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Abstract—Models of robotic bipedal walking are hybrid, with
a differential equation describing the stance phase and a discrete
map describing the impact event, that is, the non-stance leg
contacting the walking surface. The feedback controllers for these
systems can be hybrid as well, including both continuous anddis-
crete (event-based) actions. This paper concentrates on the event-
based portion of the feedback design problem for3D bipedal
walking. The results are developed in the context of robustly
stabilizing periodic orbits for a simulation model of ATRIA S 2.1,
a highly underactuated 3D bipedal robot with series-compliant
actuators and point feet, against external disturbances aswell as
parametric and nonparametric uncertainty. It is shown that left-
right symmetry of the model can be used to both simplify and
improve the design of event-based controllers. Here, the event-
based control is developed on the basis of the Poincaré map,
linear matrix inequalities (LMIs), and robust optimal cont rol
(ROC). The results are illustrated by designing a controller that
enhances the lateral stability of ATRIAS 2.1.

I. I NTRODUCTION

T HE MAIN objective of this paper is to present a time-
invariant and event-based control scheme for robust

stabilization of periodic orbits for3D bipedal walking in
the presence of external disturbances as well as parametric
and nonparametric uncertainty. The results are developed and
illustrated on a simulation model of ATRIAS1 2.1 [1], [2] a
highly underactuated3D bipedal robot with point feet and
series-compliant actuators (see Fig. 1). During the single
support phase, the robot has13 degrees of freedom (DOF)
and7 degrees of underactuation (DOU). Bipedal walking can
be modeled as a system with impulse effects [3]- [18], which
is a special class of hybrid systems. Steady-state walking
locomotion corresponds to a periodic orbit in the model.

The most basic tool to investigate the stability of periodic
orbits for hybrid systems is the method of Poincaré sections
which replaces the flow of hybrid systems with a discrete-time
system given by the Poincaré return map, which maps the
evolution of the system’s state from a point on a hyperplane
transversal to the periodic orbit (called the Poincaré section
[19]- [21]) back to the hyperplane [5]. If the continuous
dynamics of the hybrid model depend on a set of adjustable
parameters, the approach of Poincaré sections can also be used

K. Akbari Hamed was supported by DARPA Contract W91CRB-11-1-0002
and J. W. Grizzle was supported by NSF grant ECCS-1231171.

K. Akbari Hamed (Corresponding Author) and J. W. Grizzle are with the
Electrical Engineering and Computer Science Department ofthe University
Michigan, Ann Arbor, MI, USA,{kavehah,grizzle}@umich.edu

1The name is an acronym which stands for Assume The Robot Is A Sphere.

to design stabilizing feedback controllers for periodic orbits
of the hybrid models [22], [23]. In particular, the parameters
can be updated by an event-based controller when trajectories
cross the Poincaré section. References [24]- [28] designed
linear event-based controllers for stabilization of periodic
walking and running on the basis of Jacobian linearizations
for the corresponding Poincaré return maps. However, there
are important problems when extending this approach to3D
bipedal robots with high degrees of underactuation and/or
compliant elements, such as ATRIAS. The Poincaré return
maps for3D walking and running consist of two steps, that is,
the mapping from right stance, to left stance, and back to right
stance (or the opposite order), which we write informally as

xk+2 = PR→R(xk, βk).

An event-based controller designed on this representation
changes the parameterβ in a two-step manner, that is once
per two steps as in [26]- [28]. Alternatively, the Poincarémap
can be “factored” as

xk+2 = PL→R(xk+1, βk+1), xk+1 = PR→L(xk, βk),

making explicit both leg transitions, in which case the param-
eter β can be now updated in a one-step manner, that is at
each step. However, the discrete model arising in this case
is periodically time-varying with period-2 [28], making the
controller design problem more challenging.

A second issue is the wide range of time scales in the
continuous dynamics, arising from the large springs in the
series-compliant actuators, the relatively heavy body, and
the light legs, which together render the robot’s dynamics
numerically stiff. This stiffness leads to uncertainty when the
Jacobians of the Poincaré map are calculated using numer-
ical differentiation algorithms such as two point symmetric
differences or least squares, both of which are sensitive to
the perturbation values used during calculation. Additional
uncertainty arises when either external disturbances act on the
robot’s dynamics (e.g., pushing the robot) or parametric and
nonparametric uncertainties are present in the model. In all
of these cases, the evolution of the system on the Poincaré
section is uncertain.

To overcome the above challenges, this paper proposes a
time-invariant one-step hybrid control scheme on the basis
of right-left symmetry, linear matrix inequalities (LMIs), and
robust optimal control (ROC). The continuous-time portionof
the hybrid controller employs a general class of time-invariant
and nonlinear feedback laws to interact with the bipedal
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robot in both the sagittal and frontal planes. These feedback
laws are assumed piecewise continuously differentiable; it
is further assumed that they are parameterized by a set of
finite-dimensional parameters referred to as the stabilizing
parameters. It is shown how symmetry leads to the ability to
design a general class of time-invariant one-step event-based
controllers. To robustly stabilize desired walking gaits,the
one-step event-based controller consists of two loops. Thefirst
loop, referred to as the robust stabilizer, introduces an LMI-
based static update law for the Poincaré maps designed to
be robust against numerical and parametric uncertainties.The
second loop of the discrete action aims to increase the basin
of attraction and robustness of the closed-loop system against
parametric uncertainty and to reject external disturbances
acting on the robot. In particular, the second loop, referred
to as the ROC, updates the parameters of the continuous-
time feedback laws by solving a min-max problem to optimize
the worst case performance, while considering the saturation
of the discrete-time controller for all possible disturbances
and polyhedral parametric uncertainties in the Poincaré return
maps. All of these results are illustrated on a simulation model
of ATRIAS 2.1.

The paper also extends the analytical results to feedback
laws arising from virtual constraints and hybrid zero dynamics
(HZD) as special members of this general class. Virtual
constraints are a set of holonomic constraints, defined as
output functions in the configuration space of the mechanical
system, used to coordinate the links of the robot and thereby
to reduce the dimension of the system. These constraints
are asymptotically satisfied through the action of a feedback
controller within the step. They have been employed for planar
[5], [6, Chap.5] and rigid3D bipedal robots [8], [26], [28],
and a rigid3D monopedal runner [27]. One part of the LMI
results was already presented in [29] for two-step event-based
update laws. This paper adds the symmetry in the hybrid
model, continuous-time feedback laws, Poincaré maps and
corresponding Jacobian matrices to present a general classof
one-step correction laws. Next, it extends the LMI stabilization
for the one-step laws and adds the ROC formalism to increase
the basin of attraction and to reject external disturbances. In
addition, it extends the results to the HZD hybrid controller.

This paper is organized as follows. Section II presents
the Lagrangian and impact models for ATRIAS. Section III
addresses the symmetry between the right and left stance
phases. Section IV presents the proposed nonlinear hybrid
control strategy on the basis of one-step event-based update
laws. In Section V, a robust one-step event-based update law
is presented on the basis of LMI and ROC. It also addresses
the push recovery and robust stabilization issues. SectionVI
extends the analytical results to feedback laws, arising from
the virtual constraints. Section VII presents detailed numerical
simulations to confirm the analytical results. Section VIII
contains concluding remarks.

II. H YBRID MODEL OF3D WALKING

The evolution of the mechanical system during3D walking
can be expressed by ahybrid systemcomposed of twocon-
tinuous phasesto represent the right and left stance phases,

Fig. 1: ATRIAS 2.1, an underactuated3D bipedal robot with
series-compliant actuators and point feet. The isometric (left),
back (middle) and side (right) views are shown with the
associated configuration variables.

and twodiscrete transitionsbetween the continuous phases to
model the right-to-left and left-to-right transitions given by the
impact of the non-stance legs [30]. Thedouble support phase,
corresponding to both legs being on the ground during impact,
is assumed to be instantaneous.

A. Basic definitions

This section presents basic definitions to describe the hybrid
model of walking by ATRIAS. To achieve this goal, a con-
venient set of configuration variables is chosen. During the
single support phase, the mechanical system has13 DOF. In
particular, assume thato0x0y0z0 is an inertial frame attached
to the ground which is referred to as theworld frame. Next,
attach thetorso frameoTxTyTzT to the torso link with the
origin at its base. The orientation of the torso frame with
respect to the world frame can be expressed by the rotation
matrix R0

T ∈ SO(3) as

R0
T := Rz(qzT)Ry(qyT)Rx(qxT),

whereRx, Ry andRz represent the basic rotations about the
x, y andz axes, respectively. Moreover,qzT, qyT andqxT are
referred to as theyaw, roll andpitch angles. According to Fig.
1, the angles of the right and left hips relative to the torso
frame are denoted byq3R and q3L , respectively. In addition,
the angles of the shin and thigh links relative to the torso are
represented byq1R andq2R for the right leg, andq1L andq2L

for the left leg (see once again Fig. 1). We note that since the
four-bar linkage of the leg structure forms a parallelogram,
it consists of two pairs of parallel links and henceq1R and
q1L denote the angles of the shin links with respect to the
torso frame. The hip motors are connected to the body through
fixed gear ratios and we denote their torques byu3R andu3L.
Consequently, the angles of the hip motors can be determined
based onq3R andq3L . On the other hand, the motors driving
the legs in the sagittal plane are connected throughsprings
(i.e., series-elastic actuators). For each of these motors, the
angle of the output shaft of the harmonic drive is represented



REGULAR PAPER SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS 3

by the subscript “gr”. In particular, we introduceqgr1R, qgr2R,
qgr1L , andqgr2L . Furthermore,u1R, u2R, u1L andu2L denote
the torques generated by the corresponding motors. Finally,
the generalized coordinates of the mechanical system during
the right and left stance phases can be expressed as

q := (qzT, qyT, qxT, q1R, q2R, q1L , q2L,

qgr1R, qgr2R, q3R, qgr1L, qgr2L , q3L)
′ ∈ Q,

in which Q is the configuration spacerelated to physically
feasible configurations and prime represents matrix transpose.
We note that the first seven components ofq are unactuated
whereas the remaining six components are actuated. The state
vector of the system is defined asx := (q′, q̇′)′ ∈ X ⊂ R26,
whereX is the state manifoldtaken as thetangent bundle
of Q, i.e., X := TQ := {(q′, q̇′)′| q ∈ Q, q̇ ∈ R

13}.
Furthermore,u := (u1R, u2R, u3R, u1L, u2L, u3L)

′ ∈ U denotes
the torque input, whereU ⊂ R6 is the set of admissible control
inputs.

