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Identification and Dynamic Model of a Bipedal Robot With a
Cable-Differential-Based Compliant Drivetrain

Hae-Won Park, Koushil Sreenath, Jonathan W. Hurst and J.W. Grizzle

Abstract—This research identifies an eleven degree of freedom
dynamic model of MABEL, a new robot for the study of bipedal
walking and running. Model parameters are identified on the
basis of fourteen angles measured by encoders and the com-
manded torque of the robot’s four independent actuators. The
identification process is modular and begins with the cable-driven
transmission mechanism of the robot. By blocking an appropriate
pulley, the springs that are part of the transmission can be
removed from the initial portion of the identification process.
Furthermore, by selectively connecting and disconnectingcables
in the transmission, experiments are designed for each actuated
coordinate in order to determine inertias, friction coefficients,
motor constants, and power amplifier biases of the transmission
system. With the identified transmission model and estimates
of the inertial parameters of the torso and legs from a CAD
package,a priori estimates of the robot’s overall dynamic model
can be constructed. Thesea priori estimates are initially validated
by comparing predicted response of the combined legs and
transmission system to experimental data excited by common
torque commands. At this point, the compliant elements in the
transmission are brought back into the system and are identified
with a set of static experiments. Specifically, spring stiffness is
estimated from the spring torques and deflections. A second
unplanned source of compliance is accounted for next. This
compliance arises when the cables connecting the pulleys inthe
transmission stretch under heavy loads. The overall model of the
robot is validated through a hopping experiment that excites all
of the dynamics of the model.

Index Terms—Compliance, Dynamics, Legged Robots, Identi-
fication

I. I NTRODUCTION

The primary objective of the research reported in this paper
is to identify parameters which appear in a dynamic model
of MABEL, a new robot for the study of bipedal walking and
running at the University of Michigan’s EECS Department; see
Fig. 1. MABEL uses a novel assembly of cable differentials,
springs, and hard stops to achieve a low-friction, compliant
drivetrain, with the objective of improving the energy effi-
ciency and robustness of bipedal locomotion, both in steady
state operation and in responding to disturbances [1], [2].
The parameters we seek to identify correspond to inertial
parameters of the pulleys comprising the differentials, motor
rotor inertias, various friction coefficients, spring constants,
and power amplifier biases.
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Fig. 1: (a) MABEL, a bipedal robot for walking and running.
The shin and thigh are each 50 cm long, making the robot one
meter tall at the hip. The overall mass is 60 kg, excluding the
boom. The robot’s drivetrain incorporates unilateral springs for
shock absorption and energy storage.
(b) The robot’s drivetrain uses a set of differentials and a spring
to create a virtual pneumatic leg with compliance.

A secondary objective of this paper is to present a dynamic
model of the robot’s drivetrain. With the drivetrain model
in hand, developing the dynamic model of the overall biped
becomes a standard exercise in Lagrangian mechanics [3], [4].
To evaluate the validity of the overall dynamic model of the
robot, a dynamic hopping experiment is performed where the
robot repeatedly jumps off the floor with both legs and lands
in a stable manner.

The problem of parameter identification for robot models
has been well studied in [5], [6], [7], [8], [9], [10]. Most
results are based on the analysis of the input-output behavior of
the robot during a planned motion, with the parameter values
obtained by minimizing the difference between a function of
the measured robot variables and a mathematical model [7]. A
very clear illustration of this approach is presented in [5]for
the identification of parameters in industrial manipulators. The
standard rigid-body model is rewritten in a parametric form
which is linear in the unknown parameters,τ = φ(q, q̇, q̈)θ,
whereq, q̇, q̈ are the position, velocities, and accelerations of
the joints,τ is the vector of joint torques,θ is the unknown
parameter vector, andφ is the regressor matrix. Optimization is
used to define trajectories that enhance the condition number
of φ, and these trajectories are then executed on the robot.
Weighted least-squares estimation is applied next to extract
parameters, and the parameters are in turn validated by torque



2

prediction. This approach requires acceleration, which typi-
cally must be estimated numerically from measured position.
Very careful signal processing is therefore required to obtain
accurate parameter estimates. Research in [11] also exploited a
linear-in-parameter form of the model. First, the gravitational
parameters were estimated on the basis of a static experiment,
and then inertia and friction parameters are obtained by least
square fit to experimental data from a dynamic experiment.
Other researchers have sought to obtain efficient algorithms
for parameter estimation of serial robots by determining a
minimum set of inertial parameters in a mathematical model
[12], [13].

An alternative approach has been explored in [8], which
exploited force and torque sensor measurements to avoid es-
timating acceleration. The model was represented in Newton-
Euler form, and a six element wrench at the robot’s wrist
was expressed in a form linear in the unknown parameters.
Force and torque at the wrist were obtained directly through
force and torque sensors, and parameter estimation was ac-
complished from this data without the need for acceleration.
Another class of methods has been presented in [9], which
used an energy-based model that requires velocity and position
variables, but does not require acceleration. This method,
however, relies on the integration of the input torques and the
joint velocities to compute energy, which is problematic ifes-
timated torque is corrupted by a bias. Reference [10] presented
the idea of designing separate experiments for estimating
different types of parameters involving the inertial forces,
centrifugal coupling forces, friction forces, and gravityforces.
The estimated parameters from each identification procedure
were isolated to one of these four forces at a time.

In this paper, we identify the parameters in a dynamic
model of MABEL. Parameter identification for MABEL is
a challenging task for the following reasons: First, MABEL
has a limited number of sensors, including only position
encoders at the motors and joints, and lacks any force or
torque sensors. Second, actuator characteristics are poorly
known. The motors used in MABEL are custom made BLDC
(brushless direct current) motors which are only manufactured
on demand. Hence, important motor characteristics such as
rotor inertia, torque constant, and mechanical time constants
are not precisely measured and verified by the manufacturer.
Identification of those parameters must therefore be included
in the system identification procedure. In combination with
power amplifiers from a different manufacturer, the motors
exhibited some directional bias. Complicating matters further,
this bias varies among individual amplifier-motor pairs. Con-
sequently, the amplifier bias must be considered in the system
identification process. Another issue that affects our approach
to parameter identification is that the choice of exciting trajec-
tory is restricted due to limitations of MABEL’s work space.
For example, a constant velocity experiment for estimating
friction coefficients is not feasible for MABEL because the
maximum rotation of any joint is less than180◦. Finally,
because MABEL has many degrees of freedom, actuating all
of them at once would lead to a large number of unknown
parameters. For this reason, we take advantage of the modular
nature of the robot to design experiments that allow us to

sequentially build the model element by element. We use
commanded motor torques as inputs, and motor and joint
position encoders as outputs, and extract model parameterson
the basis of those signals. Due to the quantization error of the
magnetic encoders, it is difficult to get accurate acceleration
signals by differentiating encoder position signals. Hence, we
seek to extract parameters without calculating acceleration
from position data.

