. B z,0r), S BL). (33
[Sl D=1(Sq)(S)-'S BI(52.5, BL)‘| R—R(2, Or, L) Rl (S: PrsL(2, Br), S BL) - (33)
_ &, (¢ & In addition, let xr(Z) be a continuous (resp. continuously
= Sgr(Sz)Tr(Sxz, S R\Z
o _ .gR( ) TR(S, S5 fh) differentiable) function such that (Br(z%) = B4 and (i) z%
which in turn implies that is asymptotically (resp. exponentially) stable for thddaing
for(@, 1) = S far(Sz,Ss ). (30) ©one-step map
Next, from (11) and (13), it can be concluded that for every — Zk+1 = Fone-stefZk) := S Frost (2, R (Zk)). (34)

x € TnL, Sz € Tmngr. An analogous result can also b

presented for the switching manifold .. and S, g, This erhen,zR is asymptotically (resp. exponentially) stable for (20),

in combination with (30) results itF (x) = SFg (Sz) and in which

F(z,BL) = SFF (Sz,Ss BL). The extended right-to-left and B KR (zk) 3

left-to-right Poincaré maps can then be expressed as B = Ss kR (S ProsL (2, kr(zk)) | (35)
PF\C;_)L((E, BR) = ]:L_ 0 ARL © ]:a_(xa BR) Proof: Let

PLEHR(CC, ﬁL) = ]:RT oAL_LRO .Fljr (ac, BL)
for which, the following property is fulfillet
PL6—>R(xvﬁL) = ]:F: o ALRrO ]:Ij_(xvﬂL)

= ]:F: o AL_LR (é]:a_(él', S,@ BL))

= Fy (SArsLoFi(5x,SsA))  (31)  FLor(5 80 = Teoiro Plog(min (2), B)

=SF oAroL o Fa (Sz,S5) — TProiR (§P§_’L (St (), Ss 6))

— 8PS, (52,55 AL). = mprojR (S P, (MR (S: 2), S5 A1) (36)
=S, Tproj,L © Pr_y (iR (Sz 2), Sp L)
=S, Pro1L(S. 2,55 fL).

Pro (2, BR) := mproj,L © Pr_, (mifRr (2), BR)
P r(z, BL) == mprojr © P g (it (2), BL)-

From hypotheses H1-H5 and (31), it can be concluded that

Next, according to (31) and (26),

aPL—>R 6PR—>L
O (@i, BL) = S (Tth R Br) S This latter equation together witlir ,r := P._.r o ProL
0P g OP§ | implies (33). Next, usings Ss = I,,x, and (35), the evolution
dB. a5 @A) = S—- 0Br (in,r: OR) Sp- of the right-to-right discrete system in (20) can be exprdss
i e _ Q Ae _ Q Re as
In particular, Af . = SA& ., S, BI:—>R = %BR_),_ Sg and Zivs = Fone-step® FonerstedZh). (37)
8R—)R = E—>R AeR—>L = SAeR—>L Sf4~el?—>L . .
e _Ac A° __ Ac BAC S Standard converse Lyapunov theorems imply the existence of
L—-L R—L “*L—R R—=L <" R—L a continuous functiorone-step : None-step — R>0 such that
which completes the proof. B Vonesteh2r) = 0, Vone-stefZ) > 0 and Vone-step( Fone-stefZ))
Vone-stefZ) < 0 for all z € None-step\ {25}, Where None-stepC
D. Time-invariant one-step event-based controller R*® is an open neighborhood af. Since Fone-sief2i) = 2

dFone-stef-) iS continuousNone-stepcan be chosen such that

The objective of this section is to present a time-invariarﬁ'I
) P §Z) € Nonestepfor all zZ € None-siep COnsequently,

and one-step event-based controller based on the symnfetry &'t
thhe Pﬁmcare map? g?r thr|1$ goal, assumedtlr}at the f(;!IO\ivmgme step( Fone-step® Fone-stefZ)) — Vone-stef Z)
ypothesis is satisfied for the prc;Jecztmn and lift maps i8)( = Vone-ster Fone-step® Fone-stef Z)) — Vone-stepl Fone-stefZ))
H5) There exists matrixS, € R2?°%25 such thatS, S, = _ _
+ %ne—step(fone—ste;{«z)) - Vone—ste;{«z)

I5x25 and
= < O, VZ S None.step\ {Z;}
Wproj,L(I) = Sz Wproj'R(S:Z?), Vo € 7;h,R (32) (38)
Tift, L (Z) = S7T|iftR(S Z) Vz € R%.

Thus, Vone-step iS @ Lyapunov function for (37) which in

We remark tha € R26*26 s the full-state symmetry matrix turn completes the proof of asymptotic stability. For expo-
whereasS, € R?*2° represents the symmetry matrix for thenential stability, according to the converse Lyapunov theo
z (local) coordinates on the Poincaré sectigpg, i € {R,L}. rem, there are constants,cs,c3 > 0 such thate||z —
Furthermore, hypothesis H5 for a symmetric periodic ofDit 25|1? < Vone-siefz) < 2|z — 2i]|* and Vone-steg Fone-stef Z)) —
immediately implies that” = S, 2z andz; =S, 2.

8In our notation,z;, := z;, during the right stance phase abd:= S, z;

"We remark thaSS = gy 26. during the left stance phase.