Throughout this paper, the subscripts “R” and “L” stand for
right and left, respectively. In addition, the subscripts “R → L”
and “L → R” will be used to represent the right-to-left and
left-to-right impact maps. According to Fig 1, letpfR :=
(pxfR, p

y
fR, p

z
fR)

′ ∈ R3 and pfL := (pxfL , p
y
fL, p

z
fL)

′ ∈ R3

denote the Cartesian coordinates of the right and left point
feet with respect to the world frame, where the subscripts “fR”
and “fL” denote the right and left feet, respectively. Next, the
right-to-left switching manifoldcan be defined asSR→L :=
{(q′, q̇′)′ ∈ TQ| pzfL(q) = 0}, on which the right-to-left
impact occurs during walking on flat ground. In an analogous
manner, we can defineSL→R := {(q′, q̇′)′ ∈ TQ| pzfR(q) = 0}
as theleft-to-right switching manifold.

B. Single support phase

The evolution of the mechanical system during the single
support phase can be expressed by

D(q) q̈ +H(q, q̇) = B u, (1)

in which D(q) ∈ R13×13 denotes the positive-definite mass-
inertia matrix andB ∈ R13×6 represents the input matrix
with the property rankB = dim U = 6. Moreover, the vector
H(q, q̇) in (1) contains the Coriolis and centrifugal terms, the
gravity vector, and the spring-damper forces arising from the
compliant elements. In particular,

H(q, q̇) := C(q, q̇) q̇ +G(q) +Kspringq +Kdamperq̇, (2)

whereC(q, q̇) q̇ ∈ R13 contains the Coriolis and centrifugal
terms, andG(q) ∈ R13 is the gravity vector.Kspringq ∈ R13

andKdamperq̇ ∈ R13 denote the force terms associated with
the series elastic elements.

C. Single support phase with yaw friction about the stance
leg end

The objective of this section is to consider the yaw friction
about the stance leg end during the right stance phase. An
analogous analysis can be presented during the left stance
phase. Letωz

fR ∈ R be the angular velocity corresponding

to the yaw motion of the right foot with respect to the world
frame. It is assumed that the yaw friction about the stance leg
end can be expressed as the viscous model

ffriction(q, q̇) := γfriction ω
z
fR(q, q̇) := γfriction E

z
fR(q) q̇, (3)

whereγfriction > 0 is the viscous friction coefficient and

Ez
fR(q) :=

∂ωz
fR

∂q̇
∈ R

1×13. (4)

(Uncertainty in the friction coefficient is addressed in the
control design.) Considering the principle of virtual work, the
vectorH(q, q̇) in (2) together with the friction at the stance
leg end is revised as follows2

H(q, q̇) := C(q, q̇) q̇ +G(q) +Kspringq +Kdamperq̇

+ γfriction E
z′

fR(q)E
z
fR(q) q̇.

(5)

Finally, the evolution of the mechanical system during the right
and left stance phases can be represented byẋ = fR(x) +
gR(x)u and ẋ = fL(x) + gL(x)u.

D. Impact model

This section addresses the impact maps during the right-to-
left and left-to-right transitions. It is assumed that the impacts
are instantaneous and inelastic. In addition, we assume that
the impact preserves the yaw orientation of the swing leg end.
To develop the impact map during the left-to-right transition,
we make use of theextended model, in which the generalized
coordinates vector of the mechanical system is augmented by
adding the Cartesian coordinates of the stance leg end. An
analogous approach can be presented during the right-to-left
transition. Following the approach of references [30] and [28],
(1) conservation of momentum during the impact together with
(2) the swing leg neither slipping nor rebounding, and (3)
preserving the swing foot orientation results in
[

q̇+e

δFR

]

=

[

De(q
−
e ) −E′

fR,e(q
−
e )

EfR,e(q
−
e ) 04×4

]−1 [

De(q
−
e ) q̇

−
e

04

]

. (6)

In (6), qe := (q′, p′fL)
′ ∈ Q × R3 =: Qe and q̇e :=

(q̇′, ṗ′fL)
′ ∈ R16 denote the extended generalized coordinates

and velocities, respectively.δFR ∈ R4 is also the Lagrange
multipliers vector referred to as theimpulsive forces and
moment at the right leg end. The subscript “e” represents the
quantities related to the extended model. The superscripts“−”
and “+” denote the quantities just before and after the impact.
Furthermore,De ∈ R16×16 is the extended mass-inertia matrix
and EfR,e ∈ R

4×16 is the extended Jacobian matrix at the
swing (right) leg end as follows

EfR,e(qe) :=

[ ∂pfR

∂qe
(qe)

∂ωz
fR

∂q̇e
(qe)

]

. (7)

We note that the angular velocityωz
fR is linear with respect

to q̇e. Thus, according to [8], [31] the position and orientation
of the foot being fixed during impact can be expressed as

2According to the principle of virtual work, the friction term appears as
Ez′

fR(q) ffriction(q, q̇) = γfriction E
z′

fR(q)E
z
fR(q) q̇ in the dynamical equation.
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EfR,e(qe) q̇
+
e = 04. Finally, the right-to-left and left-to-right

impact maps can be expressed as∆R→L : SR→L → TQ and
∆L→R : SL→R → TQ.

E. Hybrid model

The overall model of3D walking can be expressed as a
hybrid system consisting of two continuous phases and two
discrete transitions between them as follows

ΣR :

{

ẋ = fR(x) + gR(x)u, x− /∈ SR→L

x+ = ∆R→L(x
−), x− ∈ SR→L

ΣL :

{

ẋ = fL(x) + gL(x)u, x− /∈ SL→R

x+ = ∆L→R(x
−), x− ∈ SL→R.

(8)

III. SYMMETRY BETWEEN THE RIGHT AND LEFT STANCE

PHASES

The objective of this section is to present the symmetry
between the right and left stance phases. LetO ⊂ X be a
symmetric periodic orbit corresponding to ATRIAS walking
along they-axis of the world frame, the direction of forward
walking as indicated in Fig. 1. Then,O can be decomposed as
O = OR ∪OL, in whichOR andOL are the orbits during the
right and left stance phases, respectively. In addition, assume
that T ∗ is the common elapsed time to complete a step on
OR andOL . The gait being symmetric along they-axis of the
world frame means that onO

q(t+ T ∗) = Sq(t), ∀ t, (9)

in which S := block diag{S1,S2} ∈ R13×13 is the symmetry
matrix. In addition, S1 := diag{−1,−1, 1} considers the
symmetry for the yaw, roll and pitch angles of the torso link
during consecutive steps onO and S2 ∈ R10×10 is a matrix
that swaps the role of{q1R, q2R, qgr1R, qgr2R, q3R} (relative
right variables) by{q1L, q2L , qgr1L, qgr2L , q3L} (relative left
variables) and vice versa. For later purposes, we remark that
S S= I13×13.

Theorem 1 (Symmetry in the Hybrid Model):Let DR, DL,
CR, CL , GR, GL , HR, andHL denote the dynamic terms during
the right and left stance phases3. Moreover, define

S̄ := block diag{S,S} ∈ R
26×26 (10)

as the full-state symmetry matrix. Assume that the model of
ATRIAS is symmetric with respect to theyz-plane of the torso
frame. Then, the following statements are true.

1) For every (q′, q̇′)′ ∈ TQ, DL(q) = S′ DR(Sq)S,
CL(q, q̇) = S′ CR(Sq,Sq̇)S, GL(q) = S′ GR(Sq), and
HL(q, q̇) = S′ HR(Sq,Sq̇).

2) For everyx− ∈ SL→R,

∆L→R(q
−, q̇−) = S̄∆R→L(Sq−,Sq̇−).

Proof: See Appendix A.

3Sinceq andu vectors are same for the right and left stance phases, the
input matrixB is same during the right and left single support phases.

IV. H YBRID CONTROL STRATEGY ON THE BASIS OF

ONE-STEP EVENT-BASED UPDATE LAW

In order to asymptotically stabilize periodic gaits for3D
walking by ATRIAS, this section presents a time-invariant hy-
brid control strategy on the basis of symmetry. Thecontinuous-
time portion of the hybrid controller employs a general class
of time-invariant feedback laws assumed to be piecewise con-
tinuously differentiable. Furthermore, they are parameterized
by a set of finite-dimensional parameters referred to as the
stabilizing parameters. It is also assumed that there exists a
set of nominal parameters for which the periodic orbitO is an
integral curve of the closed-loop hybrid model. Thediscrete-
timeportion of the hybrid controller is designed on the basis of
left-right symmetry to update the parameters of the feedback
laws in a one-step manner.

A. Continuous-time portion of the hybrid control strategy

This section allows for a general class of piecewise-defined
and parameterized continuous-time feedback laws for which
asymptotic and robust stabilization will be addressed in Sec-
tions IV-D and V, respectively. The motivation behind a
piecewise-defined feedback law is that we would like to
begin attenuating the effects of an external push by updating
controller parameters within the step the disturbance occurs.
If the parameter update is performed either at the beginningor
end of the current step, the controller is effectively postponing
action to the step following the disturbance. Such a control
policy can be expressed as a feedback law whose parameters
are updated when a real-valued function of the state variables,
referred to as thephasing term, passes a specific threshold
value and hence, the feedback laws are piecewise-defined. In
particular, before the phasing term reaches the threshold value,
the controller employs a set of nominal parameters corre-
sponding to the periodic orbit, whereas when the phasing term
reaches the threshold value for stabilization, the parameters
are updated. To present the main idea, we assume that the
following hypothesis is satisfied for the periodic orbitO.