The paper is organized as follows: Section II describes the
robot being studied. Section III briefly overviews the system
identification process. Section IV, Section V, Section VI, and
Section VII cover the identification of the transmission mech-
anism, the legs, the torso, and the compliance, respectively.
Finally, Section VIII validates the overall dynamic model
through a hopping experiment.

II. M ECHANISM OVERVIEW

MABEL, shown in Fig. 1, is a planar bipedal robot com-
prised of five links assembled to form a torso and two legs.
A novel feature of the robot is that it is constructed from
two monopods joined at the hip. By removing six bolts, half
of MABEL’s torso and one leg can be removed, yielding a
monopod. In fact, the monoped hopping robot “Thumper” at
Oregon State University is literally the left half of MABEL
[14].

In MABEL, the actuated degrees of freedom of each leg
do not correspond to the knee and the hip angles (the hip
angle being the relative angle between the torso and thigh).
Instead, for each leg, a collection of differentials is usedto
connect two motors to the hip and knee joints in such a way
that one motor controls the angle of the virtual leg (denoted
hereafter byLA, where LA stands for Leg Angle) consisting
of the virtual line connecting the hip to the toe, and the second
motor is connected, in series with a spring, to the length of
the virtual leg (denoted hereafter byLS, where LS stands for
Leg Shape). The conventional bipedal robot coordinates and
MABEL’s unique set of actuated coordinates are depicted in
Fig. 2; they are related by the following equations

qLA =
1

2
(qThigh + qShin)

qLS =
1

2
(qThigh − qShin) .

(1)

Roughly speaking, the rationale for this design is that it
makes the robot a hybrid of RABBIT, a robot that walks
extremely well, but never achieved a stable running gait [15],
and a Raibert Hopper, a robot that “runs” remarkably well
[16]. The springs in MABEL serve to isolate the reflected
rotor inertia of the leg-shape motors1 from the impact forces
at leg touchdown and to store energy in the compression phase
of a running gait, when the support leg must decelerate the
downward motion of the robot’s center of mass; the energy
stored in the spring can then be used to redirect the center of
mass upwards for the subsequent flight phase, when both legs
will be off the ground. Both of these properties (shock isolation
and energy storage) enhance the energy efficiency of running

1Inertial load of the motor rotor seen from the joint end.
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Fig. 2: Conventional bipedal robot coordinates and MABEL’s
unique coordinates. Counter clockwise direction is positive

and reduce overall actuator power requirements [17], [2], [1].
This is also true for walking on flat ground, but to a lesser
extent, due to the lower forces at leg impact and the reduced
vertical travel of the center of mass. The robotics literature
strongly suggests that shock isolation and compliance willbe
very useful for walking on uneven terrain [18], [19], [20], [21],
[22], [23], [24].

A. Robot Body

MABEL consists of five links: a torso, two thighs, and two
shins. The robot is attached to a boom to constrain the robot’s
path to the surface of a sphere as shown in Fig. 3. The robot’s
motion is tangential to the sphere centered in the middle of
the laboratory. With a sufficiently long boom, its motion is
similar to that of a perfectly planar robot walking in a straight
line.

Fig. 3: Boom constraining MABEL’s motion to the surface of
a sphere, which approximates 2D planar motion. The central
tower is supported on a slip ring through which power and
digital communication lines (E-stop line and ethernet lines)
are passed.
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Fig. 4: (a) Links comprising MABEL. Csp, T, Csh, Th,
Sh stand forCSpring , Torso, CShin, Thigh, and Shin,
respectively. (b) Transmission mechanism in MABEL and the
coordinates for the transmission mechanism. The mechanism
consists of spring, thigh, and shin differentials. The spring
differential realizes a serial connection between the leg-shape
motor and the spring. The thigh differential realizes movement
of the thigh link in the leg and the shin differential moves the
shin link. More details on gear ratios are provided in Fig. 6
and Fig. 7.

B. Transmission Mechanism

The transmission mechanism for each half of the robot
consists of three cable differentials, labeled the spring,thigh,
and shin differentials, respectively, and a spring, as shown
in Fig. 4b. Two differentials at the hip, the thigh and shin
differentials, serve to translate shin angle and thigh angle into
leg length and leg angle. Thus, the electric motors control the
leg angle and the leg length. The spring differential serves
to apply spring torques in series between the leg length so
the resulting system behaves approximately like a pogo stick.
CThigh and CShin in Fig. 4b are attached to the thigh and
shin links, respectively. TheBThigh and BShin pulleys are
both connected to the leg-angle motor. TheAThigh andAShin

pulleys are connected to theCSpring pulley, which is the
output pulley of the spring differential. The spring on each
side of the robot is implemented via two fiberglass plates
connected in parallel to the differentials via cables; see Fig. 1.
As explained in more detail in Section VII-A, the springs are
unilateral (can compress in only one direction).

Cable differentials are used instead of the more standard
gear differentials depicted in Fig. 5. In part, this choice was
made in order to achieve low friction and backlash, and
low mass in the legs. Although cable differentials and gear
differentials have different assemblies, they work in the same
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Fig. 5: Two versions of a differential mechanism.Left : Gear
Differential, Right: Cable Differential. The A, B, C, and D
pulleys of each mechanism operate in the same manner.

manner. There is a special connection of three components
(labeled A, B, and C), and an internal, unobserved idler
(D). The kinematic equations for a differential are given by
A+B

2 = C and A−B
2 = D, assuming the gear ratios are all

equal. TheA and B components are constrained such that
the average motion of the two is equal to the motion of the
C component. Consequently,A andB can move in opposite
directions ifC is held stationary, and the motion ofC will be
half of A if B is held stationary. In MABEL’s transmission
mechanism,A and B are used as inputs to the differential,
andC is used as an output. In the following,AShin, BShin

andCShin refer to theA, B andC components of the shin
differential; similar nomenclature is used for the other two
differentials.

Fig. 6 and Fig. 7 describe how this transmission works when
qLA or qLS is actuated, while the other link is held fixed. As
part of the description, directions and gear ratios are specified.

The path from spring torque (displacement) to rotation in
qLS is very similar. Because the transmission is linear, the net
motion in qLS from the leg-shape motor and the spring is the
sum of the individual motions.

C. Notation for naming the parameters and variables

For later use, we define following index sets.

