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Torque Saturation in Bipedal Robotic Walking
through Control Lyapunov Function Based

Quadratic Programs
Kevin Galloway, Koushil Sreenath, Aaron D. Ames, and J. W. Grizzle

Abstract—This paper presents a novel method to address
actuator saturation by directly incorporating user-defined input
bounds in controller design. In particular, we consider the
application of bipedal walking and show that our method (based
on a quadratic programming (QP) implementation of a control
Lyapunov Function (CLF)-based controller) enables gradual
performance degradation while still continuing to walk under
increasingly stringent input bounds. We draw on previous work
by the authors which has demonstrated the effectiveness of
CLF-based controllers for stabilizing periodic gaits for biped
walkers [1]. The current work presents a framework which
results in more effective handling of control saturations and
provides a means for incorporating a whole family of user-
defined constraints into the online computation of a CLF-based
controller. The paper concludes with an experimental validation
of the main results on the bipedal robot MABEL, demonstrating
the usefulness of the QP-based CLF approach for real-time
robotic control.

I. I NTRODUCTION

Biped locomotion presents an interesting control challenge,
especially since the dynamic models are typically hybrid and
underactuated. The method of Hybrid Zero Dynamics (HZD)
[18], [19] has provided a rigorous and intuitive method for
implementing periodic walking gaits in such robotic systems,
by driving the system to a lower-dimensional zero dynamics
manifold on which the walking gait exists as an exponentially
stable periodic orbit. Typical experimental implementation of
the HZD method has relied on input-output linearization with
PD control to drive the system to the zero dynamics manifold
[14], but recent work by the authors has demonstrated that con-
trol Lyapunov function (CLF)-based controllers can be usedto
effectively implement stable walking, both in simulation and
in experimental contexts [1].
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A variant formulation known as an exponentially stabilizing
control Lyapunov function (ES-CLF) provides a means for not
only guaranteeing exponential stability of a system but also
providing an explicit bound on the rate of convergence. In the
case of hybrid systems (such as biped robots with impulsive
foot-ground impact), a even stronger convergence property
is required, and therefore we turn to rapidly exponentially
stabilizing control Lyapunov functions (RES-CLF). This type
of CLF, which will be reviewed in more detail in Section II,
incorporates an additional tuning parameter which allows the
user to directly control the rate of exponential convergence.
The work in [1] established the key theoretical properties of
CLF-based controllers in a hybrid context, and also presented
a description of the successful experimental implementation
of a CLF-based controller on the robotic testbed MABEL.
However, it was also noted that the user-defined control satu-
rations were active throughout a large portion of the walking
experiment, and that these saturations had a significant impact
on the actual performance of the CLF-based controller as
compared to the predicted performance based on theoretical
bounds. In this context the hard torque limits were “blindly”
applied to the calculated CLF-based control torques, without
explicit consideration of the potential effect on the controller
performance.

The impact of actuator saturation in feedback systems is
often detrimental to stability and performance, and it therefore
has been the study of a large body of research. (See [2] for in-
stance, which provides an extensive bibliography on the topic.)
In the context of robotic biped locomotion, torque saturations
can limit the ability to recover from disturbances and result in
instability. Typically, torque saturation is considered during
the design of walking gaits, where actuator limitations are
included as inequality constraints for an offline gait-design
optimization routine (see [9] for instance). However, while
this approach can guarantee that the torques required on the
periodic walking gait are within limits, it does not account
for disturbances such as rough terrain or model uncertainties
which demand higher torques during recovery phase. In other
work, such as [4], torque saturations are incorporated into
calculation of a feedback control designed to track a time-
based reference trajectory, with tracking error traded offin
order to keep torque controls within limits.