REGULAR PAPER SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 8

Vone-stef2) < —cs|z — 23|? for all z € None-step Next, similar
to (38),
Vone—step(fone—stepo ]:one—ste;gg)) - Vone—steggg)
< —c3|z = 2&l* — 3] Fone-seefz) — 2RIl
vz € None—step

In theory, one takes > 0 sufficiently small when approxi-
mating the derivatives. In practice, selectings not obvious
because the dynamic model has multiple scales, due to the
heavy body, light leg links, and stiff springs. In other werd
the correct perturbation value to calculate the Jacobiatni-na
ces based on numerical differentiation algorithms is umkno
) i ) . This can be formulated as uncertainty in the Jacobian nestric
which yields exponential stability. B or the Poincaré maps, and it complicates the design of the

Remark 1 (Application of the One-Step Event-Based Lawy,jlizing one-step event-based controller in Theorem 4.
Theorem 4 presents the right-to-right Poincaré return maprpe way we handle this uncertainty is to make sure that

in terms of the one-step map. Furthermore, assume #hat ;. event-based control law is insensitive to the value ehos
and z,.1 represent the corresponding coordinates on t

< —cs)|z — zl?

Poincaré sections during the right (i.&!") and left (i.e.,

k + 1°%) steps, respectively. According to Theorem 4, th

event-based law$r = kr(zx) and S = Sz kr(S; zk+1)
asymptotically (exponentially) stabilize the periodidibr©O
for the closed-loop systet

V. ROBUSTONE-STEP EVENT-BASED CONTROL ACTION

In order to robustly stabilize periodic orbits f8D walking
against numerical and parametric uncertainties as well
external disturbances acting on the robot, this sectiosgorts

a one-step correction law consisting of two loops. The fir

loop, referred to as theobust stabilizer introduces an LMI-

based time-invariant update law for the one-step map (34)
that is designed to be robust against numerical and parametr
uncertainties. The objective of the second loop of the discr
action is to increase the basin of attraction as well as t
robustness of the closed-loop system against parametric WL set

certainty and also to reject external disturbances actmthe
robot.

A. Robust stabilization

To robustly and asymptotically stabilize the periodic oi
against polytopic uncertainties arising from numericgrag-

¢ > 0. To achieve this insensitivity, we formally treat the
Jacobian linearization as belonging to a family of lineadiz
fhodels and apply robust control theory. In particular, we
use a family of perturbation values > 0 to generate a
family of linear models, each rising from differeatvalues
in the setf := {e1,e9,---}. In this regard, we present
an LMI-based robust control methodology for the one-step
map (34). In the proposed approach, (et s, Bis) denote
the least square approximation Oflg_,., Br—,L) over the
fi gsible set of perturbatior&s Moreover,(Arpp(e), Brep(€))
represents the two-point symmetric difference estimatibn
%\IAFHL,BRHL) obtained with the perturbation valuee £.

ext, define the convex sets

Ar_ = COﬂV{ALs, ATPD(5)| €€ 5}

(39)
Br_L = COﬂV{BLs, BTPD(5)| € c g}
or simplicity, let Ag_,_ » and Br ,, for m =1,--- ;ng
n = 1,---,np denote the corresponding vertices of

SAr_,L andBg_,_, respectively. We will suppose that
unknownJacobian matriceslr_,. and Br_,. belong to the
sets Ag_,L. and Br_,.. The following theorem presents an
LMI-based gainKr which stabilizes:j for (34).

Theorem 5 (LMI Stabilization of the Periodic Orlii):
Assume that hypotheses H1-H5 are satisfied
Ar,L € Ar,L and Br,. € Bgr,L. Then, the following
statements are true.

and

imation of the Jacobian matrices for the corresponding one-

step map, this section presents a discrete and static updajté
law, based on LMls, for the stabilizing parameters of the
continuous-time feedback laws (12). There is no closedifor
expression for the5-dimensional Poincaré return map and
consequently, to design event-based update laws, we make
use of Jacobian linearization of the Poincaré map. Morneove
the Jacobians are obtained using numerical differentiatio

specifically, two-point symmetric differences given by

8P * *
BZTL (28, Br) =
1 * * * *
e (PFHL(ZR + Az, BR) — PrsL(2r — Az, ﬁR))
aﬂj (ZR? /BR) =
1 * * * *
% (PR—>|_(ZR, Br+ ABi) — Proi(2r, Br — Aﬁi))

where Az; := ee;, AB; = cey, € is the perturbation value

ande; is the standard unit vector in theh direction.

SWe remark thaty, 11 = ProL(2k, kr(28))-

(Stabilization with known Lyapunov functiofi) there
existY =Y’ andZ such that the following set of LMIs
-Y Sz AR—>L,m Y + Sz BR—>L,n Z

v <0  (40)

*

form=1,---,n4q,n=1,--- ,ng is feasible, then the
periodic orbitO is exponentially stable for the closed-
loop system, in which

kR(Z) = fr — Kr (2 — 2)
in Theorem 4 andsr := —ZY L.

2) (Stabilization with unknown Lyapunov functiolfithere
exist matricesl,,, = 1., form = 1,--- jna, n =
1,---,ng , and L andJ such that the following set of
LMls

(41)

Tm n

*

Sz AR%L,m L+ Sz BR%L,n J

>0 42
L+ L —Thy (42)

is feasible, then the periodic orb@® is exponentially
stable for the closed-loop system, in whigk(z) is given
in (41) andKg := —J L',
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Proof: Following hypotheses H1-H3, the Jacobian matrB. Robust optimal controller

ces ArL and Br,. are well-defined. Moreover, hypothesis The gpjective of this section is to improve the static update
H3 and the construction procedure of the feedback laws implyy, of (41) to reject external disturbances acting on thetob

the existence of an open neighborhobdof O, such that in 1o achieve this goal, an auxiliary term is introduced to
N\ O, the feedback law fag(x, %) switches to fca(z, Ar) rkr(2), i.e.,

when trajectories cross the Poincaré sectigir which is a

necessary condition faBgr_,. # Oasx - kR(Zk) = Br — KR (Zk — 2r) + Wi (45)

h Part (1): For a g'Ven(AR:"-’BR*'-) € ARg'-bX BrL.  Next, assume that an external force acts on the robot during

there exista,, = OP; Tﬁ ;1 1.+ ma n‘in ”A = 0 the right stance phase. Then, the evolutiorv®f according

n o= 1, ,ns suc that g, = >0, dm AR=Lm  tg the linearized one-step map (34) can be expressed as

and BrsL = >..%, by BrsL,n. Moreover, > "4 a,, =

ZZil b, = 1. Next, 65k+1 = Aone—step,cﬁgk + Bone—stepw}c + Fone—sterdka (46)