I = {mLSL, mLAL, mLSR, mLAR}, (2)

where the subscriptsL andR mean left and right,mLS means
motor leg shape, andmLA means motor leg angle; see Fig. 4b.
For the links, we define the index set

L = {T,Csp,Th, Sh,Csh,Boom}, (3)

where,T, Csp, Th, Sh, Csh, and Boom representTorso,
CSpring, Thigh, Shin, CShin, and Boom, respectively, as
depicted in Fig. 4a. For the transmission mechanism, we define
the index set

T = {Asp,Bsp,Dsp,Ath,Bth,Dth,Ash,

Bsh,Dsh,mLSsd,mLAsd,mLS,mLA},
(4)

where capital letters A, B, and D correspond to the components
of the differentials in Fig. 4b, and sp, th, sh, and sd stand for
spring, thigh, shin, and step down, respectively, as depicted in
Fig. 4. Throughout this paper, the notation for coordinatesand
torques in Table I is used.

TABLE I: Notation for MABEL’s coordinates and torques.
SubscriptsL andR denote left leg and right leg, respectively.

qLSL,R
leg shape rotation angle

qmLSL,R
motor leg shape rotation angle

qLAL,R
leg angle rotation angle

qmLAL,R
motor leg angle rotation angle

qLAL,R
leg angle rotation angle

qmLAL,R
motor leg angle rotation angle

qBspL,R
Bsp rotation angle

τmLSL,R
mLS motor torque

τmLAL,R
mLA motor torque

τBspL,R
Bsp torque
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III. OVERVIEW OF SYSTEM IDENTIFICATION PROCEDURE

Current CAD packages provide excellent estimates of the
total mass of links and pulleys, their lengths and radii, center
of mass, and moments of inertia. If one also accounts for the
location and mass of items not normally represented in a CAD
drawing, such as bearing shape and density, cable length and
density, electrical wiring, on-board power electronics, actua-
tors and sensors, then gooda priori estimates of total mass,
center of mass and moments of inertia can be obtained for the
overall robot. This was done for MABEL. Consequently, part
of our system identification procedure is aimed at validating
thesea priori estimates by comparing predicted responses to
experimental data.

In addition, there are important parameters for which re-
liable estimates are not available from the CAD drawings.
These include motor torque constants, motor rotor inertias,
and spring stiffness and pre-load. Even though motor torque
constants and rotor inertias were provided by the manufacturer
on the basis of their in-house CAD programs, the motors
were custom wound with very small production numbers, and
hence, these values were not experimentally verified before
shipping. Moreover, because we have different motors for
mLA andmLS actuation, and we also have different2 mLS
motors for left and right legs, the characteristics of these
motors would be different in each case. The springs are custom
built as well, and their stiffness must be identified. Finally,
friction parameters will probably never be reliably estimated
by a CAD program and must be determined experimentally.

A. Steps in the Identification Process

The first phase of the experiments focuses on identifying
the actuator parameters and the friction parameters in the
transmission, as well as validating the pulley inertia estimates
provided by the CAD program. The motor torque constant,
KT , and rotor inertia,Irotor, of each motor are also deter-
mined. This is accomplished by analyzing a chain of rotating,
symmetric inertias. Because the pulleys are connected by
“rigid” (low stretching) steel cables to form a one-degree-of-
freedom system, various paths in the transmission mechanism
can be modeled simply by the lumped moment of inertia of
the pulleys, and friction. This combined moment of inertia of
the pulleys can be calculated by the CAD model and added
to the rotor inertia of the motor. The corresponding lumped
moment of inertia can be obtained also from experiments.
From these data, motor torque constants, motor rotor inertias,
viscous friction and motor torque biases can be estimated.

Next, the legs are included to validate the actuation-
transmission model in conjunction with the center of mass
and moments of inertias of the links constituting the thigh and
shin. Each link’s total mass, center of mass, and moment of
inertia can be calculated accurately from the CAD model, so
the primary objective of this step is to validate these values.
For these experiments, the compliance is removed from the
system by blocking theBSpring pulley; the torso is fixed as
well.

2The use of motors of different characteristics for the left and right sides
was not planned. It was a matter of necessity when one of the motors failed.

TABLE II: Parameters to be identified, wherei ∈ I, ` ∈ L,
and t ∈ T . SubscriptsL andR denote left leg and right leg,
respectively.

Differentials and Motors
Ki motor torque constant
Jrotor
i inertia of the rotor

Jt inertia of the transmission pulleys
µi friction coefficient
bi motor bias

Thigh and Shin (Leg)
m` mass of the link̀
J` inertia of the link`
m`rx,` center of mass in x of the

link ` multiplied by mass of the link̀
m`ry,` center of mass in y of the

link ` multiplied by mass of the link̀
Compliance (Spring)

KBL,R
spring stiffness

KdBL,R
spring damping coefficient

KC,i cable stretch stiffness
KdC,i cable stretch damping coefficient

Following this experiment, the torso’s inertial parameters are
identified. Due to the difficulties in experimental identification
of the torso explained in Section VI, we chose to extract the
inertial parameters from the CAD model and verify some of
them with static experiments. The compliance is determined
last. MABEL has two kinds of compliance. One is the unilat-
eral, fiberglass spring designed into the transmission. Theother
source of compliance is unplanned and arises from stretching
of the cables between the pulleys. The compliance of the
unilateral spring will be obtained from static experiments,
and the compliance from cable stretch will be estimated from
dynamic experiments.

With the parameters obtained above, we can construct an
overall dynamic model of the robot. A dynamic hopping
experiment will be executed and the results will be compared
with simulation results of the dynamic model. The parameters
to be identified are shown in Table II.

B. Experimental Setup for Motor, Differential, and Leg Pa-
rameters

The first phase of the experiments uses the setup depicted
in Fig. 8. The torso is fixed relative to the world frame and
the legs can freely move. The position of theBSpring pulley
is fixed as well, removing compliance from the picture for
the initial identification phase. Desired torque commands are
sent to the amplifiers and are recorded by the computer. In
turn, the amplifiers regulate the currents in the motor windings,
thereby setting motor torque values. Rotational motions ofthe
motors are transmitted to the thigh and shin links through the
transmission differentials as shown in Fig. 6, 7, and 8.

Encoders are placed on theqLA andqLS motor angles, the
CThigh andDThigh pulleys, and the knee joint. The position
of the BSpring pulley is also measured, but is not used here
because this pulley is locked in a constant position to remove
the compliance. With this configuration, theqLA and qLS
motor angles are rigidly connected to the anglesqLA and
qLS which are related to the motor encoder readings by the
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Fig. 8: Experimental setup for system identification. Motor
commands are logged as an input for system identification
and the encoder signals for motor angles,CThigh, DThigh

pulleys, and the knee joint are saved as outputs for system
identification.

following relations:3

qLA =
1

γLA→mLA

qmLA, and (5)

qLS =
1

γLS→mLS

qmLS +
1

γLS→Bsp

qBsp, (6)

whereγLS→mLS = 31.42, γLA→mLA = −23.53, andγLS→Bsp =
5.18 are the gear ratios fromLS to mLS, from LA to mLA
and fromLS to Bsp. The calculatedqLS andqLA angles are
also logged during the experiments.