The main contribution of this paper is to provide a novel
control design framework for application to bipedal robotics
that enables gradual performance degradation while still con-
tinuing to walk under a range of stringent torque limits.
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We achieve this through an alternative method of controller
implementation based on quadratic programming, that not
only preserves (as much as possible) the desirable perfor-
mance characteristics promised by the CLF theory, but also
respects the user-defined bounds on the inputs. While the
consideration of saturation effects in feedback systems has
been the subject of much study, to the authors’ knowledge
CLF-based controllers that respect saturations have not been
addressed before, and this paper provides a constructive tech-
nique for doing so, while also presenting an experimental
implementation on an embedded hard real-time system with
a high control rate of 1 kHz. The use of QP in biped
control can be found (for example) in [3] for realizing desired
link accelerations, for maintaining balance after disturbances
by modifying predefined reference trajectories [16], and for
applying model predictive control approaches to biped control
[20], [6]. The current work is unique in the fact that QP is
used for implementing CLF-based controllers with saturation
constraints.

The paper proceeds as follows. In Section II, we state
the dynamics of the relevant model and review the results
on CLF-based control of biped robots from [1]. Section III
discusses the adverse effects of user-specified control input
saturations on the CLF-based controller, providing the mo-
tivation for Section IV which introduces a new method for
using quadratic programming to appropriately handle torque
saturation constraints for the CLF-based controllers. Section V
presents simulation and experimental results, and we conclude
with a summary in Section VI.

II. CONTROL LYAPUNOV FUNCTIONS FORHYBRID

SYSTEMS REVISITED

In this section we introduce the model for a biped robot
and review the recent innovations introduced in [1] for using
control Lyapunov functions to control such systems.

A. Model

The dynamics for a biped robot (such as MABEL, the robot
described in Section V) can be derived by the standard method
of Lagrange and take the form

D(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u, (1)

whereq ∈ Q is the robot configuration variable,u represents
the motor control torques, andD, C andG are respectively the
inertia matrix, Coriolis matrix, and gravity vector. In thecase
of MABEL the configuration vectorq is 7-dimensional and is
as described in [14] and depicted in Figure 7a. Reformulating
the dynamics (1) as

[

q̇
q̈

]

= f(q, q̇) + g(q, q̇)u, (2)

we also define output functions of the form

y(q) := H0q − yd(θ(q)), (3)

whereθ(q) is a strictly monotonic function of the configuration
variable q, H0 is an appropriately-sized matrix prescribing
linear combinations of state variables to be controlled, and

yd(·) prescribes the desired evolution of these quantities.
(See [14] for details.) The method of Hybrid Zero Dynamics
(HZD) aims to drive these output functions (and their first
derivatives) to zero, thereby imposing “virtual constraints”
such that the system evolves on the lower-dimensional zero
dynamics manifold, given by

Z = {(q, q̇) ∈ TQ | y(q) = 0, Lfy(q, q̇) = 0}, (4)

whereLf denotes the Lie derivative[10].

B. Input-output linearization

If y(q) has vector relative degree 2, then the second deriva-
tive takes the form

ÿ = L2
fy(q, q̇) + LgLfy(q, q̇)u, (5)

where the decoupling matrixLgLfy(q, q̇) is invertible due to
the vector relative degree assumption. Then defining

u∗(q, q̇) := −(LgLfy(q, q̇))
−1L2

fy(q, q̇), (6)

and applying a pre-control law of the form

u(q, q̇) = u∗(q, q̇) + µ (7)

or

u(q, q̇) = u∗(q, q̇) + (LgLfy(q, q̇))
−1µ (8)

rendersZ invariant (providedµ vanishes onZ). (Note that
u∗(q, q̇) is a feed-forward term representing the torque re-
quired to remain onZ.)