H1) There areC1 real-valued functionsτR(q) and τL(q),
referred to as thephasing terms, which are strictly
increasing functions of time onOR andOL , respectively.
Moreover, for everyq ∈ Q and i, j ∈ {R, L} with the
propertyi 6= j,

τi(q) = τj(Sq). (11)

Hypothesis H1 is not restrictive and it implies the existence
of strictly increasing holonomic quantities which are invariant
under theS action during the right and left stance phases of
walking. For typical walking motions,τi(q), i ∈ {R, L} can
be chosen as the horizontal displacement of the center of mass
(COM) in the sagittal plane relative to the stance leg end. For
later purposes, we assume that on each phase of the periodic
orbit, the phasing termτi(q), i ∈ {R, L} belongs to the set
[τmin, τmax), where τmin < τmax. Next, let BR ⊂ Rp and
BL ⊂ Rp be finite-dimensional parameter spaces, referred to
as theright and left stabilizing parameter spaces, respectively,
for somep > 0. For everyi ∈ {R, L}, define a family of
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piecewise-defined and parameterized feedback lawsΓi : X ×
Bi → U by the following policy

Γi(x, βi) :=

{

fcni(x, β∗
i ), τi(q) < τth

fcni(x, βi), τi(q) ≥ τth,
(12)

whereβi ∈ Bi denote thestabilizing parametersto be used for
τi(q) ≥ τth. In (12), fcni : X ×Bi → U for i ∈ {R, L} areC1

functions with respect to(x, βi) on X × Bi. Moreover,β∗
i ∈

Bi, i ∈ {R, L} denotes a set ofnominal stabilizing parameters
which are used forτi(q) < τth. τth ∈ (τmin, τmax) represents a
to-be-determined threshold value ofτi. Next, associated with
τi andτth, the event-based control surface during phasei can
be defined as follows

Tth,i := {(q′, q̇′)′ ∈ X| τi(q) = τth} (13)

on which the parameters are updated from the nominal value
β∗
i to βi for stabilization and disturbance rejection. For later

purposes, this surface will be taken as the Poincaré section. It
is further assumed that the following hypothesis is satisfied.

H2) On the surfaceTth,i, i ∈ {R, L},

(i) fcni(x, β
∗
i ) = fcni(x, βi)

(ii )
∂fcni
∂x

(x, β∗
i ) =

∂fcni
∂x

(x, βi)

(iii )
∂fcni
∂βi

(x, β∗
i ) = 06×p,

which in turn implies that the feedback lawΓi is C1 with
respect to(x, βi) on X × Bi.

By employing the parameterized feedback law (12), the
closed-loop hybrid model of walking (8) can be expressed
as

Σcl,R,βR :

{

ẋ = fcl,R(x, βR), x− /∈ SR→L

x+ = ∆R→L(x
−), x− ∈ SR→L

Σcl,L,βL :

{

ẋ = fcl,L(x, βL), x− /∈ SL→R

x+ = ∆L→R(x
−), x− ∈ SL→R,

(14)

in which fcl,i(x, βi) := fi(x)+gi(x) Γi(x, βi) for i ∈ {R, L}.
For simplicity, we denote the parameterized hybrid model of
(14) by H(Σcl,R,βR,Σcl,L,βL ). Throughout this paper, we shall
assume that the following hypothesis is met.

H3) Associated with the nominal stabilizing parametersβ∗
i ∈

Bi, i ∈ {R, L}, the periodic orbitO = OR ∪ OL is an
integral curve of the hybrid systemH(Σcl,R,β∗

R
,Σcl,L,β∗

L
).

Moreover, for everyi, j ∈ {R, L} and i 6= j, the orbit
Oi is transversal to the switching manifoldSi→j and
also to the event-based control surfaceTth,i. In particular,
{x∗

i } := Oi ∩ Si→j and {x∗
th,i} := Oi ∩ Tth,i are

singletons, whereOi is the set closure ofOi.

The following theorem presents the symmetry between the
right and left feedback laws on the periodic orbitO.

Theorem 2 (Symmetry in Continuous-Time Feedback Laws):
Assume that the model of ATRIAS is symmetric with respect
to theyz-plane of the torso frame and hypotheses H1-H3 are

satisfied. Then, the periodic orbit is symmetric in the sense
of (9) if and only if for every(q′, q̇′)′ ∈ OL ,

B fcnL(q, q̇, β
∗
L ) = S′ B fcnR(Sq,Sq̇, β∗

R). (15)

Proof: (Necessity Part) Under the symmetry condition of
the periodic orbit, for every(q′, q̇′)′ ∈ OL , it can be concluded
that ((Sq)′, (Sq̇)′)′ ∈ OR. This together with hypotheses H1
and H3 implies that

DL(q) q̈ +HL(q, q̇) = B fcnL(q, q̇, β
∗
L ) (16a)

DR(Sq)S q̈ +HR(Sq,Sq̇) = B fcnR(Sq,Sq̇, β∗
R). (16b)

Furthermore, from (16a), in view of Part (1) of Theorem 1, it
follows that

S′ DR(Sq)Sq̈ + S′ HR(Sq,Sq̇) = B fcnL(q, q̇, β
∗
L ). (17)

Comparing (17) and (16b) yields (15) for every(q′, q̇′)′ ∈ OL .
(Sufficiency Part) Equations (16a) and (15) together with

Part (1) of Theorem 1 result in (16b). This in combination with
uniqueness of solution, rising from hypothesis H2, impliesthat
if (q(t), q̇(t)), t ≥ 0 is the solution of the left stance phase on
OL , then (Sq(t),Sq̇(t)), t ≥ 0 is the corresponding solution
on OR which completes the proof.

B. Two-step Poincaré map

This section presents the parameterized two-step Poincar´e
return map for the hybrid model (14). According to the
construction procedure of the continuous-time feedback laws
in Section IV-A, the two-step Poincaré map can be defined on
Tth,i, i ∈ {R, L}. We note that dimTth,i = dim(X ) − 1 = 25.
Without loss of generality, we study the right-to-right Poincaré
map for asymptotic and robust stabilization. To achieve this
goal, for a given initial conditionx(0) and a given stabi-
lizing parameterβi ∈ Bi, i ∈ {R, L}, let ϕi(t;x(0), βi)
denote the unique solution of the parameterized closed-loop
differential equationẋ = fcl,i(x, βi) with the initial condition
x(0) over the maximal interval of existence4. Next, for every
x(0) ∈ X , the flowF−

i : X → Tth,i is defined as the solution
ϕi(t;x(0), β

∗
i ), evaluated onTth,i. In particular,

F−
i (x(0)) := ϕi

(

T−
i (x(0));x(0), β∗

i

)

,

in which T−
i (x(0)) := inf{t ≥ 0|ϕi(t;x(0), β

∗
i ) ∈ Tth,i} rep-

resents the time of the first impact ofϕi with the hypersurface
Tth,i. In an analogous manner, for everyi 6= j ∈ {R, L},
x(0) ∈ Tth,i andβi ∈ Bi, the flowF+

i : Tth,i × Bi → Si→j

is defined as the solutionϕi(t;x(0), βi), evaluated onSi→j ,
i.e.,

F+

i (x(0), βi) := ϕi

(

T+

i (x(0), βi);x(0), βi

)

,

where T+

i (x(0), βi) := inf{t ≥ 0|ϕi(t;x(0), βi) ∈ Si→j}
denotes the time of the first impact ofϕi with the switching
manifoldSi→j . Now, we are in a position to present the two-
step Poincaré map. Letz represent local coordinates for the
25-dimensional hypersurfaceTth,i. In particular, there exist

4Hypothesis H2 implies the uniqueness of the solutions.
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projection and lift mapsπproj,i andπlift ,i, i ∈ {R,L} such that
for everyx ∈ Tth,i,

z = πproj,i(x) (18a)

x = πlift ,i(z). (18b)

The right-to-right Poincaré mapPR→R : Tth,R×BR×BL → Tth,R

can then be defined as

PR→R(z, βR, βL) := πproj,R ◦ F−
R ◦∆L→R

◦ F+

L

(

F−
L ◦∆R→L ◦ F+

R (πlift,R (z), βR) , βL
)

, (19)

where “◦” denotes the function composition andβi, i ∈ {R, L}
is employed forτi(q) ≥ τth,i during phasei. According to
the construction procedure of the continuous feedback laws
(12) and hypothesis H3,PR→R(z

∗
R, β

∗
R, β

∗
L ) = z∗R, wherez∗R :=

πproj,R(x
∗
th,R). For later purposes, let

zk+2 = PR→R(zk, βk) (20)

represent a discrete-time system defined on the basis of the
right-to-right Poincaré mapPR→R given in (19). Here,k
denotes the step number which is updated on the event-based
control surfaceTth,i, i ∈ {R,L}. In order to have a compact
equation,βk ∈ R2p also includes both the right and left
stabilizing parameters.β∗ is the corresponding set of nominal
parameters associated withO. Next, linearization of (20) about
(z∗R, β

∗) results in

δzk+2 = AR→R δzk +BR→R δβk, (21)

whereδzk := zk − z∗R, δβk := βk − β∗, AR→R ∈ R25×25 and
BR→R ∈ R25×2p.

C. Symmetry in the Poincaré maps and Jacobian matrices

This section addresses the symmetry among the Poincaré
maps and the corresponding Jacobian matrices to present the
one step correction law in Section IV-D. From Section IV-B,z
is a set of local coordinates forTth,i, i ∈ {R, L}. By defining
δx := x − x∗

th,i ∈ R26, δz := z − z∗i ∈ R25 and z∗i :=
πproj,i(x

∗
th,i), while considering the projection and lift maps in

(18), it can be concluded that

δx =
∂πlift ,i

∂z
(z∗i ) δz (22a)

δz =
∂πproj,i

∂x
(x∗

th,i) δx (22b)

∂πproj,i

∂x
(x∗

th,i)
∂πlift ,i

∂z
(z∗i ) = I25×25. (22c)

Next, (21) in the extended coordinatesδx can be expressed as

δxk+2 = Ae
R→R δxk +Be

R→R δβk, (23)

in which

Ae
R→R :=

∂πlift,R

∂z
(z∗R)AR→R

∂πproj,R

∂x
(x∗

th,R) ∈ R
26×26 (24a)

Be
R→R :=

∂πlift,R

∂z
(z∗R)BR→R ∈ R

26×2p (24b)

are the extended Jacobian matrices. In this section, we assume
that the following hypothesis is satisfied for the feedback laws
of (12).