2A DB Y S, A Y +S.BroytnZ where Aone-step,ci= S: Ar—L — S. Br—L Kr and Bone-step:=

Z Zam bn N _y S, BrosL. In particular, Agne-step,ciis the closed-loop matrix

m=ln=1 resulting from the LMI controller of the previous subsentio
7Y S ALY +S.BrouL Z <0 and hence has its eigenvalues in the unit circle. In addition
T % Yy Fone-step:=S: FryL and Fr_,. € R**2 is aknownmatrix to

(43) consider the effect of thanknowndisturbancel, € D C R?
) ) ) ) on 0z, whereD is a given polytope represented in terms of
Using Schur’s Lemma, the LMI problem (43) is equivalent tg vertices, i.e.D := con{d!, --- ,d"} for somenp > 0.
() —Y <0 and (ii) We now consider a force “pushing” the robot in the frontal
/ I -1 plane and hence 2xdimensional disturbance is considered for
—V - (VAr S+ 7' B 8) (Y) the roll angle and roll velocity. The results of this sectian
X (S: ArsL Y + 8. Brs1 Z) <0. (44)  pe extended to other kinds of disturbances. We assume that
Considering Kg = —ZY !, it can be concluded thatdx = do for k = 0 anddy = 0 for k > 1. As mentioned
Vone-stef0Z) := 02’ Y14z is a Lyapunov function for (34). previously,Br_,L € Br_L. For a given time horizoV > 1,
Finally, applying Theorem 4 and Theorem 4.7 of [6] completd€t
the proof. W = (wp, -, why_y) € RPN

Pa}rt (2): According to Theorem 3 of [32], if LMIs he the vector of inputs to be determined. Werst casecost
feasible, then for everylg ,. € Ag,L and Br_,. € Bgr_L, function is defined as

leig(S. Ar—L — S. BrL Kr)| < 1 which in turn implies that

the 2% is robustly and exponentially stable for (34) against/n(dZo, W) := op, AX_ {HP55NH00
polytopic uncertainties. Moreovek/one-sefdz) = 02’ T 62 o0& BRoLE R?VL—I
is the corresponding Lyapunov function, in which := 5z }
oA SE | @m by Ty This in combination with Theorem + kz_o 160 92k loo + [| R wie|
4 and Theorem 4.7 of [6] completes the proof. [ | - _ B
Remark 2: Theorem 5 presents two approaches to de-‘sz’“+ 1 = Aone-step,c0 2k + Bone-stegi + Fone-stepi, )

sign the robust and stabilizing one-step event-based law.

In the LMI problem of (40), the corresponding LyapunowhereP = P/ >0, Q = Q' > 0 andR = R’ > 0. The cost
function Vone-ste0z) = 6z’ Y 14z is known and common function is then expressed as

for all (Ar—L,BrsL) € AroL X Bri, whereas in the T (650 = min In (550 W

LMI problem (42), the Lyapunov functioWonestefdz) := ~(070) = min I (9Z0, W)

6z'Téz = anAzl Zil am b" an (52) depend%o on 62/@-5—1 = Aone—step,cégk + Bone—stepwk + Fone—ste;dk
(AR—>|-7 BR_H-) € ArsL X Bro, where an((SE) - St ”KR(EO) - BI;HOO < ﬁmaxa k= 0,1,--- 7N -1
0z' T, 02z is the corresponding Lyapunov function for the - (48)

vertex (AR—>L,m, BR—>L,n)-

Remark 3:Analogous to Proposition 1 of [28], if (i) the We note that problem (47) looks for the worst value of
continuous-time feedback law (12) does not depend on tie performance as a function a@f, and W. However,
yaw angle and (ii) the column dkr associated with the yaw problem (48) can be expressed as a min-max problem and
angle is set to zero in the static update law (41), then tHeninimizes the worst case cost function subject to fediibi
periodic orbit® is invariant under the group of rotations abouef the inputt, i.e., [|kr(Z0) — Ballco < Bmax for all possible
the z-axis denoted byG. In this case, the periodic orbit isdisturbancesl, € D and uncertaintie®g_,. € Br_;L. In the
asymptotically stable “modul@”. This is important because min-max problem (48),Aone-step,c/iS assumed to be known.
ideally the controller should not be affected by which diiez In particular, we approximate it by taking average of the
the robot is walking on a flat surface. verticesS, ArL,m — S; BrsLn Krform=1,--- ,n4 and