Under these assumptions, the dynamics (2) can be decom-
posed into zero dynamics statesz ∈ Z and transverse variables
η =

[

y ẏ
]

. (See [19], [10] for details.) Under a pre-control
law of the form (7) or (8), the closed-loop dynamics in terms
of (η, z) take the form

η̇ = f̄(η, z) + ḡ(η, z)µ (9)

ż = p(η, z). (10)

For the work presented here, we will use the pre-control law
(8) so thatf̄(η, z) = Fη and ḡ(η, z) = G, where

F =

[

0 I
0 0

]

, G =

[

0
I

]

. (11)

The most common approach to controlling the transverse
variables (i.e. drivingη to zero) relies on input-output lin-
earization with PD control, using (8) with

µ =
[

− 1
ε2
KP − 1

ε
KD

]

η, (12)

whereKP andKD are diagonal matrices chosen such that

A :=

[

0 I
−KP −KD

]

(13)

is Hurwitz.
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C. CLF-based control

Recently, a new method based on control Lyapunov func-
tions has been introduced in [1], which provides an alternative
method for controlling the transverse variables. That method
can be summarized as follows.

A function Vε(η) is a rapidly exponentially stabilizing
control Lyapunov function (RES-CLF) for the system (9) if
there exist positive constantsc1, c2, c3 > 0 such that for all
0 < ε < 1 and all states(η, z) it holds that

c1‖η‖
2 ≤ Vε(η) ≤

c2
ε2

‖η‖2 (14)

inf
µ∈U

[

Lf̄Vε(η, z) + LḡVε(η, z)µ+
c3
ε
Vε(η)

]

≤ 0. (15)

One way to generate a RES-CLFVε(η) is to first solve the
Lyapunov equationATP+PA = −Q for P (whereA is given
by (13) andQ is any symmetric positive-definite matrix), and
then define

Vε(η) = ηT
[

1
ε
I 0
0 I

]

P

[

1
ε
I 0
0 I

]

η =: ηTPεη, (16)

for which we have

Lf̄Vε(η, z) = ηT (FTPε + PεF )η,

LḡVε(η, z) = 2ηTPεG. (17)

Associated with a RES-CLF is the set of allµ for which
(15) is satisfied,

Kε(η, z) = {µ ∈ U : Lf̄Vε(η, z) + LḡVε(η, z)µ+
c3

ε
Vε(η) ≤ 0},

and one can show that for any Lipschitz continuous feedback
control lawµε(η, z) ∈ Kε(η, z), it holds that

‖η(t)‖ ≤
1

ε

√

c2
c1
e−

c3
2ε
t‖η(0)‖, (18)

i.e. the rate of exponential convergence to the zero dynamics
manifold can be directly controlled with the constantε through
c3
ε

. There are various methods for finding a feedback control
law µε(η, z) ∈ Kε(η, z); in practical applications, it is often
important to select the control law of minimum norm. If we
let c3 = λmin(Q)

λmax(P ) and define

ψ0,ε(η, z) = Lf̄Vε(η, z) +
c3
ε
Vε(η, z)

ψ1,ε(η, z) = LḡVε(η, z)
T , (19)

then this pointwise min-norm control law [7] can be explicitly
formulated as

µε(η, z) =

{

−
ψ0,ε(η,z)ψ1,ε(η,z)
ψ1,ε(η,z)Tψ1,ε(η,z)

if ψ0,ε(η, z) > 0

0 if ψ0,ε(η, z) ≤ 0,

}

(20)

wherein we can takeµ = µε in (8).
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Fig. 1: Motor torques (from the MABEL experiment described
in [1]) for the stance and swing legs for4 consecutive steps of
walking with the minimum-norm CLF-based controller given
in (20). The thicker plots indicate the experimental (saturated)
torques, while the thinner plots are the raw (unsaturated)
torques computed by the CLF-based controller. For the leg
angle motor (top graph), the raw (desired) control torque isat
times more than400% of the (actually implemented) saturated
value. Moreover, this occurs over a significant duration of the
step. Note that the symbolsumLA, umLS indicate the motor
torques at theleg angle andleg shape coordinates respectively,
which are linear combinations of the thigh and knee angles
[13].