H4) There exists matrixSβ ∈ Rp×p such thatSβ Sβ = Ip×p

and for everyx ∈ X andβL ∈ BL,

B fcnL(x, βL) = S′ B fcnR(S̄x,Sβ βL). (25)

It is remarkable that the symmetric condition of the periodic
orbit O together with hypotheses H1-H3 implies (15), which
is fulfilled onO. However, hypothesis H4 is a special require-
ment to be satisfied for allx ∈ X andβL ∈ BL. In addition,
(15) and hypothesis H4 imply that

β∗
R = Sβ β

∗
L , β∗

L = Sβ β
∗
R. (26)

The following theorem obtains the left-to-left and left-to-right
Jacobians based on the right-to-right and right-to-left5 ones.

Theorem 3 (Symmetry in the Jacobian Matrices):Assume
that the model of ATRIAS is symmetric with respect to the
yz-plane of the torso frame. Suppose further that the periodic
orbit O is symmetric and hypotheses H1-H4 are satisfied.
Then,

(i) Ae
L→R = S̄Ae

R→L S̄, Be
L→R = S̄Be

R→L Sβ

(ii ) Ae
L→L = S̄Ae

R→R S̄,
(27)

whereS̄ was defined in (10).
Proof: The linearization of the extended right-to-left

Poincaré map can be given by6

δxk+1 = Ae
R→L δxk +Be

R→L δβR,k, (28)

where δβR,k represents the right components ofδβ applied
during thekth step. In an analogous manner,

δxk+2 = Ae
L→R δxk+1 +Be

L→R δβL,k+1, (29)

is the linearization of the extended left-to-right Poincaré map
andδβL,k+1 is the corresponding components applied during
left stance (k + 1th step). Next, (28), (29) and

δβk =

[

δβR,k

δβL,k+1

]

,

while considering (23), yieldAe
R→R = Ae

L→R Ae
R→L and

Be
R→R =

[

Ae
L→R Be

R→L Be
L→R

]

.

Similar reasoning also results inAe
L→L = Ae

R→L A
e
L→R and

Be
L→L =

[

Be
R→L Ae

R→L B
e
L→R

]

.

Moreover, Part (1) of Theorem 1 together withS = S−1,
S̄= S̄

−1
and hypothesis H4 yields

fL(x) =

[

q̇

−D−1

L (q)HL(q, q̇)

]

=

[

S−1 Sq̇

−S−1 D−1

R (Sq) (S′)−1 S′ HR(Sq,Sq̇)

]

= S̄fR(S̄x)

5The right-to-left Poincaré map is defined fromTth,R during right stance to
Tth,L during left stance. Similar definitions can be presented forthe left-to-
right as well as the left-to-left Poincaré maps.

6According to hypotheses H1-H3 and [6, p. 89], the Poincaré maps areC1

in an open neighborhood of the periodic orbitO.
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and

gL(x) ΓL(x, βL) =

[

013×1

D−1

L (q)B ΓL(x, βL)

]

=

[

013×1

S−1 D−1

R (Sq) (S′)−1 S′ B ΓR(S̄x,Sβ βL)

]

= S̄gR(S̄x) ΓR(S̄x,Sβ βL),

which in turn implies that

fcl,L(x, βL) = S̄fcl,R(S̄x,Sβ βL). (30)

Next, from (11) and (13), it can be concluded that for every
x ∈ Tth,L, S̄x ∈ Tth,R. An analogous result can also be
presented for the switching manifoldsSR→L andSL→R. This
in combination with (30) results inF−

L (x) = S̄F−
R (S̄x) and

F+

L (x, βL) = S̄F+

R (S̄x,Sβ βL). The extended right-to-left and
left-to-right Poincaré maps can then be expressed as

P e
R→L(x, βR) := F−

L ◦∆R→L ◦ F+

R (x, βR)

P e
L→R(x, βL) := F−

R ◦∆L→R ◦ F+

L (x, βL)

for which, the following property is fulfilled7

P e
L→R(x, βL) = F−

R ◦∆L→R ◦ F+

L (x, βL)

= F−
R ◦∆L→R

(

S̄F+

R (S̄x,Sβ βL)
)

= F−
R

(

S̄∆R→L ◦ F+

R (S̄x,Sβ βL)
)

= S̄F−
L ◦∆R→L ◦ F+

R (S̄x,Sβ βL)

= S̄P e
R→L(S̄x,Sβ βL).

(31)

Next, according to (31) and (26),

∂P e
L→R

∂x
(x∗

th,L, β
∗
L ) = S̄

∂P e
R→L

∂x
(x∗

th,R, β
∗
R) S̄

∂P e
L→R

∂βL
(x∗

th,L, β
∗
L ) = S̄

∂P e
R→L

∂βR
(x∗

th,R, β
∗
R)Sβ.

In particular,Ae
L→R = S̄Ae

R→L S̄, Be
L→R = S̄Be

R→L Sβ and

Ae
R→R = Ae

L→R Ae
R→L = S̄Ae

R→L S̄Ae
R→L

Ae
L→L = Ae

R→L A
e
L→R = Ae

R→L S̄Ae
R→L S̄

which completes the proof.

D. Time-invariant one-step event-based controller

The objective of this section is to present a time-invariant
and one-step event-based controller based on the symmetry of
the Poincaré maps. For this goal, assume that the following
hypothesis is satisfied for the projection and lift maps in (18).
H5) There exists matrixSz ∈ R25×25 such thatSz Sz =

I25×25 and

πproj,L(x) = Sz πproj,R(S̄x), ∀x ∈ Tth,R

πlift,L (z) = S̄πlift,R(Sz z), ∀z ∈ R
25.

(32)

We remark that̄S∈ R26×26 is the full-state symmetry matrix
whereasSz ∈ R25×25 represents the symmetry matrix for the
z (local) coordinates on the Poincaré sectionsTth,i, i ∈ {R,L}.
Furthermore, hypothesis H5 for a symmetric periodic orbitO
immediately implies thatz∗L = Sz z

∗
R andz∗R = Sz z

∗
L .

7We remark that̄SS̄= I26×26.

Theorem 4 (One-Step Event-Based Law):Assume that the
model of ATRIAS is symmetric with respect to theyz-plane
of the torso frame. Moreover, suppose that the periodic orbit
O is symmetric and hypotheses H1-H5 are satisfied. Then,

PR→R(z, βR, βL) = Sz PR→L (Sz PR→L(z, βR),Sβ βL) . (33)

In addition, let κR(z̄) be a continuous (resp. continuously
differentiable) function such that (i)κR(z

∗
R) = β∗

R and (ii) z∗R
is asymptotically (resp. exponentially) stable for the following
one-step map8

z̄k+1 = Fone-step(z̄k) := Sz PR→L(z̄k, κR(z̄k)). (34)

Then,z∗R is asymptotically (resp. exponentially) stable for (20),
in which

βk =

[

κR(zk)

Sβ κR (Sz PR→L(zk, κR(zk)))

]

. (35)

Proof: Let

PR→L(z, βR) := πproj,L ◦ P
e
R→L(πlift,R (z), βR)

PL→R(z, βL) := πproj,R ◦ P e
L→R(πlift,L (z), βL).

From hypotheses H1-H5 and (31), it can be concluded that

PL→R(z, βL) = πproj,R ◦ P e
L→R(πlift,L (z), βL)

= πproj,R
(

S̄P e
R→L(S̄πlift,L (z),Sβ βL)

)

= πproj,R
(

S̄P e
R→L(πlift,R (Sz z),Sβ βL)

)

= Sz πproj,L ◦ P
e
R→L(πlift,R (Sz z),Sβ βL)

= Sz PR→L(Sz z,Sβ βL).

(36)

This latter equation together withPR→R := PL→R ◦ PR→L

implies (33). Next, usingSβ Sβ = Ip×p and (35), the evolution
of the right-to-right discrete system in (20) can be expressed
as

z̄k+2 = Fone-step◦ Fone-step(z̄k). (37)

Standard converse Lyapunov theorems imply the existence of
a continuous functionVone-step : None-step → R≥0 such that
Vone-step(z

∗
R) = 0, Vone-step(z̄) > 0 andVone-step(Fone-step(z̄)) −

Vone-step(z̄) < 0 for all z̄ ∈ None-step\ {z∗R}, whereNone-step⊂
R25 is an open neighborhood ofz∗R. SinceFone-step(z

∗
R) = z∗R

andFone-step(.) is continuous,None-stepcan be chosen such that
Fone-step(z̄) ∈ None-stepfor all z̄ ∈ None-step. Consequently,

Vone-step(Fone-step◦ Fone-step(z̄))− Vone-step(z̄)

= Vone-step(Fone-step◦ Fone-step(z̄))− Vone-step(Fone-step(z̄))

+ Vone-step(Fone-step(z̄))− Vone-step(z̄)

< 0, ∀z̄ ∈ None-step\ {z
∗
R}.

(38)

Thus, Vone-step is a Lyapunov function for (37) which in
turn completes the proof of asymptotic stability. For expo-
nential stability, according to the converse Lyapunov theo-
rem, there are constantsc1, c2, c3 > 0 such thatc1‖z̄ −
z∗R‖

2 ≤ Vone-step(z̄) ≤ c2‖z̄− z∗R‖
2 andVone-step(Fone-step(z̄))−

8In our notation,z̄k := zk during the right stance phase andz̄k := Sz zk
during the left stance phase.
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Vone-step(z̄) ≤ −c3‖z̄− z∗R‖
2 for all z̄ ∈ None-step. Next, similar

to (38),

Vone-step(Fone-step◦ Fone-step(z̄))− Vone-step(z̄)

≤ −c3‖z̄ − z∗R‖
2 − c3‖Fone-step(z̄)− z∗R‖

2

≤ −c3‖z̄ − z∗R‖
2 ∀z̄ ∈ None-step

which yields exponential stability.
Remark 1 (Application of the One-Step Event-Based Law):

Theorem 4 presents the right-to-right Poincaré return map
in terms of the one-step map. Furthermore, assume thatzk
and zk+1 represent the corresponding coordinates on the
Poincaré sections during the right (i.e.,kth) and left (i.e.,
k + 1st) steps, respectively. According to Theorem 4, the
event-based lawsβR = κR(zk) and βL = Sβ κR(Sz zk+1)
asymptotically (exponentially) stabilize the periodic orbit O
for the closed-loop system9.