10Since apm, m = 1,--- ,ny andb,,n = 1,--- ,npz are unknown, the  1The approach is receding horizon, and hence we only implerie(Eo)
Lypaunov function is unknown. at each event.
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n=1,---,ng. This translates the problem (48) into a lineawherely; := (1,---,1)’ € R** and1, := (1,---,1) € R?,

programming (LP) problem. Moreover,§z(6Z0; W, d', Br_,L.n) represents the solution of
Remark 4:The LMI loop has already robustly stabilizeddiscrete-time system (46) when the input sequend#’ iand

the system to model uncertainty and hence variations inithe the Jacobian matriBg_,. and the disturbance, are equal

matrix are not addressed here. The ROC loop is employed forthe verticesBr ., andd', respectively. [ |

disturbance rejection in the roll dynamics, and is beindiedp ~ Remark 5 (Implementation af): According to the one-

to an already stable system [35]. The LMI controller is lineastep correction law developed in Theorem 4 and Remark 1,

whereas the ROC controller is nonlinear, due to the saturatido the following steps at each discrete-tifne

terms in (48). In the implementation of the two discreteStep (1) If z € 7Tynr during the right stance phase, let

time controllers in Section VII, the practical advantagéds o z = mprojr(z) and dzp = z — z%. Next, solve the
separating their solutions will become clear. LP problem (50) forw, and employ

To increase the basin of attraction, the input constraints .
on problem (48) have been expressed in termsfy) = Pr = rr(20) = Br — Kr0z0 + wo(d20)  (51)
Bk — Kr (20 — 25) + wo instead ofwy. To make this notion for 7r(q) > Ttn.
precise, we note that on the periodic orbit, the ground ieact Step (2) If x € Ty during the left stance phase, set=
forces are feasible. Large(zy) and thereby large changes in Toroj,L(x) anddzg = S, z — zk. Next, solve the LP
the piecewise-defined feedback law (12) fofq) > =, may problem (50) forw, and employ

result in infeasibility of the contact forces. Consequgritie
positive scalar8,.x in (48) has been introduced to enforce
the stabilizing parameters to be in the feasible region.
Theorem 6 (Push Recovery as an LP probleff)e push
recovery problem against external disturbances is eanval
to an LP problem.
Proof: The performance

BL = S,@ KR(Z()) = ﬁ: — SB Krdzy + SB wo((SZo)
(52)
for 7.(q) > Tin.

V1. APPLICATION TO THEHYBRID ZERO DYNAMICS

This section shows that the stability results of Sections
IV and V can be applied to the feedback laws arising from

In (620, W, do, BrsL) =P 0zZN || virtual constraints and HZD. In particular, it is shown that
N-1 the HZD-based hybrid controller satisfies hypotheses H1-H4

+ Z |Q 0Zk|| oo + || R w0 To present the main idea, associated with the stance phase
k=0 i € {R, L}, define the following holonomic and parameterized

is convex with respect t&dy, Br_,.) over the polyhedro® x  CUtPUt function to be regulated

Br_,L. Based on results of [34], by introducing the scalgr Yi := hi(q; Beois Bi) = he,i(q) — hai(1i(q))
as an upper bound fdfy and augmenting the variables of — heo(Ti(q); Beoi) — hst(Ti(q); Bi)-
optimization byug, the min-max problem (48) is equivalent to ' (53)

the following minimization problem on the augmented space ) ) ) )
In (53), hi(q; Beos, i) IS a 6-dimensional output function

\g\lllbno Ho which is garametgrized béﬁtfge corrgcgve ar;gd sta?RiI(isinng pa
_ rametersfeo; € Beoi C e and B; € B; C st
st po > In(020,W,d", Brostn), n=1,--+ ,np (49) for i € {R,L} and somenco, net > 0. Controlled variables
[5r(20) — Bglloc < Bmaxs l=1,---,np. denoted byh. ;(¢), specify six independent holonomic quan-
for  — tities to be controlled. Furthermorg, ;(7i(¢)) represents the
d desired evolution of the controlled variables on the pecod
orbit in terms of the strictly increasing quantity(g). In

Following the developments of [33], let; and y}’
0,1,---, N —1 denote upper bounds for terMi§ 0z ||~ an
[|Rwy ||, respectively. In a similar manners; is an upper

bound to the term| Pozy||... Then, by defining particular, h.;(q) — hqi(7i(¢)) = 0 on the orbitO;. For
later purposes, we define theominal outputfunction as
1= (o iy - s i 1G5 ig)| € RPN, hoomi(q) = hei(q) — hai(i(g)). Next, for the ATRIAS

o . . _ structure,r;(¢) is chosen as the angle of th@tual leg with
the optimization problem (49) is equivalent to the follogin respect to the horizontal line to satisfy hypothesis H1, rehe

LP problem on the augmented space the virtual leg is defined as the virtual line in the sagittaine
which connects the stance leg end to the hip joint. Moreover,

min

Ww% it is assumed that the following hypothesis is satisfied ffier t
Mo = PG+ py e uN nominal output function.
Wi Los > £P 62N (620; W, d', Brosn) S1) There exists an output symmetry mai®ix € R6*6 with
13 1os > +£Q 0%x(6%0; W, d', Brost ) the propertyS;, S;, = Igx¢ such that for every € Q,

s.t. S hoo(S
uy 1, > £Rwy, heL(q) = Sk her(Sq) (54)
+£R(20) < Bmax 1p F B3 ha(1.(q)) = Su har(TR(Sq)),
k=0,1,---, N—-1,n=1,---,ng, I =1,--- ,np, which in turn implies thatinom (¢) = S hnomr(Sq) for