III. A DVERSE EFFECTS OF TORQUE SATURATION ON THE

CLF-BASED CONTROLLER

The approach described in Section II was successfully
implemented on the robotic testbed MABEL, producing a
stable walking gait. (See [1] for a description of the experiment
and a reference to the online video.) However, analysis of
the experimental data reveals that the user-imposed satura-
tions on the control torque inputs were active throughout
much of the experiment (see Figure 1) and significantly
affected the implementation of the CLF-based control method.
Though necessary to prevent unsafe or damaging motions,
these saturation constraints were not applied in a manner
that appropriately preserved the qualities of the CLF-based
controller, and therefore the nominal bounds given by (15)
and (18) were frequently violated.

Limits for control inputs are typically imposed by the user to
ensure that motor torque specifications are not exceeded. When
the calculated ideal control effort frequently exceeds thepre-
scribed bounds and must therefore be truncated, the controller
performance is degraded and theoretical performance measures
may be violated, as in the experiment described above. More
importantly, when a control input is saturated, the system runs
in open-loop and is no longer able to respond to increasing
errors in tracking, often leading to eventual failure.

Designing controllers which respect such bounds is im-
portant, and therefore a variety of approaches have been
developed, such as quasi-linear control [5], which offers one
solution for a special class of systems. The main objective
of the current work is to present a method for implementing
CLF-based controllers for a general class of nonlinear systems
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in a manner which respects the user-specified input bounds.

IV. FORMULATING THE CLF MIN-NORM CONTROLLER AS

A CONVEX OPTIMIZATION

To design such a controller, we proceed by recognizing that
the pointwise min-norm controller in (20) can be equivalently
expressed as a convex optimization problem formulated as

min
µ

µTµ

s.t. ψ0,ε(η, z) + ψ1,ε(η, z) µ ≤ 0.
(21)

The inequality constraint above enforces the bound on the
time-derivative of the CLF given by (15), which can be equiv-
alently expressed aṡVε(η) ≤ −c3/ε Vε(η). The solution of
this convex optimization problem is then exactly the controller
specified in (20).

Once we have expressed the pointwise min-norm controller
as a convex optimization problem, we can introduce bounds on
the control input in the form of additional constraints for the
convex optimization problem. However, for these additional
constraints to be satisfied, we first need to relax the bound
on the time-derivative of the CLF. We do this by requiring
V̇ε(η) ≤ −c3/ε Vε(η) + d1, where d1 is typically a small
positive quantity. The new optimization problem is formulated
as

min
µ,d1

µTµ+ p1 d
2
1

s.t. ψ0,ε(η, z) + ψ1,ε(η, z) µ ≤ d1,

(LgLfy(q, q̇))
−1 µ ≥ (umin − u∗),

(LgLfy(q, q̇))
−1 µ ≤ (umax − u∗).

(22)

wherep1 is a large positive number that represents the penalty
of relaxing the inequality constraints andu∗ is defined by (6).

The formulation in (22) deals with the non-ideal context of
saturated control inputs and therefore cannot ensure the same
type of stability claims as those provided by Theorem 2 of [1],
since relaxations in the bound onV̇ε result in a loss of the RES-
CLF quality forVε. However, given a prescribed convergence
bound and a set of saturation constraints, the control described
by (22) is guaranteed to perform at least as well as any other
controller in the sense that it will keepVε in the smallest
possible level set. In this sense, the CLF-based controller(22)
can “match” the performance of any other controller in regards
to bounding the growth of the RES-CLFVε. We also note
that, though (22) as formulated does not guarantee Lipschitz
continuity of the resultant controller, the work in [12] provides
sufficient conditions to ensure Lipschitz continuity for these
types of problems. Moreover, the recent result in [17] does
not assume Lipschitz continuity.

Remark 1: We note that (22) can also be formulated with
“soft” bounds on the control inputs, such that the control input
u in (8) satisfiesumin − d2 ≤ u ≤ umax + d3, with d2, d3
typically small positive quantities. This alternative formulation
provides the control designer with parameters to trade off
violation of the bound on the time-derivative of the CLF with
that of the saturation bound on the control input. However, in
most practical cases the bounds on the inputs appear as hard
bounds which cannot be relaxed, and the current work will
focus only on this case.