V. ROBUST ONE-STEP EVENT-BASED CONTROL ACTION

In order to robustly stabilize periodic orbits for3D walking
against numerical and parametric uncertainties as well as
external disturbances acting on the robot, this section presents
a one-step correction law consisting of two loops. The first
loop, referred to as therobust stabilizer, introduces an LMI-
based time-invariant update law for the one-step map (34)
that is designed to be robust against numerical and parametric
uncertainties. The objective of the second loop of the discrete
action is to increase the basin of attraction as well as the
robustness of the closed-loop system against parametric un-
certainty and also to reject external disturbances acting on the
robot.

A. Robust stabilization

To robustly and asymptotically stabilize the periodic orbit O
against polytopic uncertainties arising from numerical approx-
imation of the Jacobian matrices for the corresponding one-
step map, this section presents a discrete and static update
law, based on LMIs, for the stabilizing parameters of the
continuous-time feedback laws (12). There is no closed-form
expression for the25-dimensional Poincaré return map and
consequently, to design event-based update laws, we make
use of Jacobian linearization of the Poincaré map. Moreover,
the Jacobians are obtained using numerical differentiation,
specifically, two-point symmetric differences given by

∂PR→L

∂zi
(z∗R, β

∗
R) =

1

2ε

(

PR→L(z
∗
R +∆zi, β

∗
R)− PR→L(z

∗
R −∆zi, β

∗
R)
)

∂PR→L

∂βi

(z∗R, β
∗
R) =

1

2ε

(

PR→L(z
∗
R, β

∗
R +∆βi)− PR→L(z

∗
R, β

∗
R −∆βi)

)

where∆zi := ε ei, ∆βi := ε ei, ε is the perturbation value
andei is the standard unit vector in thei-th direction.

9We remark thatzk+1 = PR→L(zk , κR(zk)).

In theory, one takesε > 0 sufficiently small when approxi-
mating the derivatives. In practice, selectingε is not obvious
because the dynamic model has multiple scales, due to the
heavy body, light leg links, and stiff springs. In other words,
the correct perturbation value to calculate the Jacobian matri-
ces based on numerical differentiation algorithms is unknown.
This can be formulated as uncertainty in the Jacobian matrices
or the Poincaré maps, and it complicates the design of the
stabilizing one-step event-based controller in Theorem 4.

The way we handle this uncertainty is to make sure that
our event-based control law is insensitive to the value chosen
for ε > 0. To achieve this insensitivity, we formally treat the
Jacobian linearization as belonging to a family of linearized
models and apply robust control theory. In particular, we
use a family of perturbation valuesεi > 0 to generate a
family of linear models, each rising from differentε values
in the set E := {ε1, ε2, · · · }. In this regard, we present
an LMI-based robust control methodology for the one-step
map (34). In the proposed approach, let(ALS, BLS) denote
the least square approximation of(AR→L , BR→L) over the
feasible set of perturbationsE . Moreover,(ATPD(ε), BTPD(ε))
represents the two-point symmetric difference estimationof
(AR→L , BR→L) obtained with the perturbation valueε ∈ E .
Next, define the convex sets

AR→L := conv{ALS, ATPD(ε)| ε ∈ E}

BR→L := conv{BLS, BTPD(ε)| ε ∈ E}.
(39)

For simplicity, letAR→L,m andBR→L,n for m = 1, · · · , nA

and n = 1, · · · , nB denote the corresponding vertices of
the setsAR→L and BR→L , respectively. We will suppose that
unknownJacobian matricesAR→L and BR→L belong to the
sets AR→L and BR→L . The following theorem presents an
LMI-based gainKR which stabilizesz∗R for (34).

Theorem 5 (LMI Stabilization of the Periodic OrbitO):
Assume that hypotheses H1-H5 are satisfied and
AR→L ∈ AR→L and BR→L ∈ BR→L . Then, the following
statements are true.

1) (Stabilization with known Lyapunov function)If there
existY = Y ′ andZ such that the following set of LMIs

[

−Y Sz AR→L,m Y + Sz BR→L,n Z

⋆ −Y

]

< 0 (40)

for m = 1, · · · , nA, n = 1, · · · , nB is feasible, then the
periodic orbitO is exponentially stable for the closed-
loop system, in which

κR(z̄) := β∗
R −KR (z̄ − z∗R) (41)

in Theorem 4 andKR := −Z Y −1.
2) (Stabilization with unknown Lyapunov function)If there

exist matricesTmn = T ′
mn for m = 1, · · · , nA, n =

1, · · · , nB , andL and J such that the following set of
LMIs

[

Tmn Sz AR→L,m L+ Sz BR→L,n J

⋆ L+ L′ − Tmn

]

> 0 (42)

is feasible, then the periodic orbitO is exponentially
stable for the closed-loop system, in whichκR(z̄) is given
in (41) andKR := −J L−1.
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Proof: Following hypotheses H1-H3, the Jacobian matri-
cesAR→L andBR→L are well-defined. Moreover, hypothesis
H3 and the construction procedure of the feedback laws imply
the existence of an open neighborhoodN of O, such that in
N \O, the feedback law fcnR(x, β∗

R) switches to fcnR(x, βR)
when trajectories cross the Poincaré sectionTth,R which is a
necessary condition forBR→L 6= 025×p .

Part (1): For a given(AR→L , BR→L) ∈ AR→L × BR→L,
there exist am ≥ 0, m = 1, · · · , nA and bn ≥ 0,
n = 1, · · · , nB such thatAR→L =

∑nA

m=1
am AR→L,m

and BR→L =
∑nB

n=1
bnBR→L,n. Moreover,

∑nA

m=1
am =

∑nB

n=1
bn = 1. Next,

nA
∑

m=1

nB
∑

n=1

am bn

[

−Y Sz AR→L,m Y + Sz BR→L,n Z

⋆ −Y

]

=

[

−Y Sz AR→L Y + Sz BR→L Z

⋆ −Y

]

< 0

(43)

Using Schur’s Lemma, the LMI problem (43) is equivalent to
(i) −Y < 0 and (ii)

− Y − (Y A′
R→L S′

z + Z ′ B′
R→L S′

z) (−Y )−1

× (Sz AR→L Y + Sz BR→L Z) < 0. (44)

Considering KR = −Z Y −1, it can be concluded that
Vone-step(δz̄) := δz̄′ Y −1 δz̄ is a Lyapunov function for (34).
Finally, applying Theorem 4 and Theorem 4.7 of [6] completes
the proof.

Part (2): According to Theorem 3 of [32], if LMIs are
feasible, then for everyAR→L ∈ AR→L andBR→L ∈ BR→L,
|eig(Sz AR→L −Sz BR→L KR)| < 1 which in turn implies that
the z∗R is robustly and exponentially stable for (34) against
polytopic uncertainties. Moreover,Vone-step(δz̄) := δz̄′ T δz̄
is the corresponding Lyapunov function, in whichT :=
∑nA

m=1

∑nB

n=1
am bn Tmn. This in combination with Theorem

4 and Theorem 4.7 of [6] completes the proof.
Remark 2:Theorem 5 presents two approaches to de-

sign the robust and stabilizing one-step event-based law.
In the LMI problem of (40), the corresponding Lyapunov
function Vone-step(δz̄) = δz̄′ Y −1 δz̄ is known and common
for all (AR→L, BR→L) ∈ AR→L × BR→L , whereas in the
LMI problem (42), the Lyapunov functionVone-step(δz̄) :=
δz̄′ T δz̄ =

∑nA

m=1

∑nB

n=1
am bn Vmn(δz̄) depends10 on

(AR→L , BR→L) ∈ AR→L × BR→L , where Vmn(δz̄) =
δz̄′ Tmn δz̄ is the corresponding Lyapunov function for the
vertex(AR→L,m, BR→L,n).

Remark 3:Analogous to Proposition 1 of [28], if (i) the
continuous-time feedback law (12) does not depend on the
yaw angle and (ii) the column ofKR associated with the yaw
angle is set to zero in the static update law (41), then the
periodic orbitO is invariant under the group of rotations about
the z-axis denoted byG. In this case, the periodic orbit is
asymptotically stable “moduloG”. This is important because
ideally the controller should not be affected by which direction
the robot is walking on a flat surface.

10Sinceam,m = 1, · · · , nA and bn, n = 1, · · · , nB are unknown, the
Lypaunov function is unknown.

B. Robust optimal controller

The objective of this section is to improve the static update
law of (41) to reject external disturbances acting on the robot.
To achieve this goal, an auxiliary termwk is introduced to
κR(z̄), i.e.,

κR(z̄k) = β∗
R −KR (z̄k − z∗R) + wk. (45)

Next, assume that an external force acts on the robot during
the right stance phase. Then, the evolution ofδz̄k according
to the linearized one-step map (34) can be expressed as

δz̄k+1 = Aone-step,clδz̄k +Bone-stepwk + Fone-stepdk, (46)

whereAone-step,cl:= Sz AR→L − Sz BR→L KR andBone-step:=
Sz BR→L . In particular,Aone-step,cl is the closed-loop matrix
resulting from the LMI controller of the previous subsection
and hence has its eigenvalues in the unit circle. In addition,
Fone-step:= Sz FR→L andFR→L ∈ R25×2 is a knownmatrix to
consider the effect of theunknowndisturbancedk ∈ D ⊂ R2

on δz̄k, whereD is a given polytope represented in terms of
its vertices, i.e.,D := conv{d1, · · · , dnD} for somenD > 0.

We now consider a force “pushing” the robot in the frontal
plane and hence a2-dimensional disturbance is considered for
the roll angle and roll velocity. The results of this sectioncan
be extended to other kinds of disturbances. We assume that
dk = d0 for k = 0 and dk = 0 for k ≥ 1. As mentioned
previously,BR→L ∈ BR→L . For a given time horizonN ≥ 1,
let

W := (w′
0, · · · , w

′
N−1)

′ ∈ R
pN

be the vector of inputs to be determined. Theworst casecost
function is defined as

IN (δz̄0,W) := max
d0∈D,BR→L∈BR→L

{

‖P δz̄N‖∞

+

N−1
∑

k=0

‖Qδz̄k‖∞ + ‖Rwk‖∞
}

δz̄k+1 = Aone-step,clδz̄k +Bone-stepwk + Fone-stepdk,
(47)

whereP = P ′ > 0, Q = Q′ > 0 andR = R′ > 0. The cost
function is then expressed as

I∗N (δz̄0) := min
W

IN (δz̄0,W)

s.t.