It is common for power amplifiers to exhibit a small bias in
commanded current, which in turn causes a small bias in motor
torque. Before beginning system identification, these biases
were estimated and compensated for each motor following the
procedure described in Appendix A.

IV. T RANSMISSION IDENTIFICATION

Recall that the differentials in the transmission are realized
by a series of cables and pulleys; see Figs. 6 and 7. For system
identification, this is an advantage because we can easily select
how many pulleys are actuated by disconnecting cables. For
each pulley combination, the lumped moment of inertia can
be easily obtained by standard calculations. It follows that if
the electrical dynamics of the motor and power amplifiers are
neglected, the lumped pulley system can be modeled as a first-
order system

Jlumpedω̇ + µlumpedω = u, (7)

whereJlumped is the lumped moment of inertia,µlumped is the
lumped friction coefficient,ω is angular velocity of the motor,
andu is commanded motor torque. By identifyingJlumped and
µlumped for three different combinations of pulleys plus motor,
it is possible to determineKT and Jrotor, and to validate
the lumped pulley inertia predicted by the CAD model. In
the following, for each side of the robot, the three pulley

3These relations hold under the assumption that the cables donot stretch,
which is a very good approximation here because relatively light loads are
applied to the robot. In most of the robot’s applications, however, such as
walking and running, the transmission system is heavily loaded and significant
cable stretching is observed. Models described in Section VII-B take into
account cable stretch.

combinations of Fig. 9 will be used for the leg-angle path
and the three pulley combinations of Fig. 10 will be used for
the leg-shape path.

A. Lumping the Pulley Inertias

In the following it is assumed that the position of the
BSpring pulley is fixed and the cables do not stretch. The
pulleys in the transmission are then rigidly connected and
rotate with a gear ratio determined by the ratio of the radii
of consecutive pulleys. Moreover, if the position of the leg-
shape motor is constant, then the pulleys in the leg-angle path
form a one-degree-of-freedom system as depicted in Fig. 11
and can therefore be lumped; a similar analysis holds when
the position of the leg-angle motor is constant.

B. Motor Torque Constant and Inertia Correction Factor

The qLA-identification experiments are performed succes-
sively on theqLA-motor in combination with 1, 3 and 5 pulleys
as shown in Fig. 9. TheqLS-identification experiments are
performed successively on theqLSmotor in combination with
1, 3, and 4 pulleys as shown in Fig. 10. The lumped moments
of inertia of each combination, including the contributions of
the cables can be expressed as

Ji = Jrotor + Jpulley
i + Jcable

i , i = 1, 2, 3 (8)

where Jrotor is inertia of the actuator rotor,i denotes ex-
periment number,Jpulley

i is the lumped pulley moment of
inertia of experimenti calculated from the CAD model with
consideration of gear ratios between the pulleys, andJcable

i

is the lumped cable moment of inertia calculated from mass
of the cable per unit length and the length of the cable
with consideration of gear ratios between the pulleys. Letting
Jrotor,man denote the nominal rotor inertia supplied by the
manufacturer, we introduce a scale factorα via

α =
Jrotor

Jrotor,man
, (9)

which we seek to identify; see (11).
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Fig. 9: Three different combinations forqLA transmission
identification.
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Due to the presence of the amplifier, as shown in Fig. 12, the
transfer function which can be experimentally estimated from
commanded motor torque to measured motor angular velocity
is a scalar multiple of (7). Hence, moment of inertia from the
experiments is related to moment of inertia of (8) by,

Jexp
i = KT (αJ

rotor,man + Jpulley
i + Jcable

i ), i = 1, 2, 3
(10)

whereJexp
i is lumped moment of inertia estimated on the basis

of the i-th experiment.
Three different moment of inertia values, denoted byJexp

1 ,
Jexp
2 , and Jexp

3 respectively, are obtained from each of the
qmLS andqmLA experiments. Arranging the equations related
with those inertias in matrix form gives

Ψ = Γ

[
KTα
KT

]
(11)

where

Ψ =




Jexp
1

Jexp
2

Jexp
3


, andΓ =




Jrotor,man Jpulley
1 + Jcable

1

Jrotor,man Jpulley
2 + Jcable

2

Jrotor,man Jpulley
3 + Jcable

3


.

Jexp
i results from the experiments,Jrotor,man is from the

manufacturer’s data sheet, andJpulley
i and Jcable

i are from
the CAD model. Estimated values ofKT and α are then
obtained by least squares fit:

[
KTα
KT

]
= (Γ

′

Γ)−1Γ
′

Ψ. (12)

C. Experimental Results

System inputs were designed as follows. Starting from a
lower frequency of 0.5 Hz, the input frequency was increased
in 17 steps to an upper frequency of 50 Hz. Each frequency
was held constant for 10 periods until changing to the next
faster frequency so that the system response would reach
steady state. At each frequency increment, the magnitude was
also incremented to keep the measured motor angular velocity
from becoming too small. Fig. 13 displays examples of the
input signal and corresponding system response. The Matlab
System Identification Toolbox was used to identify the transfer
function (7). TABLE III shows the results obtained from the
experiments.

mLS

mLS

mLS

Step-down

Step-down

ASpring

ASpring DSpring

exp
1

exp
2

exp
3

Fig. 10: Three different combinations forqLS transmission
identification.
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0 0,ρ l
1 1,ρ l

2 2,ρ l 1 1,ρ
− −k kl

Fig. 11: A rigidly connected series of pulleys can be replaced
with a single pulley representing the lumped moment of
inertia.
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Sinusoidally 
Varying Freq. 

and Mag.

Motor Pulley
Encoder Signal

Identify Transfer Function

1
KT

1
Jis+µi

1
J

exp
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= 1
KT (Jis+µi)

K
1+Tps

= 1
J
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i
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i
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i =

Tp

K
, µexp

i = 1
K

Fig. 12: Transfer function from input (amplifier command) to
output (motor encoder signal). The motor torque constant and
amplifier are lumped as a single parameterKT . The measured
transfer function is1/(KT (Jis + µi)). The Matlab system
identification toolbox is used to estimate the first-order transfer
function from the experimental measurements.
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Fig. 13: Example of input and output for system identification.
The input is a modified chirp signal, that is, a sinusoid with
varying frequency and magnitude.