(50) all g € Q.
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The functionsico(7;(q); Beo,i) andhsi(7;(q); ;) are referred to in which Kp = k, Isxs > 0, Kp = kaIsxe > 0 ande > 0
as thecorrectiveand stabilizing terms, respectively, and theyare controller parameters. In addition, (59) results incthigput
vanish on the periodic orbit. The corrective term is added ttynamics
zero the output function (53) at the beginning of each step, (i i+ Kp g+ Kp — (60)
hybrid invariance) and it is activated during the first hdlftee € 2
step. Following the developments of [36], it can be exprésséor which the origin(y;, ;) = (06, 0¢) is exponentially stable.
as Theorem 7:Let O be a symmetric and transversal periodic
orbit for walking by ATRIAS. Assume that the ATRIAS model
. (55) is symmetric with respect to thgz-plane of the torso frame
Os otherwise and hypothesis H1 is met. Suppose further that assumptions
o S1-S3 together with (56) and (58) are fulfilled. Then, the
wherer;” and 7" are the initial values of; and7; on the feedback law (59) satisfies hypotheses H2-H4.
current step, antnig := %(Tf + Tmax ). Here, we assume that Proof: See Appendix B. -
the following hypothesis is satisfied. Finally according to Theorem 7, the stabilizing parameters
S2) Fori € {R,L}, hg(i;Beoi) is C* with respect to f; in (53) can be updated by the one-step correction approach
7; and linear infe ;. In particular, heo(7:; Sy Beo;) = developed in Theorems 4, 5 and 6 and Remarks 1 and 5.
Sh heo(Ti; Beoai)-

ha)(ﬂﬁ Bco,i) if 7';_ <7 < Tmid

hco(Ti 5 ﬁco,i) = {

Moreover, by definingi;’,,.,; andh . as the initial values of VIl. SIMULATION RESULTS
the nominal output and its first time derivative at the begiign  This section implements the work of the previous sections
of the current steph,(7;; Beo,i) Satisfies on two different simulation models of the bipedal robot
_ ATRIAS 2.1, the hybrid model of Section II-E used for the
(i) hoo(7;"s Boos) = hn+omi controller design and a new model that assumes the walking
. Ohgy o h;‘om surface is compliant and which explicitly computes the giebu
(i) o (7,75 Beosi) = =+ reaction forces acting on the robot. The second model wiifi he
’ Bh—i 92— us to investigate the robustness and sensitivity of theedlos
co

(iii ) hog(Tmig; Beos) = 8—m(7'mid§ﬂco,i) = W(Tmid; Beoi)  loop system and simulation results against different mindel
i Ti and integration approaches. In addition, the robustness of
=06 the robot in closed loop is evaluated against external force
(56) acting as disturbances on the robot as well as parametric
and nonparametric uncertainties in the model of walking. In
%articular, uncertainty in the yaw friction coefficient omet
stance leg is considered.

to create hybrid invariance (by (i) and (ii)) and to satisf

continuity of position, velocity and acceleration at= g

(by (iii)).

Next, we assume that the stabilizing term is activated over . o

the second half of the step. The intuition behind this is that™ Disturbance rejection

human’s push recovery is obtained by changing the stepHengt The purpose of this section is to show that the proposed

at the end of the current step. In particular, we define control strategy will result in disturbance rejection agsiex-
ternal forces acting on the robot. Here, an extehmlzontal

hele B 06 if " <7 <7n 57 force with a magnitude of0(N) (45% of the torso weight) is
si(7is i) = hdi(m:; i) otherwise (57) applied to the side of the robot to its COM; the disturbance
is applied for50% of duration of a step.
for which the following hypothesis is satisfied, We consider a periodic orbi®? with an average walking

S3) Fori € {R,L}, hdi(m:; 8;) is C2 with respect tor; and speed ofl.1(m/s) for the hybrid model of walking. The
linear in 3;. In particular,hg; (1;; Sy ;) = S hdi(7:; 8;).  continuous-time controller is based on the zero dynamits wi

Furthermore, we assume that > g and the controlled variables during the right stance phasentalse

(Q)hﬁ (Q)Qhﬁ I %(QerR + QQTQR)
hei (in; Bi) = T;(Tth; Bi) = ﬁ(ﬂh;ﬂi) =06 (58) 2(qgriL + qgraL)
l ' 4gr2R — 4griR
to impose continuity of position, velocity and acceleratiat her(q) = B : (61)
7 = 7. Here, B is updated at the beginning of each step dgrat — dgrit
according to (56) and it remains constant during the step. Th 43R
continuous-time feedback law is also obtained based on the | —Zem(q) + 32sw(q)]

standard input-output linearization, i.e., The first four outputs affect the sagittal plane motion of the

robot, defining the angles of the legs with respect to theotors
Li(, Beojis Bi) = and the “knee bend”. The fifth component is the stance hip
- Kp Kp angle. The sixth component is defined to keep the frontakplan
— Ly Lpys)  (L2yi+ =2 Lyyi + =2 y;), (59) 29 P P \
(Lgi L yiys) ( Ryt e Y * ez Y )’ (59) component of the robot’s COM between the stance and swing
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legs. In particularzcm(g) and xsw(g) denote the horizontal components of thé3-dimensional reduced-order discrete-time
coordinates of the COM and swing leg end within the frontalystem in the optimal solutions of the min-max and equivalen
plang?. We have observed that the first four components &P problems. In this case, the corresponding state space for
the controlled variables in (61) can stabilize periodicitsrior  problems (48) and (50) i8-dimensional which considers the
the planar (i.e.2D) model of ATRIAS [38]. The controlled evolution of the roll angle and velocity for which problen0f5
variables during the left stance phase are defined accordivgs10N + 11 inequality constraints, whereNN is the control

to Assumption S1 vi&g, = diag{1,1,1,1,1,—1}. The event- horizon.