{

δz̄k+1 = Aone-step,clδz̄k +Bone-stepwk + Fone-stepdk

‖κR(z̄0)− β∗
R‖∞ ≤ βmax, k = 0, 1, · · · , N − 1.

(48)

We note that problem (47) looks for the worst value of
the performance as a function ofδz̄0 and W. However,
problem (48) can be expressed as a min-max problem and
it minimizes the worst case cost function subject to feasibility
of the input11, i.e., ‖κR(z̄0) − β∗

R‖∞ ≤ βmax for all possible
disturbancesd0 ∈ D and uncertaintiesBR→L ∈ BR→L . In the
min-max problem (48),Aone-step,cl is assumed to be known.
In particular, we approximate it by taking average of the
verticesSz AR→L,m − Sz BR→L,n KR for m = 1, · · · , nA and

11The approach is receding horizon, and hence we only implement κR(z̄0)
at each event.
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n = 1, · · · , nB. This translates the problem (48) into a linear
programming (LP) problem.

Remark 4:The LMI loop has already robustly stabilized
the system to model uncertainty and hence variations in theA-
matrix are not addressed here. The ROC loop is employed for
disturbance rejection in the roll dynamics, and is being applied
to an already stable system [35]. The LMI controller is linear,
whereas the ROC controller is nonlinear, due to the saturation
terms in (48). In the implementation of the two discrete-
time controllers in Section VII, the practical advantages of
separating their solutions will become clear.

To increase the basin of attraction, the input constraints
on problem (48) have been expressed in terms ofκR(z̄0) =
β∗

R −KR (z̄0 − z∗R) + w0 instead ofw0. To make this notion
precise, we note that on the periodic orbit, the ground reaction
forces are feasible. LargeκR(z̄0) and thereby large changes in
the piecewise-defined feedback law (12) forτi(q) ≥ τth may
result in infeasibility of the contact forces. Consequently, the
positive scalarβmax in (48) has been introduced to enforce
the stabilizing parameters to be in the feasible region.

Theorem 6 (Push Recovery as an LP problem):The push
recovery problem against external disturbances is equivalent
to an LP problem.

Proof: The performance

IN (δz̄0,W, d0, BR→L) := ‖P δz̄N‖∞

+

N−1
∑

k=0

‖Qδz̄k‖∞ + ‖Rwk‖∞

is convex with respect to(d0, BR→L) over the polyhedronD×
BR→L . Based on results of [34], by introducing the scalarµ0

as an upper bound forIN and augmenting the variables of
optimization byµ0, the min-max problem (48) is equivalent to
the following minimization problem on the augmented space

min
W,µ0

µ0

s.t. µ0 ≥ IN (δz̄0,W, dl, BR→L,n), n = 1, · · · , nB

‖κR(z̄0)− β∗
R‖∞ ≤ βmax, l = 1, · · · , nD.

(49)

Following the developments of [33], letµz
k andµw

k for k =
0, 1, · · · , N−1 denote upper bounds for terms‖Qδz̄k‖∞ and
‖Rwk‖∞, respectively. In a similar mannerµz

N is an upper
bound to the term‖Pδz̄N‖∞. Then, by defining

µ := (µ0, µ
z
0, · · · , µ

z
N , µw

0 , · · · , µ
w
N−1)

′ ∈ R
2N+2,

the optimization problem (49) is equivalent to the following
LP problem on the augmented space

min
W,µ

µ0

s.t.







































µ0 ≥ µz
0 + · · ·+ µz

N + µw
0 + · · ·+ µw

N−1

µz
N 125 ≥ ±P δz̄N(δz̄0;W, dl, BR→L,n)

µz
k 125 ≥ ±Qδz̄k(δz̄0;W, dl, BR→L,n)

µw
k 1p ≥ ±Rwk

±κR(z̄0) ≤ βmax 1p ∓ β∗
R

k = 0, 1, · · · , N − 1, n = 1, · · · , nB, l = 1, · · · , nD,
(50)

where125 := (1, · · · , 1)′ ∈ R25 and 1p := (1, · · · , 1)′ ∈ Rp.
Moreover,δz̄k(δz̄0;W, dl, BR→L,n) represents the solution of
discrete-time system (46) when the input sequence isW and
the Jacobian matrixBR→L and the disturbanced0 are equal
to the verticesBR→L,n anddl, respectively.

Remark 5 (Implementation ofw0): According to the one-
step correction law developed in Theorem 4 and Remark 1,
do the following steps at each discrete-timek.
Step (1) If x ∈ Tth,R during the right stance phase, let

z = πproj,R(x) and δz0 = z − z∗R. Next, solve the
LP problem (50) forw0 and employ

βR = κR(z0) = β∗
R −KR δz0 + w0(δz0) (51)

for τR(q) ≥ τth.
Step (2) If x ∈ Tth,L during the left stance phase, setz =

πproj,L(x) and δz0 = Sz z − z∗R. Next, solve the LP
problem (50) forw0 and employ

βL = Sβ κR(z0) = β∗
L − Sβ KR δz0 + Sβ w0(δz0)

(52)
for τL(q) ≥ τth.

VI. A PPLICATION TO THEHYBRID ZERO DYNAMICS

This section shows that the stability results of Sections
IV and V can be applied to the feedback laws arising from
virtual constraints and HZD. In particular, it is shown that
the HZD-based hybrid controller satisfies hypotheses H1-H4.
To present the main idea, associated with the stance phase
i ∈ {R, L}, define the following holonomic and parameterized
output function to be regulated

yi := hi(q;βco,i, βi) := hc,i(q)− hd,i(τi(q))

− hco(τi(q);βco,i)− hst(τi(q);βi).
(53)

In (53), hi(q;βco,i, βi) is a 6-dimensional output function
which is parameterized by the corrective and stabilizing pa-
rametersβco,i ∈ Bco,i ⊂ R6×nco and βi ∈ Bi ⊂ R6×nst

for i ∈ {R, L} and somenco, nst > 0. Controlled variables,
denoted byhc,i(q), specify six independent holonomic quan-
tities to be controlled. Furthermore,hd,i(τi(q)) represents the
desired evolution of the controlled variables on the periodic
orbit in terms of the strictly increasing quantityτi(q). In
particular, hc,i(q) − hd,i(τi(q)) ≡ 0 on the orbitOi. For
later purposes, we define thenominal output function as
hnom,i(q) := hc,i(q) − hd,i(τi(q)). Next, for the ATRIAS
structure,τi(q) is chosen as the angle of thevirtual leg with
respect to the horizontal line to satisfy hypothesis H1, where
the virtual leg is defined as the virtual line in the sagittal plane
which connects the stance leg end to the hip joint. Moreover,
it is assumed that the following hypothesis is satisfied for the
nominal output function.
S1) There exists an output symmetry matrixSh ∈ R6×6 with

the propertySh Sh = I6×6 such that for everyq ∈ Q,

hc,L(q) = Sh hc,R(Sq)

hd,L(τL(q)) = Sh hd,R(τR(Sq)),
(54)

which in turn implies thathnom,L(q) = Sh hnom,R(Sq) for
all q ∈ Q.
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The functionshco(τi(q);βco,i) andhst(τi(q);βi) are referred to
as thecorrectiveandstabilizing terms, respectively, and they
vanish on the periodic orbit. The corrective term is added to
zero the output function (53) at the beginning of each step (i.e.,
hybrid invariance) and it is activated during the first half of the
step. Following the developments of [36], it can be expressed
as

hco(τi;βco,i) :=

{

h−
co(τi;βco,i) if τ+i ≤ τi ≤ τmid

06 otherwise,
(55)

whereτ+i and τ̇+i are the initial values ofτi and τ̇i on the
current step, andτmid := 1

2
(τ+i + τmax). Here, we assume that

the following hypothesis is satisfied.

S2) For i ∈ {R, L}, h−
co(τi;βco,i) is C2 with respect to

τi and linear inβco,i. In particular,h−
co(τi;Sh βco,i) =

Sh h
−
co(τi;βco,i).

Moreover, by definingh+

nom,i andḣ+

nom,i as the initial values of
the nominal output and its first time derivative at the beginning
of the current step,h−

co(τi;βco,i) satisfies

(i)h−
co(τ

+

i ;βco,i) = h+

nom,i

(ii)
∂h−

co

∂τi
(τ+i ;βco,i) =

ḣ+

nom,i

τ̇+i

(iii )h−
co(τmid;βco,i) =

∂h−
co

∂τi
(τmid;βco,i) =

∂2h−
co

∂τ2i
(τmid;βco,i)

= 06
(56)

to create hybrid invariance (by (i) and (ii)) and to satisfy
continuity of position, velocity and acceleration atτi = τmid

(by (iii)).
Next, we assume that the stabilizing term is activated over

the second half of the step. The intuition behind this is thata
human’s push recovery is obtained by changing the step length
at the end of the current step. In particular, we define

hst(τi;βi) :=

{

06 if τ+i ≤ τi ≤ τth

h+
st(τi;βi) otherwise,

(57)

for which the following hypothesis is satisfied,

S3) For i ∈ {R, L}, h+
st(τi;βi) is C2 with respect toτi and

linear in βi. In particular,h+
st(τi;Sh βi) = Sh h

+
st(τi;βi).

Furthermore, we assume thatτth > τmid and

h+
st(τth;βi) =

∂h+
st

∂τi
(τth;βi) =

∂2h+
st

∂τ2i
(τth;βi) = 06 (58)

to impose continuity of position, velocity and acceleration at
τi = τth. Here,βco,i is updated at the beginning of each step
according to (56) and it remains constant during the step. The
continuous-time feedback law is also obtained based on the
standard input-output linearization, i.e.,

Γi(x, βco,i, βi) =

− (LgiLfiyi)
−1

(

L2
fi
yi +

KD

ǫ
Lfiyi +

KP

ǫ2
yi

)

, (59)

in which KP = kp I6×6 > 0, KD = kd I6×6 > 0 and ǫ > 0
are controller parameters. In addition, (59) results in theoutput
dynamics

ÿi +
KD

ǫ
ẏi +

KP

ǫ2
yi = 06 (60)

for which the origin(yi, ẏi) = (06, 06) is exponentially stable.
Theorem 7:Let O be a symmetric and transversal periodic

orbit for walking by ATRIAS. Assume that the ATRIAS model
is symmetric with respect to theyz-plane of the torso frame
and hypothesis H1 is met. Suppose further that assumptions
S1-S3 together with (56) and (58) are fulfilled. Then, the
feedback law (59) satisfies hypotheses H2-H4.