TABLE III: Identified experimental moments of inertia and
friction coefficients for the transmission mechanism.

i=1 i=2 i=3

mLSL
J
exp
i (kg·m2) 8.819e-04 1.099e-03 1.112e-04

µ
exp
i (N·m·s) 5.655e-03 6.518e-03 7.142e-03

mLAL
J
exp
i (kg·m2) 5.514e-4 7.223e-4 7.436e-4

µ
exp
i (N·m·s) 2.332e-03 4.365e-03 3.858e-03

mLSR
J
exp
i (kg·m2) 1.104e-3 1.360e-3 1.431e-3

µ
exp
i (N·m·s) 6.545e-03 9.811e-03 9.879e-03

mLAR
J
exp
i (kg·m2) 5.217e-4 6.900e-4 7.328e-4

µexp (N·m·s) 1.718e-03 4.048e-03 4.703e-03
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On the basis of the values in Table III,KT and α were
calculated by (12). Their estimated values are listed in TABLE
IV, along with the motor bias. Note that the respective rotor
inertia scale factorsα for the left and right sides of the robot
are very close in value. Also, the leg-angle motor torque
constantsKT are nearly identical for the left and right sides.
For the leg-shape motors, the estimated motor torque constants
KT are different; this is because the motor windings are
different on the left and right sides, as noted in Section III.
We also note that motor biases are very small compared with
typical torques that one may see in walking experiments,
which can easily exceed 2Nm for mLA and 8Nm for mLS [3].

TABLE IV: Identified α, motor constantKT and motor bias
b.

i = mLSL i = mLAL i = mLSR i = mLAR

αi 0.934 0.741 0.930 0.763
KT,i 0.995 1.332 1.287 1.269

bi(N·m) -0.1076 -0.04652 0.02995 -0.001672

V. THIGH AND SHIN IDENTIFICATION

This section focuses on the parameters associated with
the legs. Thigh and shin identification are performed in two
steps: SISO (Single Input Single Output) and MIMO (Multi
Input Multi Output). In SISO identification, only one degree
of freedom is actuated at a time:qmLSL

, qmLAL
, qmLSR

, or
qmLAR

, and the other ones are mechanically locked. Because
one degree of freedom is actuated, a reduced number of
parameters appears in the dynamic model, so the system
behavior is simple and easy to identify. Once parameters in
the SISO dynamic model are identified, we proceed to MIMO
experiments, where bothqmLSL

and qmLAL
are actuated si-

multaneously or bothqmLSR
andqmLAR

are actuated.
The main purpose of the MIMO experiments is tovalidate

the parameters obtained in the SISO experiments. However,
friction coefficients may differ from the values from Sec-
tion IV because more joints are actuated when doing thigh
and shin identification experiments than in the transmission
identification experiments. Recall that Fig. 4b and 8 show how
the thigh and shin links are actuated by the torque transmitted
through the transmission.

In this section, the torso continues to be fixed relative to the
world frame and the position of theBSpring pulley is fixed as
well, removing compliance from the picture. The motor torque
constants and rotor inertias identified in Section IV are used
in the model.

A. Mathematical Model

Because we assume rigid connections betweenqLA and
qmLA, and betweenqLS and qmLS in the leg identification,
the appropriate set of generalized coordinates for the dy-
namics of the combined leg and transmission systems is
qg = [qmLSL

, qmLAL
, qmLSR

, qmLAR
].

In the following,Q ⊂ I in (2) represents coordinates ofI
that are actuated in a given experiment and will be called the
actuated index set. Similarly, letP ⊂ I be the complement

of Q; its elements correspond to the mechanically locked
coordinates ofP , referred to as the locked index set. For
example, suppose that only themLSL andmLAL motor angles
are actuated and the other coordinates are mechanically locked,
thenQ = {mLSL,mLAL} andP = { mLSR, mLAR}. We
also define the set of coordinatesqQ =

[
qq1

, . . . , qqnQ

]
, where

q1, . . . , qnQ ∈ Q, andnQ is the number of elements in the set
Q, and qP =

[
qp1

, . . . , qpnP

]
, wherep1, . . . , pnP ∈ P , and

nP is the number of elements in the setP .
The parameters to be validated from the CAD model are

grouped in a vectorθ = [m I rx ry], wherem, I, rx and
ry are mass, inertia, center of mass position inx, and iny,
respectively (the values from the CAD model are presented in
Appendix B), and letα = [αmLSL

, αmLAL
, αmLSR

, αmLAR
]

from Table IV. The total kinetic energy for the actuated index
setQ is

KQ (qg, q̇g θ, α) =KThigh (qg, q̇g, θ, α) |qP=q∗
P

+KShin (qg, q̇g, θ, α) |qP =q∗
P

+Ktrans (qg, q̇g, θ, α) |qP=q∗
P

(13)

where,KThigh, KShin, andKtrans are the kinetic energies
of the thigh, the shin and the transmission, respectively, and
q∗P are the locked joint position angles forqP . Symbolic
expressions for the transmission model are available online
at [25]. The total potential energy for the actuated index set
Q is

VQ (qg, q̇g θ, α) =VThigh (qg, q̇g, θ, α) |qP=q∗
P

+VShin (qg, q̇g, θ, α) |qP=q∗
P

+VTrans (qg, q̇g, θ, α) |qP =q∗
P
.

(14)

The Lagrangian is then

LQ = KQ − VQ. (15)

With the total kinetic energy and potential energy obtained
from (13) and (14), the dynamics can be determined through
Lagrange’s equations:

d

dt

∂LQ

∂q̇Q
−

∂LQ

∂qQ
= ΓQ, (16)

whereΓQ is the vector of generalized forces acting on the
robot, and can be written as:

ΓQ = Inq×nq
KTQ

uQ − Fµq̇Q, (17)

where Inq×nq
is the identity matrix of sizenq, KTQ

=
diag[1/KT,q1

· · · 1/KT,qnp
], uQ = [τq1

+ bq1
· · · τqnp

+ bqnp
],

andFµ = diag[µq1
· · ·µqnp

], and whereKT,q1···np
are from

Table IV. Thebq1
, . . . , bqnp

are the motor biases4. The motor
biases can be obtained from Table IV for the SISO experiment;
for the MIMO experiment, however, they are obtained as part
of the optimization process explained in Section V-C. The
friction coefficients areµq1

, . . . , µqnp
, and the procedure to

obtain them will also be explained in Section V-C.

4Because the legs are relatively light, small torque biases lead to significant
errors in the modeled effects of gravity. When the robot is inactual operation
and supporting the heavy torso, the effects of these small torque biases will
be negligible.
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The dynamic model in (16) also can be written in the form

D(θ, α, q)q̈ + C(θ, α, q, q̇)q̇ +G(θ, α, q) = ΓQ, (18)

where D(θ, α, q) is the inertia matrix,C(θ, α, q, q̇) is the
Coriolis matrix,G(θ, α, q) is the gravity vector.

B. Experiments

Two types of experiment are performed in this section:
SISO and MIMO. Each is performed on one leg at a time. In
principle, with the torso position fixed, the legs are decoupled;
in practice, there is some coupling of vibration from one side
to the other because the test stand is not perfectly rigid.