Remark 2: Note that in (22) we have depictedumin and
umax as constants. However, since the convex optimization
problem is to be solved at every instant in time, these values
can be specified as functions of time or system state, leading
to dynamic torque saturation. This approach will be explicitly
demonstrated in the next section, where one case of our sim-
ulation trials involves input bounds which vary as a function
of the system state.

Remark 3: In Section II-B we presented an input-output
linearizing controller based on PD control, given by (8) with
(12). As formulated, the controller has no built-in means
for dealing with saturation constraints, but we note that this
controller can also be formulated as a convex optimization
problem analogous to (22), as

min
u,d1,d2,d3,d4

uTu+
4

∑

i=1

pi d
2
i

s.t. LgLfhu = −L2
fh−

α0

ε
h−

α1

ε2
Lfh

+ [d1, d2, . . . , d4]
T ,

u ≥ umin,

u ≤ umax.

(23)

However, unlike the CLF-based controller in (22), this for-
mulation does not provide a clear correspondence between
the relaxationsdi and performance of the controller. This
highlights one of the main advantages of using the QP imple-
mentation of the CLF-based controller over the IO controller
(either the original implementation or the QP version). Under
active saturation constraints, the CLF-based controller relaxes
the bound onV̇ε just enough to balance the conflicting
requirements between performance and saturation constraints.
In contrast, the original IO controller ((8) with (12)) “blindly”
saturates controls, and the QP version (23) relaxes an equality
constraint in a manner that does not clearly correlate to
controller performance.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section we present both numerical simulation and
experimental results to validate the performance of the control
methods described in Section IV. Since experimental testing
on MABEL was the ultimate goal, the numerical studies were
conducted first on a simple model of MABEL, followed by
simulations on a complex model of MABEL developed in
[13], which closely replicates the experimental setup. This
latter model includes a compliant ground model as well
as a model that allows for stretch in the cables between
the transmission pulleys. MABEL is a 5-link bipedal robot
with point feet and series-compliant actuation for improved
agility and energy efficiency. The experimental setup has been
described previously in [14] and is illustrated in Figure 7.
For the simulations and experiments described here, the four
output functions in (3) were defined by the absolute pitch angle
of the torso, the leg angle (LA) for the swing leg, and the
appropriately scaled leg-shape motor position (mLS) for the
swing and stance legs. The four control inputs are the leg-angle
motor torque (umLAst

, umLAsw
) and leg-shape motor torque

(umLSst
, umLSsw

) for the stance and swing legs respectively.
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A. Numerical simulation

1) CLF-QP controller under various torque bounds: The
numerical simulation results presented here employ the CLF-
based controller with hard input constraints, as in (22). We
consider four separate cases with different control bounds,
given by

A :


























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−12

−8

−12











≤











umLAst

umLSst

umLAsw

umLSsw











≤











8

12

8

12








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B :






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


















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−8

−2

−2











≤











umLAst

umLSst

umLAsw

umLSsw











≤











4

4

4

4








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C :




















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















u∗(θ) +


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





−4
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






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≤
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
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









4

7

1

1











whereu∗(θ) is the nominal value of (6) along the periodic
orbit, regressed as a 5th-order Bezier polynomial ofθ(q). Note
that in case D, the bounds are specified dynamically as a
function of the state of the robot, resulting in dynamic torque
saturation.

Simulations of a representative walking step with the con-
troller (22) were run for each of Cases A-D; the corresponding
RES-CLFVε and its time derivative are presented in Figure
2, and the resulting input torques and tracking errors are
illustrated in Figure 3. The saturation effects are most visible
in the plots in the first and third rows of the figure; as expected,
more restrictive torque limits result in increased tracking error.
However, we observe that the degradation in performance is
gradual and walking stability is still maintained for all cases
(A-D) of input saturation.