based control surface is defined at t%uepoint of the step, By gridding the state space and solving the optimization
i.e., Tth = %Tmin + %nnax. Furthermore, the corrective andproblem off-line for each grid point, the solutions of the LP
stabilizing terms are chosen as fifth and third order Béziproblem (50) for the roll dynamics can be pre-computed and
polynomials, respectively, to satisfy S2, S3, (56) and .(58tored in a look-up table. Here, the state space is taken as
Here the feasible set of perturbations to calculate thet leds0.2 0.2](rad) x [—2.5 2.5](rad/s) with 100 x 100 grids.
square and two-point difference approximationsAgr,; and Then, using Barycentric coordinates, the optimal solution
BroL are€ = {1075 x {1,5},107* x {1,5},1073 x {1 : wp can be interpolated in a linear manner. Furthermore, the
1 : 10}} and & = {107% x {1,5},107* x {1 : 1 : parameters of the one-step ROC problem in Remark 5 are
10},5x1073,1072 x {1, 1.5} }, respectively. The three largestchosen asV = 2, P = Q = 3 Iyx2, R = I3x3, Bmax = 0.015

eigenvalues of the averaged Jacobian matrix and D = con{+d', +d?}, whered! = (10,10) and d® =
A (—10,10)".
ARSRave= 1 Z(SZ ArLm)? The closed-loop simulz?\tio.n is started at t_he end of the left
na — stance phase of the periodic orlét and during the second

step, a horizontal disturbanc®(N) is employed. Figures 2
and 3 present the phase portraits, plots of the ground oeacti
forces and the applied control inputs versus time as well as

are {1.1352,1.000,0.7241}. Due to the extensive variability
in the numerical estimates of the Jacobian linearizatiothef

Poincaré map, we tried designing a two-step DLQR contrroll«t;*‘he norm of the discrete statg.t(k), a7 (k). 4y (k), dut(k))’

for several pairs of two-step Jacobigk_r m, Br—r.n) and . .
all of them failed to bring the eigenvalues within the uni}lersus step number durirg) steps of walking. The push

circle. We then tried a tedious iterative process, exheelsti ecovery and convergence to the periodic orbit is clear.
searching over the collection of paitdr_r m, Br—rn) fOr
a range of Weights{QT}fdw:Q1 and {Rl}l]‘iff, solving for the ~- ™
DLQR gain. A two-step stabilizing gait was eventually found@nties
using this approach, but it had a small basin of attractiaon. | The objective of this section is to show that the proposed
particular, this event-based action could only ensureiligiab control strategies will result in stable walking motionseev
for an external horizontal disturbance in the frontal plaia if the assumptions made in modeling of the hybrid system
a magnitude ofi5(N). are not met exactly. In particular, we consider parametric

Due to lack of robust stability in the two-step approach arghd nonparametric uncertainties in the model of ATRIAS. To
seeking a more robust solution, the one-step LMI problergenerate the periodic orbit for the nominal hybrid systema, t
of Theorem 5 are now solved through theasp function of stiffness and damping constants of the springs in the series
MATLAB for one-step Jacobian&4r_ m, BrR-L.n)- elastic actuators were assumed toHgging = 1200 (Nm/rad)

and kgamper= 70 (Nms/rad). Moreover, the coefficientsiction

used in (3) to model the yaw friction about the stance leg end
was assumed to b0 (Nms/rad). The torso and robot masses

In simulation, while the LP problem of Section V-B canare alsol6.3 and55 (kg), respectively [41]. Next, we consider
be implemented as given, its solution is too slow for eveintua60%, +25%, —20% and +30% parametric uncertainties in
real-time implementation. Hence, we present a real-time aficion, kspring kdamper @and the torso mass, respectively. The
proach to employ the ROC. The LMI and ROC problems campact model of Section II-D preserves the yaw motion about
be combined advantageously with the hybrid zero dynamigg swing leg end. Here, we relax this condition on the impact
approach of Section VI. In this case, duehibrid invariance model as a nonparametric uncertainty. As another source of
the state space of the corresponding discrete-time systgntertainty, the term:i_yi is removed from the continuous-
will be reduced as the intersection of tl¥-dimensional time feedback law of (59) and hence, it is replaced by
Poincaré sectioff ;,7 € {R,L} and thel4-dimensional zero K K
dynamics manifolds associated with the output functiomés T T';(z, Seos, 5i) = —(L‘(hL]«iyi)_1 (—D Ly, y; + —2P yi),
intersection isl3-dimensional and referred to as trestricted ¢ ¢ (62)
Poincaré section Next, we only update the stabilizing paramwhich is a PD control action in which the inverse of the
eters for the first, second, and sixth components of the out@écoupling matrix (i.e.(L,, Ly,y;)~*) can be considered as
function (53) and (61) (i.ep = 3 in (50)). In addition to these, a scaling matrix. These changes to the system have several
we have observed that the roll dynamics are most importajgnsequences. First, the effect of model parameters can be

C. Robustness against parametric and nonparametric uncer-

B. Preparing ROC controller for real-time implementation

12Here, we assume that the stance leg end defines the origire afiaHd 13we remark that in this case, the LMI problems of Theorem 5 éte s
frame. solved for the full-order Z5-dimensional) Jacobian matrices.
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Fig. 2: Phase portraits for the closed-loop system durigy 3. piot of the control efforts, ground reaction forcesla
20 ponsecutlve stgps of Walkln.g. Durlng. the se_cond step.n@rm of the discrete stat@.(k), g7 (k), dy1(k), dor(k))’ for
horizontal force with the magnitude)(N) is applied to the 0 cjnsed-loop system during consecutive steps of walking.
robot's COM over50% of the gait. During the second step, a horizontal force with the mageitud
70(N) is applied to the robot's COM ovei% of the gait.