In the SISO experiments, one degree of freedom is actuated
and logged (eitherqmLS or qmLA), while the other degree of
freedom is mechanically locked. In the MIMO experiment,
bothqmLS andqmLA are actuated and recorded. The objective
of the SISO experiments is to validate the parameter vectorθ
in (18) obtained from the CAD model, and the motor constant
KT and biasb terms identified in Section IV. The objective
of the MIMO experiment is to validate the parameters from
the SISO experiment.

The input signal is a modified chirp signal plus a constant
offset, similar to the transmission identification experiments.
However, there is an additional complication: the magnitude
and offset must be selected to keep the links within the
robot’s work space. Previously, when the transmission was
disconnected from the legs, this was not an issue.

C. Simulation and Validation

With all the parameters in the mathematical model (18)
known, the response of the system excited by the input used
in experiments can be simulated. The parameterθ in (18) can
be obtained from the CAD model, andα, b, and KT was
obtained in Section IV. The friction parametersµ are obtained
by minimizing the following cost function

J(µQ) =
√∑

(yexp − ysim(µQ)), (19)

whereyexp is the vector of experimentally measured data,ysim
is the vector of simulated data, andµQ is the vector of viscous
friction coefficients given the actuated index setQ. The µQ

values obtained in this manner should be larger than the values
from Section IV, but not greatly different from those values,
and are shown in Table V.

In the MIMO simulations, we observed that very small
variations in assumed actuator bias, which can be ignored in
nominal use of the robot, can cause large deviations in the
system response, especially in the leg-shape variablesqmLS.
Therefore, for the MIMO simulations, in place of the bias
values obtained from the transmission identification, we used
values which minimize the cost function,

J(bQ) =
√∑

(yexp − ysim(bQ)), (20)

whereyexp is the vector of experimentally measured data,ysim
is the vector of simulated data, andbQ is the bias vector of the
actuated index setQ. The values obtained forbQ are shown
in Table V.

TABLE V: Friction coefficientµ and motor biasb obtained
by minimizing the costs in (19) and (20), respectively.

i = mLSL i = mLAL i = mLSR i = mLAR

µi (N·m·s) 9.844e-3 4.316e-3 9.027e-3 4.615e-3
bi (N·m) -8.417e-3 2.597e-2 -1.446e-2 -2.461e-3

Simulations are conducted as follows. First, (18) is set up
for a given actuated index setQ. Then, the system response
is simulated for the input sequence used in the experiment.
Finally, the results from simulation are compared with exper-
iments. The overall simulation and validation procedures are
depicted in Fig. 14.

D. Results

The comparisons between simulated and experimental re-
sults are presented in Fig. 15 and Fig. 165. All figures
show qLS and qLA computed fromqmLS and qmLA because
qLS and qLA are physically more meaningful and easier to
understand. It is emphasized that all parameters are eitherfrom
the transmission identification experiments or the CAD model,
with the following exceptions: friction is estimated in theSISO
experiments from (19) and used in the MIMO experiments; in
the MIMO experiments, motor biases are tuned via (20).

We can observe that simulation results match very closely
the experimental results. The small differences in the plots
may arise from several sources:

1) A simple viscous friction model is used in the simula-
tions. This model does not take into account stick-slip
behavior in the slow velocity region.

2) Electrical wiring is not included in calculating inertial
parameters.

3) Motor bias changes slightly for each experimental trial.

VI. TORSOIDENTIFICATION

Due to the torso being much heavier than the legs, its mass
and inertia strongly affect the dynamics of the robot. Accurate
identification of the torso’s inertial parameter is therefore very
important. The identification of the torso’s inertial properties
through experimentation is more difficult than those of the

5MATLAB .fig-files are available online at [25]

Simulation

Model

MABEL

α, KT

Input Sequence

Transmission I.D.

θ

CAD Programs

Output

b, μ

Optimization

Fig. 14: Simtulaion and validation procedures of leg identifi-
caion
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Fig. 15: SISO simulation (solid red line) and experimental
(dotted blue line) data in degrees.

transmission and legs for the following reasons. First, the
experimental testbed does not allow6 us to fix the legs and
move only the torso. Second, the workspace of the torso is
limited7 to +30◦ ∼ −40◦.

Therefore, instead of dynamic identification of the torso,
static balancing experiments are executed for validatinga
priori CAD model estimates. First, we set the robot in a
posture where the right leg is extended more than the left
leg. MABEL is then balanced by hand8 on the right leg9.
Once the robot is in balanced posture, the joint position data
is recorded. Many different postures are balanced and logged.
With the logged data, we calculate the center of mass position
of the overall robot, and verify that the calculated center of
mass is located over the supporting toe.

In a second set of experiments, the position of the hip joint

6Attempts at doing so resulted in movements of the heavy torso(approxi-
mately 40 kg) being translated to the legs.

7The is due to a rotation limiter device installed to prevent the torso from
hitting the floor when the robot falls. A related video is available on YouTube.

8The balance of the robot is maintained with very minimal fingertip
pressure.

9The wheel at the toe is removed for better accuracy of the experiment. Due
to compliance of the wheel and its rounded shape, the contactpoint would
vary for each posture.
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Fig. 16: MIMO simulation (solid red line) and experimental
(dotted blue line) data in degrees.

is fixed, with the legs hanging below the robot and above the
floor. The torso is balanced in the upright position. We then
calculate the center of mass position of the model without the
boom, and check that the center of mass is aligned over the
hip joint.

We tried 10 different postures for the first experiment and 7
different postures for the second experiment. Fig. 17a displays
the horizontal distance between the center of mass and the
supporting toe for the first experiment, and Fig. 17b shows
the horizontal distance between the center of mass and the
hip for the second experiment. We observe that the maximum
error is 6 mm, which is negligible considering that we did the
experiments with manual balancing.

VII. C OMPLIANCE

MABEL uses springs connected in series betweenqmLS

and qLS to provide energy storage and shock absorption.
The stiffness of these springs is estimated through static
experiments using the calculated spring torques and measured
spring deflections. The joint torques used in these experiments
are more representative of the torques used in walking [3]
and are approximately 8 times higher than in the dynamic
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Fig. 17: Calculated center of mass horizontal distance from
the supporting toe (a) and the hip (b) from the identified leg
inertial parameters and the torso inertial parameters fromthe
CAD models. All center of mass horizontal distances stay
within 6mm.

experiments of Section V. During the experiments, it is noted
that the cables in the differentials stretch. This compliance is
also modeled.