Proof: See Appendix B.
Finally according to Theorem 7, the stabilizing parameters

βi in (53) can be updated by the one-step correction approach
developed in Theorems 4, 5 and 6 and Remarks 1 and 5.

VII. S IMULATION RESULTS

This section implements the work of the previous sections
on two different simulation models of the bipedal robot
ATRIAS 2.1, the hybrid model of Section II-E used for the
controller design and a new model that assumes the walking
surface is compliant and which explicitly computes the ground
reaction forces acting on the robot. The second model will help
us to investigate the robustness and sensitivity of the closed-
loop system and simulation results against different modeling
and integration approaches. In addition, the robustness of
the robot in closed loop is evaluated against external forces
acting as disturbances on the robot as well as parametric
and nonparametric uncertainties in the model of walking. In
particular, uncertainty in the yaw friction coefficient on the
stance leg is considered.

A. Disturbance rejection

The purpose of this section is to show that the proposed
control strategy will result in disturbance rejection against ex-
ternal forces acting on the robot. Here, an externalhorizontal
force with a magnitude of70(N) (45% of the torso weight) is
applied to the side of the robot to its COM; the disturbance
is applied for50% of duration of a step.

We consider a periodic orbitO with an average walking
speed of1.1(m/s) for the hybrid model of walking. The
continuous-time controller is based on the zero dynamics with
the controlled variables during the right stance phase taken as

hc,R(q) :=





















1

2
(qgr1R + qgr2R)

1

2
(qgr1L + qgr2L)

qgr2R − qgr1R

qgr2L − qgr1L

q3R

−xcm(q) +
1

2
xsw(q)





















. (61)

The first four outputs affect the sagittal plane motion of the
robot, defining the angles of the legs with respect to the torso
and the “knee bend”. The fifth component is the stance hip
angle. The sixth component is defined to keep the frontal plane
component of the robot’s COM between the stance and swing
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legs. In particular,xcm(q) and xsw(q) denote the horizontal
coordinates of the COM and swing leg end within the frontal
plane12. We have observed that the first four components of
the controlled variables in (61) can stabilize periodic orbits for
the planar (i.e.,2D) model of ATRIAS [38]. The controlled
variables during the left stance phase are defined according
to Assumption S1 viaSh = diag{1, 1, 1, 1, 1,−1}. The event-
based control surface is defined at the2

3
point of the step,

i.e., τth = 1

3
τmin + 2

3
τmax. Furthermore, the corrective and

stabilizing terms are chosen as fifth and third order Bézier
polynomials, respectively, to satisfy S2, S3, (56) and (58).
Here the feasible set of perturbations to calculate the least
square and two-point difference approximations forAR→L and
BR→L are E = {10−5 × {1, 5}, 10−4 × {1, 5}, 10−3 × {1 :
1 : 10}} and E = {10−5 × {1, 5}, 10−4 × {1 : 1 :
10}, 5×10−3, 10−2×{1, 1.5}}, respectively. The three largest
eigenvalues of the averaged Jacobian matrix

AR→R,ave=
1

nA

nA
∑

m=1

(Sz AR→L,m)2

are {1.1352, 1.000, 0.7241}. Due to the extensive variability
in the numerical estimates of the Jacobian linearization ofthe
Poincaré map, we tried designing a two-step DLQR controller
for several pairs of two-step Jacobians(AR→R,m, BR→R,n) and
all of them failed to bring the eigenvalues within the unit
circle. We then tried a tedious iterative process, exhaustively
searching over the collection of pairs(AR→R,m, BR→R,n) for
a range of weights{Qr}

MQ

r=1 and {Rl}
MR

l=1
, solving for the

DLQR gain. A two-step stabilizing gait was eventually found
using this approach, but it had a small basin of attraction. In
particular, this event-based action could only ensure stability
for an external horizontal disturbance in the frontal planewith
a magnitude of15(N).

Due to lack of robust stability in the two-step approach and
seeking a more robust solution, the one-step LMI problems
of Theorem 5 are now solved through thefeasp function of
MATLAB for one-step Jacobians(AR→L,m, BR→L,n).

B. Preparing ROC controller for real-time implementation

In simulation, while the LP problem of Section V-B can
be implemented as given, its solution is too slow for eventual
real-time implementation. Hence, we present a real-time ap-
proach to employ the ROC. The LMI and ROC problems can
be combined advantageously with the hybrid zero dynamics
approach of Section VI. In this case, due tohybrid invariance,
the state space of the corresponding discrete-time system
will be reduced as the intersection of the25-dimensional
Poincaré sectionTth,i, i ∈ {R,L} and the14-dimensional zero
dynamics manifolds associated with the output functions. This
intersection is13-dimensional and referred to as therestricted
Poincaŕe section. Next, we only update the stabilizing param-
eters for the first, second, and sixth components of the output
function (53) and (61) (i.e.,p = 3 in (50)). In addition to these,
we have observed that the roll dynamics are most important

12Here, we assume that the stance leg end defines the origin of the world
frame.

components of the13-dimensional reduced-order discrete-time
system in the optimal solutions of the min-max and equivalent
LP problems. In this case, the corresponding state space for
problems (48) and (50) is2-dimensional which considers the
evolution of the roll angle and velocity for which problem (50)
has10N +11 inequality constraints13, whereN is the control
horizon.

By gridding the state space and solving the optimization
problem off-line for each grid point, the solutions of the LP
problem (50) for the roll dynamics can be pre-computed and
stored in a look-up table. Here, the state space is taken as
[−0.2 0.2](rad) × [−2.5 2.5](rad/s) with 100 × 100 grids.
Then, using Barycentric coordinates, the optimal solution
w0 can be interpolated in a linear manner. Furthermore, the
parameters of the one-step ROC problem in Remark 5 are
chosen asN = 2, P = Q = 3 I2×2, R = I3×3, βmax = 0.015
andD = conv{±d1,±d2}, whered1 = (10, 10)′ and d2 =
(−10, 10)′.

The closed-loop simulation is started at the end of the left
stance phase of the periodic orbitO and during the second
step, a horizontal disturbance70(N) is employed. Figures 2
and 3 present the phase portraits, plots of the ground reaction
forces and the applied control inputs versus time as well as
the norm of the discrete state(qzT(k), qyT(k), q̇yT(k), q̇xT(k))

′

versus step number during20 steps of walking. The push
recovery and convergence to the periodic orbit is clear.

C. Robustness against parametric and nonparametric uncer-
tainties

The objective of this section is to show that the proposed
control strategies will result in stable walking motions even
if the assumptions made in modeling of the hybrid system
are not met exactly. In particular, we consider parametric
and nonparametric uncertainties in the model of ATRIAS. To
generate the periodic orbit for the nominal hybrid system, the
stiffness and damping constants of the springs in the series
elastic actuators were assumed to bekspring = 1200 (Nm/rad)
andkdamper= 70 (Nms/rad). Moreover, the coefficientγfriction

used in (3) to model the yaw friction about the stance leg end
was assumed to be100 (Nms/rad). The torso and robot masses
are also16.3 and55 (kg), respectively [41]. Next, we consider
−60%, +25%, −20% and+30% parametric uncertainties in
γfriction, kspring, kdamper and the torso mass, respectively. The
impact model of Section II-D preserves the yaw motion about
the swing leg end. Here, we relax this condition on the impact
model as a nonparametric uncertainty. As another source of
uncertainty, the termL2

fi
yi is removed from the continuous-

time feedback law of (59) and hence, it is replaced by

Γi(x, βco,i, βi) = −(LgiLfiyi)
−1

(KD

ǫ
Lfiyi +

KP

ǫ2
yi

)

,

(62)
which is a PD control action in which the inverse of the
decoupling matrix (i.e.,(LgiLfiyi)

−1) can be considered as
a scaling matrix. These changes to the system have several
consequences. First, the effect of model parameters can be

13We remark that in this case, the LMI problems of Theorem 5 are still
solved for the full-order (25-dimensional) Jacobian matrices.
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Fig. 2: Phase portraits for the closed-loop system during
20 consecutive steps of walking. During the second step, a
horizontal force with the magnitude70(N) is applied to the
robot’s COM over50% of the gait.

investigated on the closed-loop behavior. Second, the effect
of different impact models and continuous feedback laws
is analyzed. Figure 4 shows the phase portraits during50
consecutive steps of the closed-loop system when the robot
is initialized at the left stance phase of the nominal orbit in
the presence of all the above parametric and nonparametric
uncertainties. According to Fig. 4, the robot’s trajectorystill
converges to a limit cycle.

D. Robustness against different contact models

In Sections VII-A and VII-C, the evolution of the mechani-
cal system was described by the hybrid model of walking given
in (8), in which the impact forces are assumed to be impulses.
In particular, the hybrid model considers right and left stance
phases and corresponding impact maps; moreover, the velocity
components of the state variables as well as ground reaction
forces undergo a sudden change according to the instantaneous
impact maps. This section presents acontinuousandcompliant
model [40] to describe the evolution of the robot during all
phases of walking including single support, impact, and double
support.

The LuGre model [39] is used to represent forces between
the contacting surfaces and can be integrated as an ordinary
differential equation over time. This has several consequences.
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Fig. 3: Plot of the control efforts, ground reaction forces and
norm of the discrete state(qzT(k), qyT(k), q̇yT(k), q̇xT(k))

′ for
the closed-loop system during20 consecutive steps of walking.
During the second step, a horizontal force with the magnitude
70(N) is applied to the robot’s COM over50% of the gait.