6 8 10 1214 16 18 20
step number (k)

investigated on the closed-loop behavior. Second, thecteffe
of different impact models and continuous feedback laws
is analyzed. Figure 4 shows the phase portraits dubitig
consecutive steps of the closed-loop system when the robot
is initialized at the left stance phase of the nominal orbit i
the presence of all the above parametric and nonparametric

uncertainties. According to Fig. 4, the robot's trajectstifl  First, the evolution of the mechanical system subject to-com
converges to a limit cycle. pliant ground reaction forces and non-instantaneous itnpac
models can be assessed. In particular, the impact model
is completely different from the one presented in Section
[I-D. Second, the robustness of the closed-loop system to

In Sections VII-A and VII-C, the evolution of the mechanidifferent models of the ground is analyzed. In addition to
cal system was described by the hybrid model of walking giveéhese, parameter uncertainty (in particular, in the yawatifrn
in (8), in which the impact forces are assumed to be impulsesefficient) will be introduced in the robot model. Thirdjng
In particular, the hybrid model considers right and lefns& this compliant simulator, we can model dynamic walking with
phases and corresponding impact maps; moreover, the tyelopassive prosthetic feeATRIAS is capable of being fitted with
components of the state variables as well as ground reactmontrivial feet which is another source of nonparametricarn
forces undergo a sudden change according to the instansneainty. The compliant model uses the floating-base or flight-
impact maps. This section presentsoatinuousandcompliant phase model of the robot. By augmenting the configuration
model[40] to describe the evolution of the robot during allariablesq € Q by the position vector of the base of the
phases of walking including single support, impact, andad®u torso link, the16-dimensional flight-phase coordinate vector
support. can be expressed as := (xt,yr, 21,¢') € R3x 9, in which

The LuGre model [39] is used to represent forces betweénr, yr, 21)’ € R3 denotes the position of the base of the torso
the contacting surfaces and can be integrated as an ordinark with respect to the world frame. Next, the evolution of
differential equation over time. This has several consegeg. the mechanical system subject to the contact forces can be

D. Robustness against different contact models
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. —77 : Fig. 5: Roll and hip phase portraits for the compliant model
—Y4gr2R . . . " . .
| = o with parametric and nonparametric uncertainties durintkwa
o > ing with point feet (Figs. 5a and 5b) and passive prosthetic
ot =T o H
£ o g feet (Figs. 5¢c and 5d).
R R T T T portraiits for walking with prosthetic feet and zero yaw fio
(e) (q2r; g2r) and (ggr2r, dgr2r) (® (g3r; 43r) coefficient have been presented in Figures 5c and 5d. Here,

Fig. 4: Phase portraits for the closed-loop system with -par‘Qe initial condition is taken at the end of the right stance

metric and nonparametric uncertainties duriiigconsecutive Phase on the nominal trajectory and it can be seen that the
steps of walking. asymptotically stable limit cycle of the nominal closeao

system seems to persist in the presence of compliant forces
and uncertainties.

expressed as

.. ) VIII. CONCLUSION
D¢(qy) dr + Hy(qr,df) = Bru

P This paper has presented a time-invariant and one-step
+ Z o (qr) N event-based controller, on the basis of left-right symgetr
1€ {contac pointy Iq5 for robust stabilization of periodic orbits fo3D bipedal
walking against external disturbances as well as paracreatd
nonparametric uncertainty. The results have been illtestran
63) a simulation model of ATRIAR.1 a highly underactuatetD
bipedal robot with point feet and series-compliant acttgato
whereDy(qy) € R'9*16 and By € R'9*6 represent the flight-  The Poincaré return maps f&D walking and running
phase mass-inertia and input matrices, respectively. Meare locomotion naturally consist of the robot's dynamics oweo t
Hy(qr,q4r) € R' denotes the corresponding Coriolis, censteps, that is, they include locomotion on both the left and
trifugal, gravity, spring and damper forces. Nepxt,c R3 is right legs. It follows that event-based controllers desigjion
the Cartesian coordinates of the contact péinih addition, the basis of the Poincaré return map will update paraméaters
A= (AP, MY, )" € R represents the forces acting on the two-step manner, that is, once every two steps of the robot.
point [ being given by the compliant, nonlinear and dynamiEactorization of these Poincaré return maps into the 4ight
ground model of [40], [39]. Moreover, the third term on théeft and left-to-right maps results in a periodically timarying
right-hand side of (63) uses the principle of the virtual kvordiscrete-time system with periadd-This approach leads to a
to represent the yaw friction term of (3), which is active wheperiodically time-varying one-step controller design kdeon.
point/ is in contact with the ground. Next, due to the existence of the large springs used in series
In the simulation, we consider80% and—40% parametric compliant actuators for energy efficiency and light legsréh
uncertainties invxicion (i.€., yaw friction coefficient) and is a wide range of time scales in the underlying continuous
spring damping ratio, respectively. In addition to theseapa dynamics. This yields inaccuracies in the Jacobians nestric
metric uncertainties, the PD feedback law of (62) is employeof the Poincaré maps which are calculated using numerical
Figures 5a and 5b depict the roll and right hip phase postradifferentiation algorithms based on a set of perturbat@nes.
for the closed-loop compliant model with point feet. The gha Additional uncertainty on the Poincaré section may arise

+ Z yaw friction term at contact poirit
le{contac point$
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because of parametric and nonparametric uncertaintidsein tvalking along they-axis of the world frame. In addition,

model and external disturbances acting on the robot. we define theposition-angular velocity symmetry matras
Regarding the parametric uncertainties corresponding tSg, := bolck diag’S,,S,} € R***. Using these definitions,

family of linear models rising from a set of perturbationues, (7) and the chain rule, it can be concluded that

the paper presented a robust one-step event-based centroll

consisting of two loops. The first loop employs a robust stati Epte(ge) = Spo Eyre(Se ge) S, (64)

update law for the Poincaré maps against numerical and pdia everyq. € Q., whereEy_ . is the extension of (7) for the

metric uncertainties. In particular, the paper presentexbast left leg in the coordinategq’, p'r)’. According to (6), let us

control formalism whereby a convex set of approximatiorgefine

to the Jacobian linearization is generated and a stalglizin

controller is designed through a set of LMIs. The secondYr_, (¢, ) :=

loop of the discrete action updates the parameters to gm@imi

the worst case performance, while considering the saturatigng

of the discrete-time controller for all possible disturbas

and polyhedral parametric uncertainties in the Poincet@mn Tior(g) =

maps. Finally, the paper extended the analytical results to

feedback laws arising from virtual constraints and HZD &3here D, r and D, are mass-inertia matrices for the ex-
. . 67 67
special members of this general class. tended model in the coordinateq,’,p}R)’ and (q’,p’fL)’, re-