A. Spring Stiffness

The series compliance in the drivetrain is now identified by
static, constant torque experiments, performed by balancing
the robot on one leg at a time. The setup is illustrated in
Fig. 18. In these experiments, the torso is no longer locked in
place relative to the world frame (it is free). The actuatorson
one side of the robot are disabled; the leg on that side is folded
and tied to the torso. On the other side, a PD-controller is used
to maintain the leg angle at180◦. A second PD-controller is
used to set the nominal leg shape, which is varied from10◦

to 30◦. An experimenter balances the robot in place with the
toe resting on a scale placed on the floor; the experimenter
adjusts the angle of the robot so that it is exactly balanced on
the toe, as in Section VI.

In this position, the scale is measuring the combined weight
of the robot and the boom. At steady state, the torque at the
CSpring pulley is exactly balanced by sum of the torques at the
ASpring andBSpring pulleys, by the design of the differential.
The torque at theCSpring (denoted byτgravity in Fig. 18) is
the weight of the robot transmitted through the thigh and shin
differentials, and its magnitude is given by:

|τgravity | =

∣∣∣∣
1

2
Wrobotsin(qLS)

∣∣∣∣ , (21)

whereWrobot is the weight of the robot measured by the scale
at the bottom of the foot. The absolute value is used because
spring stiffness is positive. The torque atASpring (denoted by
τAsp in Fig. 18) is from theqmLS motor reflected through the
stepdown pulley, and the torque at theBSpring pulley (denoted

Gravity

kg

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

τAsp

τGravity

τBsp

Fig. 18: Experimental setup for measuring spring stiffness.
CSpring is locked in place by blocking the toe of the robot.
Therefore, leg-shape motor torque is transmitted to the spring,
resulting in spring defelction.

by τBsp in Fig. 18) is due to the deflection of the spring and
is given by:

τBsp = KBqBsp, (22)

where KB is the spring stiffness andqBsp is the spring
deflection measured by a magnetic encoder installed in the
Bsp pulley. BecauseτGravity and τBsp are related via the
differential mechanism, these torques are related by:

|τGravity| = |2.59061τBsp| . (23)

Combining (21), (22), and (23), the spring stiffness is obtained
as follows

KB =

∣∣∣∣
1

5.18043

Wrobotsin(qLS)

qBsp

∣∣∣∣ . (24)

We emphasize that the estimate in (24) does not depend
on the estimated leg-shape motor torque. The design of the
experiment is completed by varyingqLS over a range of values,
here taken to be from10◦ to 30◦.

The above experiment was performed on each leg. Fig. 19
shows the results of these experiments. It is observed that the
spring behavior is nearly linear, and that the spring constants
of the left and right springs are consistent.

B. Cable Stretch

We have observed in walking experiments reported else-
where [3] that the cables used in the differentials stretch a
noticeable amount under the application of heavy loads10.
This compliance breaks the rigid relations in (5) and (6).
Consequently,qLA and qmLA are independent degrees of
freedom, as areqLS, qmLS, andqBsp.

We take into account the stretching of the cables with a
simple spring model. First, the rigid relations are expressed in
the form of a constraint

λ (q) =

[
qmLA + γLA→mLAqLA

qmLS − γLS→mLSqLS − γLS→BspqBsp

]
, (25)

10For the experiments reported in Sections V, the amount of cable stretch
was negligible.
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whereq is the vector of generalized coordinates for the robot
dynamics andλ (q) ≡ 0 corresponds to zero cable stretch.
Because the cable stretch torques act on these constraints,
the corresponding input matrix for cable stretch forcesBcable

follows from the principle of virtual work:

Bcable =
∂λ

∂q

′

. (26)

We assume here that the cable stretch torques can be modeled
as a linear spring with linear damping. Therefore, for each of
the four actuators, the spring force from the cable stretch is
modeled as

τcable (q, q̇) = KCλ (q) +KdCλ (q̇) , (27)

whereKC is 2× 2 a diagonal matrix spring coefficients, and
KdC is 2× 2 diagonal matrix with damping coefficients of
the cable stretch.

The spring and damping coefficients of the cables will be
obtained in Section VIII-C.

VIII. O VERALL MODEL EVALUATION VIA TWO-LEGGED

HOPPING

This section describes a hopping experiment used to fine
tune and subsequently validate the overall dynamic model of
MABEL. First, a dynamic model appropriate for two-legged
hopping is presented. The model consists of the integration
of the models for the transmission, the legs, the torso, and
the cable stretch from Section IV, Section V, Section VI
and Section VII-B, respectively, with a model to compute
ground reaction forces [26], [27]. Next, a simple controller to
induce two-legged hopping is summarized, with details given
in Appendix C. With the simple controller, several hopping
steps were realized, but a stable, steady-state hopping gait was
not achieved. This data was used to determine the remaining
parameters in the overall dynamic model, corresponding to
the damper which implements the hard stop in the unilateral
spring, the coefficients of the cable stretch model, and the
ground contact model. Using this final model, the hopping con-
troller was refined with event-based correction terms. When
applied to the robot, this controller yielded successful hopping,
which was terminated after 92 hops. The results of the hopping
experiment are used to validate the model through comparison
with the simulation model. Excellent agreement is attained.
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Fig. 19: (a) Spring Stiffness=115.1N·m (τBspL
= 115.1qBspL

+
2.214) (b) Spring Stiffness=111.7N·m (τBspL

= 111.7qBspL
+

5.377)

A. Dynamic Model

The model for the dynamic hopping is derived with the
method of Lagrange. When deriving the equations of motion,
it is more convenient to consider the spring torques, the cable
stretch torques, the ground reaction forces and the joint friction
torques as external inputs to the model. The Lagrangian is
computed as summarized in [3], except that, because of the
additional cable stretch dynamics, 4 additional coordinates are
needed to parametrize the robot’s linkage and transmission.

The generalized coordinates are taken asqh :=
(qLLA; q

L
mLA; q

L
LS; q

L
mLS; q

L
Bsp; q

R
LA; q

R
mLA; q

R
LS; q

R
mLS; q

R
Bsp; qTor;

phhip; p
v
hip), where as in Fig. 2, and Fig. 4b,qTor is the torso

angle, andqLA, qmLA, qLS, and qmLS are the leg angle,
leg-angle motor position, the leg shape, the leg-shape motor
position respectively, andphhip andpvhip are the horizontal and
vertical positions of the hip in the sagittal plane, respectively.
The model is then expressed in standard form as

Dh (qh) q̈h + Ch (qh, q̇h) q̇h +Gh (qh) = Γh (28)

where,Γh is the vector of generalized forces and torques acting
on the robot, which is given by,

Γh = Bhu+Bfricτfric (qh, q̇h) +BspτBsp (qh, q̇h)+

∂f

∂qh

′

F +Bcableτcable (qh, q̇h) .
(29)

Here,f is the position vector of the leg end,F is the ground
reaction force, the matricesBh, Bfric, BBsp, andBcable are
derived from the principle of virtual work and define how the
actuator torquesτ , the joint friction forcesτfric, the spring
torquesτBsp, and the cable stretch torquesτcable enter the
model, respectively.