To illustrate the effect of saturation on the walking limit
cycle, we also carry out simulations on the complex model of
MABEL. We use the controller given by (22) in closed-loop
and analyze the phase portrait of the torso angle, subject to
several different saturation values. Figure 4 illustratesthe torso
phase portrait for15 steps of walking, and we observe that
stricter saturations result in (gradual) deterioration intracking,
as evidenced by deviations of the limit cycle from the nominal
orbit. The saturation values used here differ from those used
in the simulations described in the first part of this section
(since the complex model differs significantly from the simple
model and the required torques for walking are different), but
the approach is analogous, with bounds becoming increasingly
restrictive proceeding from Case I to Case IV.
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2) Comparison of CLF-based controller with IO-linearizing
PD control: Having demonstrated that the CLF-QP controller
is capable of functioning, albeit at degraded performance,
under various levels of torque bounds, we will now attempt
to compare the four controllers presented in this paper. In
this section the controllers are termed as (a)IO controller
referring to the input-output linearizing controller, (8)with
(12); (b)CLF controller referring to the CLF-based min-norm
controller, (20); (c)CLF-QP controller referring to the CLF-
based min-norm controller posed as a quadratic program with
additional input constraints, (22); and (d)IO-QP controller
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Fig. 3: (a) Motor torques for the stance (top two figures) and swing legs (bottom two figures), and (b) Corresponding errors
in tracking the output (3), based on the numerical simulations described in Section V-A. Each figure depicts the results for
four different cases of input bounds. Walking stability is maintained in each case, but we note that the stringent torquebounds
in Case C result in control inputs that are only piece-wise continuous. For obtaining Lipschitz continuous control inputs, see
additional required conditions in [12].

referring to the input-output controller posed as a quadratic
program along with the additional input bound constraints,
(23). For each of these controllers, one step of walking is
simulated with an initial error and with the restrictive input
saturation constraints of case C.

It must be noted that direct comparison of the performance
of the CLF controller and IO controllers is difficult and
somewhat anecdotal because of the heavy dependance on
parameter tuning. We note that for the CLF-QP controller,
performance depends on

• selection of the RES-CLFVε,
• the relaxation penaltyp1,
• and the parameterε which dictates the bound oṅVε,

while the IO controller is dependent on the selection ofε
and the parametersKP and KD. For this comparison, we
use the sameε for all controllers, however the relaxation
penalty for the CLF controller and the PD gains for the IO
controller are selected separately. A study of best procedures
for tuning the CLF controller and for comparison of controller
performance is not the subject of the current work, but presents
an interesting field of study for future research.

The controllers are compared in Table I, and graphical
results of numerical simulations are presented in Figures 5-
6. In the particular simulations at hand, Table I illustrates that
under the same conditions, the CLF-QP controller spends the
least amount of time having one or more actuators in saturation
and also results in the most energy efficient gait, as computed
by the specific cost of mechanical transport [15]. However,
as noted previously, comparison of controller performanceis

Controller % Time in Saturation Cmt

IO (8), (12) 68% 0.021
CLF (20) 91% 0.092
CLF-QP (22) 23% 0.008
IO-QP (23) 65% 0.016

TABLE I: Comparison between the different types of con-
trollers presented in this paper when under hard input satura-
tion. The second column represents the percentage of time for
which one or more actuators are in saturation, and the third
column presents the specific cost of mechanical transport.