In future work, the results of the paper will be implegyqctively. Similar to the proof of Part (1), it can be showatt

mented on the ATRIAS robot. It would be very interesting, L(ge) = S, Der(S. q.) S. for everyq. € Q.. This prop-

to develop one-step robust and stabilizing update lawsowtth o1y, together with (64) and straightforward calculatiomsly
considering the symmetry structure in the Poincaré arsalys that for everyq. € Q., Ty _r(q; ) = block diagS., S,.} x

addition, this can help us to develop a set of multiple P“é‘caer_),_(Se ¢-)S. which in turn completes the proof for the
sections and the corresponding event-based update fso”‘ﬁiﬁpact moedel (6).

within each step to stabilize periodic orbits of walking.

Ere(q) O4x4 O4x16

Der(a;) —E}L,Aqe)] o lDe,R@e)]

Doy (qr) —E}R,gqe)]l lpeuqe)]

Eire(q.) O4x4

O4x16

APPENDIXB
APPENDIXA PROOF OFTHEOREM 7
PROOF OFTHEOREM 1 Since (i) the nominal output functiohnem;(q) together

Part (1): LetKr(q,q) := 3¢’ Dr(q) ¢, KL == 3¢’ DL(q) ¢, Wwith the corrective and stabilizing terms vanishes on thstor
Vr(¢) and V. (¢q) denote the kinetic and potential energies); and (i) from S2 and S3hg,(i; Beo:) and hd;(7:; 3;) are
corresponding to the gravity, for ATRIAS during the rightinear in 5o, andg;, it can be concluded that on the periodic
and left stance phases, respectively. Symmetry in the 'mbairbit O, the corrective and stabilizing parameters are zero,
structure implies the invariance of the kinetic energy urile i.e., 35,; = Osxn,, and 37 = Osxny. Next, according to the
Saction, i.e.KL(q,q) = Kr(Sq,Sq) forevery(q',¢') € TQ, construction procedure of the output functions in (56) &8) (
which in turn results inDy(¢) = S Dr(Sq)S. This latter and 7, > 7mia, hypotheses H2 and H3 are satisfied for the
fact together with the formula of thék, j)'* element of the nominal parameters;,; and 5;.

Coriolis matrix, i.e., During phase € {R, L}, the output dynamics (60) can be
L3 0y Py Py rewritten as
kj ki 17 .
i 2 ; ( 0q; N an Iqx ) & %_f;(%ﬁco,iaﬁi) D;l(q)BFi(xaﬁCO,iaBi) =
implies thatC\ (¢,4) = S Cr(Sq,S¢)S. Furthermore, the ni (%, Beois Bi),  (65)
invariance of the potential energy under tBeaction, i.e., in which
Vi(g) = Vr(Sq), results inGL(g) = S Gr(Sq). Sim-
ilar result for the potential energy of the springs yields oy Ohi oy O (Ohi .
. _ . s nl(xvﬂco,uﬂz) - _Di 1T o (_ q) q
Kspringg = S KspringSg. In an analogous mannékgamperd = dq dq \ OJq
S' KgamperS4. In addition, if we defineS,, := —1 to consider Kp oh; . Kp
the symmetry for the angular velocity corresponding to the ¢ dq a- 6—2hi' (66)

yaw at the leg ends, theny, (¢, q) = S, wir(Sq. S¢) Which £ permore, assumptions S1-S3 imply that
in turn yields £ (q) = S, E5z(Sq) Sfor all (¢',¢')" € TQ.
These facts imply thafl, (¢, ¢) = S Hr(Sq, S§). hi(q; Beo,Ls BL) = Su hr(Sq; Sh Beot, Su L) (67)

Part (2): During the impact, we assume that the stanggiis |atter fact together with Part (1) of Theorem 1 yields
leg end is on the origin of the world frame. Since the

impact map is obtained based on the extended model, ngh m(; Beor, BL) = Sn 7(792(51'75}1 Beo,t, Sh L)
first define the symmetry matrix for the extended model as®’L /. DYNB=5S 2R(sss S

S. € RIS py s, = block diadS,S,}, whereS, = g (@ feor A1) D17 (0) h g o0 ShBeots S )
diag{—1,1,1} is the position symmetry matrixo consider x Dg'(Sq) B.

symmetry for the Cartesian coordinates of the leg end during (68)
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Finally, considering (65) and (68), it can be concluded that[16] J. K. Holm, D. Lee, and M. W. Spong, “Time-scaling trajaies of
passive-dynamic bipedal robot$toceedings of the IEEE International

BT(z,Beor; BL) = S BTr(Sx,Sp, Beor; Sh AL) Conference of Robotics & AutomatioRoma, Italy, 2007, pp. 3603-3608.
' ' [17] H. Dai and R. Tedrake, “Optimizing robust limit cyclesrflegged
which completes the pI‘OB'f. locomotion on unknown terrainProceedings of the 51st IEEE Interna-

tional Conference on Decision and ContrMaui, Hawaii, pp. 1207-1213,
December, 2012.
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