First, the evolution of the mechanical system subject to com-
pliant ground reaction forces and non-instantaneous impact
models can be assessed. In particular, the impact model
is completely different from the one presented in Section
II-D. Second, the robustness of the closed-loop system to
different models of the ground is analyzed. In addition to
these, parameter uncertainty (in particular, in the yaw friction
coefficient) will be introduced in the robot model. Third, using
this compliant simulator, we can model dynamic walking with
passive prosthetic feet.ATRIAS is capable of being fitted with
nontrivial feet which is another source of nonparametric uncer-
tainty. The compliant model uses the floating-base or flight-
phase model of the robot. By augmenting the configuration
variablesq ∈ Q by the position vector of the base of the
torso link, the16-dimensional flight-phase coordinate vector
can be expressed asqf := (xT, yT, zT, q

′)′ ∈ R3×Q, in which
(xT, yT, zT)

′ ∈ R3 denotes the position of the base of the torso
link with respect to the world frame. Next, the evolution of
the mechanical system subject to the contact forces can be
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Fig. 4: Phase portraits for the closed-loop system with para-
metric and nonparametric uncertainties during50 consecutive
steps of walking.

expressed as

Df (qf ) q̈f +Hf (qf , q̇f ) = Bf u

+
∑

l∈{contac points}

∂pl
∂qf

′

(qf )λl

+
∑

l∈{contac points}

yaw friction term at contact pointl,

(63)

whereDf (qf ) ∈ R16×16 andBf ∈ R16×6 represent the flight-
phase mass-inertia and input matrices, respectively. Moreover,
Hf (qf , q̇f ) ∈ R

16 denotes the corresponding Coriolis, cen-
trifugal, gravity, spring and damper forces. Next,pl ∈ R3 is
the Cartesian coordinates of the contact pointl. In addition,
λl := (λx

l , λ
y
l , λ

z
l )

′ ∈ R3 represents the forces acting on the
point l being given by the compliant, nonlinear and dynamic
ground model of [40], [39]. Moreover, the third term on the
right-hand side of (63) uses the principle of the virtual work
to represent the yaw friction term of (3), which is active when
point l is in contact with the ground.

In the simulation, we consider−80% and−40% parametric
uncertainties inγfriction (i.e., yaw friction coefficient) and
spring damping ratio, respectively. In addition to these para-
metric uncertainties, the PD feedback law of (62) is employed.
Figures 5a and 5b depict the roll and right hip phase portraits
for the closed-loop compliant model with point feet. The phase
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Fig. 5: Roll and hip phase portraits for the compliant model
with parametric and nonparametric uncertainties during walk-
ing with point feet (Figs. 5a and 5b) and passive prosthetic
feet (Figs. 5c and 5d).

portraits for walking with prosthetic feet and zero yaw friction
coefficient have been presented in Figures 5c and 5d. Here,
the initial condition is taken at the end of the right stance
phase on the nominal trajectory and it can be seen that the
asymptotically stable limit cycle of the nominal closed-loop
system seems to persist in the presence of compliant forces
and uncertainties.

VIII. C ONCLUSION

This paper has presented a time-invariant and one-step
event-based controller, on the basis of left-right symmetry,
for robust stabilization of periodic orbits for3D bipedal
walking against external disturbances as well as parametric and
nonparametric uncertainty. The results have been illustrated on
a simulation model of ATRIAS2.1 a highly underactuated3D
bipedal robot with point feet and series-compliant actuators.

The Poincaré return maps for3D walking and running
locomotion naturally consist of the robot’s dynamics over two
steps, that is, they include locomotion on both the left and
right legs. It follows that event-based controllers designed on
the basis of the Poincaré return map will update parametersin
a two-step manner, that is, once every two steps of the robot.
Factorization of these Poincaré return maps into the right-to-
left and left-to-right maps results in a periodically time-varying
discrete-time system with period-2. This approach leads to a
periodically time-varying one-step controller design problem.
Next, due to the existence of the large springs used in series-
compliant actuators for energy efficiency and light legs, there
is a wide range of time scales in the underlying continuous
dynamics. This yields inaccuracies in the Jacobians matrices
of the Poincaré maps which are calculated using numerical
differentiation algorithms based on a set of perturbation values.
Additional uncertainty on the Poincaré section may arise
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because of parametric and nonparametric uncertainties in the
model and external disturbances acting on the robot.

Regarding the parametric uncertainties corresponding to a
family of linear models rising from a set of perturbation values,
the paper presented a robust one-step event-based controller
consisting of two loops. The first loop employs a robust static
update law for the Poincaré maps against numerical and para-
metric uncertainties. In particular, the paper presented arobust
control formalism whereby a convex set of approximations
to the Jacobian linearization is generated and a stabilizing
controller is designed through a set of LMIs. The second
loop of the discrete action updates the parameters to optimize
the worst case performance, while considering the saturation
of the discrete-time controller for all possible disturbances
and polyhedral parametric uncertainties in the Poincaré return
maps. Finally, the paper extended the analytical results to
feedback laws arising from virtual constraints and HZD as
special members of this general class.

In future work, the results of the paper will be imple-
mented on the ATRIAS robot. It would be very interesting
to develop one-step robust and stabilizing update laws without
considering the symmetry structure in the Poincaré analysis. In
addition, this can help us to develop a set of multiple Poincaré
sections and the corresponding event-based update policies
within each step to stabilize periodic orbits of walking.

APPENDIX A
PROOF OFTHEOREM 1

Part (1): LetKR(q, q̇) :=
1

2
q̇′ DR(q) q̇, KL := 1

2
q̇′ DL(q) q̇,

VR(q) and VL(q) denote the kinetic and potential energies,
corresponding to the gravity, for ATRIAS during the right
and left stance phases, respectively. Symmetry in the robot’s
structure implies the invariance of the kinetic energy under the
Saction, i.e.,KL(q, q̇) = KR(Sq,Sq̇) for every(q′, q̇′)′ ∈ TQ,
which in turn results inDL(q) = S′ DR(Sq)S. This latter
fact together with the formula of the(k, j)th element of the
Coriolis matrix, i.e.,

ckj =
1

2

13
∑

i=1

(∂dkj
∂qi

+
∂dki
∂qj

−
∂dij
∂qk

)

q̇i

implies thatCL(q, q̇) = S′ CR(Sq,Sq̇)S. Furthermore, the
invariance of the potential energy under theS action, i.e.,
VL(q) = VR(Sq), results in GL(q) = S′ GR(Sq). Sim-
ilar result for the potential energy of the springs yields
Kspringq = S′ KspringSq. In an analogous manner,Kdamperq̇ =
S′ KdamperSq̇. In addition, if we defineSω := −1 to consider
the symmetry for the angular velocity corresponding to the
yaw at the leg ends, thenωz

fL(q, q̇) = Sω ωz
fR(Sq,Sq̇) which

in turn yieldsEz
fL(q) = Sω Ez

fR(Sq)S for all (q′, q̇′)′ ∈ TQ.
These facts imply thatHL(q, q̇) = S′ HR(Sq,Sq̇).

Part (2): During the impact, we assume that the stance
leg end is on the origin of the world frame. Since the
impact map is obtained based on the extended model, we
first define the symmetry matrix for the extended model as
Se ∈ R16×16 by Se := block diag{S,Sp}, where Sp :=
diag{−1, 1, 1} is the position symmetry matrixto consider
symmetry for the Cartesian coordinates of the leg end during

walking along they-axis of the world frame. In addition,
we define theposition-angular velocity symmetry matrixas
Spω := bolck diag{Sp,Sω} ∈ R4×4. Using these definitions,
(7) and the chain rule, it can be concluded that

EfL,e(qe) = Spω EfR,e(Se qe)Se, (64)

for everyqe ∈ Qe, whereEfL,e is the extension of (7) for the
left leg in the coordinates(q′, p′fR)

′. According to (6), let us
define

ΥR→L(q
−
e ) :=

[

De,R(q
−
e ) −E′

fL,e(q
−
e )

EfL,e(q
−
e ) 04×4

]−1 [

De,R(q
−
e )

04×16

]

and

ΥL→R(q
−
e ) :=

[

De,L(q
−
e ) −E′

fR,e(q
−
e )

EfR,e(q
−
e ) 04×4

]−1 [

De,L(q
−
e )

04×16

]

,

whereDe,R and De,L are mass-inertia matrices for the ex-
tended model in the coordinates(q′, p′fR)

′ and (q′, p′fL)
′, re-

spectively. Similar to the proof of Part (1), it can be shown that
De,L(qe) = S′

eDe,R(Se qe)Se for every qe ∈ Qe. This prop-
erty together with (64) and straightforward calculations imply
that for everyq−e ∈ Qe, ΥL→R(q

−
e ) = block diag{Se,Spω} ×

ΥR→L(Se q
−
e )Se which in turn completes the proof for the

impact model (6).

APPENDIX B
PROOF OFTHEOREM 7

Since (i) the nominal output functionhnom,i(q) together
with the corrective and stabilizing terms vanishes on the orbit
Oi and (ii) from S2 and S3,h−

co(τi;βco,i) andh+
st(τi;βi) are

linear inβco,i andβi, it can be concluded that on the periodic
orbit O, the corrective and stabilizing parameters are zero,
i.e., β∗

co,i = 06×nco and β∗
i = 06×nst. Next, according to the

construction procedure of the output functions in (56) and (58)
and τth > τmid, hypotheses H2 and H3 are satisfied for the
nominal parametersβ∗

co,i andβ∗
i .

During phasei ∈ {R, L}, the output dynamics (60) can be
rewritten as

∂hi

∂q
(q;βco,i, βi)D

−1

i (q)B Γi(x, βco,i, βi) =

ηi(x, βco,i, βi), (65)

in which

ηi(x, βco,i, βi) :=
∂hi

∂q
D−1

i Hi −
∂

∂q

(

∂hi

∂q
q̇

)

q̇

−
KD

ǫ

∂hi

∂q
q̇ −

KP

ǫ2
hi. (66)

Furthermore, assumptions S1-S3 imply that

hL(q;βco,L, βL) = Sh hR(Sq;Sh βco,L,Sh βL). (67)

This latter fact together with Part (1) of Theorem 1 yields

ηL(x, βco,L, βL) = Sh ηR(S̄x,Sh βco,L,Sh βL)

∂hL

∂q
(q;βco,L, βL)D

−1

L (q)B = Sh

∂hR

∂q
(Sq;Sh βco,L,Sh βL)

×D−1

R (Sq)B.
(68)
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Finally, considering (65) and (68), it can be concluded that

B ΓL(x, βco,L, βL) = S′ B ΓR(S̄x,Sh βco,L,Sh βL)

which completes the proof14.
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