somewhat anecdotal due to the reliance on paramter tuning
and thus the results in Table I should be viewed accordingly.
The comparison does suggest that the (non-QP) CLF controller
performs the worst under input saturations since the controller
has no awareness of saturation constraints, and thus even when
the actuators are not in saturation the controller does not act
aggressively to reduce the large errors that have built up.
Figure 5 illustrates the RES-CLFVε and its time-derivative
for all the controllers. For the two controllers which do not
incorporate knowlege of the input saturations (i.e. the CLF
and IO controller) theVε grows considerably, although the
IO controller is able to quickly decrease the errors once the
calculated control torques are within saturation limits. Figure
6b illustrates the tracking errors for the controllers. Note that
the CLF controller is unable to control the growing errors and
results in instability under these stringent torque bounds.
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Fig. 6: (a) Motor torques for the stance (top two figures) and swing legs (bottom two figures), and (b) Corresponding errors
in tracking the output (3), based on the numerical simulations described in Section V-A. Each figure depicts the results for the
four controllers presented in this paper with hard input saturation. Only the CLF controller leads to instability, while the IO,
IO-QP and CLF-QP controllers stabilize to the periodic walking gait.
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Fig. 5: The RES-CLFVε and its derivative for the numerical
simulations described in Section V-A. The figures depict the
results for the four controllers presented in the paper while
under stringent torque limits.

B. Experimental results

Motivated by the favorable numerical simulation results,
we proceed to test the controller experimentally on MABEL.
Experimental implementation of the CLF controller at real-
time speeds is a challenging task, since it requires computation
of the system dynamics (2), the Lie derivatives of the output
(3), and the CLF controller terms (19), as well as the solving
of a convex optimization problem. In order to meet hard
real-time constraints of1 kHz, these computations must be
completed in less than1 ms. By employing the custom-code
generation method CVXGEN [11] for solving constrained
quadratic programs, we are able to solve the optimization
problem in a few hundred microseconds and meet the1

kHz update requirement, making experimental implementation
feasible.

In this experiment, we implemented the CLF controller
described in (22), with the CLF-bound penalty set atp1 = 50
and with torque boundsumin, umax chosen such that−8 ≤
umLA ≤ 8, −12 ≤ umLS ≤ 12. This experiment resulted in70
steps of walking for MABEL and is portrayed in the video in
[8]. (A photo sequence depicting one representative step isalso
shown in Figure 8.) Figure 9 illustrates the resultant control
torques; we observe that the user-specified control bounds
are respected, as evidenced by the flattened control signals
at the boundary areas. Note that the green squares on the plot
depict the time instances at which control bounds are not met,
which occur at moments in which the convex optimization
algorithm is not able to converge within the specified time
constraints. These occurrences are isolated and have no affect
on the experimental system since a motor is not able to respond
to them. Figure 10 illustrates the Lyapunov function and its
time derivative for this experiment. The fact that the Lypanuov
function Vε increases at some points where the calculatedV̇ε
is negative is most likely due to model uncertainty.

VI. CONCLUSION

We have presented a novel method that explicitly addresses
input saturation in the feedback control design for achieving
walking in bipedal robots. The resulting controller enables
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Fig. 8: A photo sequence depicting one representative step
from the second experiment described in Section V-B.
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time derivative ofVε is computed from the experimental data
on the best model of the system we have. There are instance
in this plot whenV̇ε is negative whileVε is increasing, which
is most likely due to model uncertainty.

gradual performance degradation while still continuing towalk
under a range of stringent torque limits. We accomplish this
through an alternative method for implementing the point-
wise min-norm CLF-based controller described in (20) in
a manner that more appropriately handles input saturations.
Numerical simulation as well as experimental implementation
has demonstrated that these control methods can be very
useful in practice, even in systems which require a high real-
time control update rate. This method has great potential for
effectively dealing with saturations in a variety of contexts,
such as power-limited systems which could progressively
lower user-defined torque saturations as the battery charge
decreases, thereby prolonging the last bit of battery charge
while allowing system performance to gracefully degrade.
In addition to dynamic torque saturation, we also note that
this approach provides a method for incorporating a whole
family of user-defined constraints into the online calculation
of controller effort for the types of systems described here.
Future work will consider the effects of varyingε throughout
the gait, which may result in an improved trade-off between
convergence rate and saturation response over the course of
the step.
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