The ground reaction forces at the leg ends are based on the
compliant ground model in [26], [27], using the modifications
proposed in [28]. The model for the unilateral spring is
augmented with terms to represent the hard stop, yielding
τBsp :





= −KBqBsp −KdB q̇Bsp, qBsp > 0

= −KBqBsp −Kd1q
3
Bsp −Kvd1q̇Bsp, qBsp ≤ 0 and q̇Bsp ≥ 0

= −KBqBsp −Kd1q
3
Bsp −Kvd1q̇Bsp

−Kvd2

√
|q̇Bsp|sign(q̇Bsp), qBsp ≤ 0 and q̇Bsp < 0

(30)
whereKB corresponds to the experimental values in Fig. 19,
and where the remaining parametersKdB,Kd1,Kvd1, and
Kvd2 will be identified from hopping data in Section VIII-C.
When the spring is deflected,qBsp > 0, this model is a linear
spring damper. WhenqBsp ≤ 0, the pulley is against the hard
stop, a very stiff damper. This model captures the unilateral
nature of MABEL’s built-in compliance.

B. Hopping Controller

A simple, heuristic controller is outlined for hopping. It
is emphasized that we are not interested in hopping per se.
A hopping gait is being used as a means of exciting all
the dynamic modes that will be present when running on
flat ground or walking on uneven ground. The details of the
controller are provided in Appendix C.
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Flight
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Kickoff
Left-liftoff

Right-liftoff

Retract

SI→II

SII→III

SIII→IVb

SIII→IVa

SIII→VSIVa→V

SIVb→V

SV→I

Fig. 20: The controller phases and the transitions. From Phase
III, three possible transitions can occur because which leg
comes off ground first cannot be predicted. According to which
leg comes off the ground, controller selects PhaseIVa,IVb or;
V as the next phase

The controller consists of 5 different phases as depicted in
Fig. 20:

1) Phase I (Flight Phase): MABEL is in the air, and
no ground contact occurs. The variablesqLAL

, qmLSL
,

qLAR
, andqmLSR

are commanded to constant values via
a PD controller.

2) Phase II (Touchdown Phase): MABEL lands on the
ground11. The leg-angle motors are used to regulate the
torso angle and the angle between left and right legs
to constant valueshd

Tor and δLA, respectively. The leg-
shape motor positionsqmLSL

andqmLSR
are commanded

to be constant so that the springs absorb the impact
energy.

3) Phase III (Kickoff Phase): When the horizontal com-
ponent of the center of mass velocity approaches zero,
the legs are extend byδ−LSL

for the left andδ−LSR
for

the right in order to propel the robot off the ground.
From Phase III, three possible transitions can occur
because which leg comes off the ground first cannot be
predicted. According to which leg comes off the ground
first, controller chooses PhaseIVa, IVb or ,V as the next
phase.

4) PhaseIVa (Left-liftoff Phase): Only the left leg has
lifted off the ground, and the right leg is still in contact
with the ground. The left leg starts to retract byδ+LSL

to
provide clearance.

5) PhaseIVb (Right-liftoff Phase): Only the right leg has
lifted off the ground, and the left leg is still in contact
with the ground. The right leg starts to retract byδ+LSR

to provide clearance.
6) Phase V (Retract Phase): Both legs have lifted off

the ground, and are retracted for 50 msec to provide
clearance. After 50 msec, the controller passes to the
flight phase.

11Landing is declared when both legs touch the ground.

TABLE VI: Parameters obtained from dynamic hopping ex-
periment.

Spring Model

KdB 1.5 Kvd1 1000
Kd1 100 Kvd2 50

Cable Stretch Model

i = mLSL i = mLAL i = mLSR i = mLAR

KC,i 2.9565 3.5000 2.9565 3.8094
KdC,i 0.0402 0.0889 0.0804 0.3556

Ground Model

λa
v 3.0e6 σh0 260.0

λb
v 4.5e6 σh1 2.25

n 1.5 αh0 1.71
k 4.38e7 αh2 0.54

αh3 0.9

C. Identification of Parameters for Cable Stretch, Hard Stop
(Damper), and the Ground Model

The controller outlined in Section VIII-B was tuned on an
approximate simulation model that assumed the cables are
rigid. The controller was coded in C++ and implemented with
a 1 ms sample time. When applied on MABEL, steady-state
(stable) hopping was not achieved, with five hops being typical
before the robot fell. This experimental result was used to tune
the parameters in the hard stop model, the cable stretch model,
and the compliant ground contact model, using a combination
of hand adjustment and nonlinear least squares fitting. The
resulting parameters are given in TABLE VI.

D. Hopping Experiments for Validation

Using the parameters of TABLE VI, the stability of the
nominal hopping controller was evaluated on the simulation
model using a Poincaré map, and was found to be unstable.
Event-based updates to the torso angle were added to achieve
stability [4, Ch.4]; see Appendix C. The controller was then
applied to MABEL, resulting in 92 hops before the test
was deliberately terminated. Fig. 21 and 22 compare typical
experimental results against the simulation results for the 31st
and 32nd of the 92 hops. Fig. 21 depicts joint position angle.
The experimental and simulation data match well; it can be
observed that the period of the experimental data is longer than
that of the simulation results by approximately 30 ms. Fig. 21
depicts joint torques. The simulation accurately predictsjoint
torques observed in the experiment. Fig. 23 depicts cable
stretch in the motor coordinates. A significant amount of cable
stretch is observed, with the model capturing it quite well.

IX. CONCLUSIONS

System identification of a 5-link bipedal robot with a
compliant transmission has been investigated. For each side
of the robot, the transmission is composed of three cable
differentials that connect two motors to the hip and knee joints
in such a way that one motor controls the angle of the virtual
leg consisting of the line connecting the hip to the toe, and the
second motor is connected - in series with a spring - in order to
control the length of the virtual leg. The springs serve bothto
isolate the reflected rotor inertia of the leg-shape motors from
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Fig. 21: Validation data from the second hopping experiment.
Joint position (in degrees) and hip position (in m): simulation
(solid red line) and experiment (dotted blue line).
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Fig. 23: Validation data from the second hopping experiment.
Cable stretch (in degrees): simulation (solid red line) and
experiment (dotted blue line).

the impact forces at leg touchdown and to subsequently store
energy when the support leg must decelerate the downward
motion of the robot’s center of mass.

The robot is equipped with fourteen encoders to measure
motor, pulley and joint angles, as well as contact switches at
the ends of the legs. Neither force sensors, torque sensors,nor
accelerometers are available. To get around these limitations,
the identification procedure took full advantage of the modular
nature of the robot. By selectively disconnecting cables inthe
transmission, various elements could be isolated for study. The
process began by identifying the actuator parameters (rotor
inertia and torque constants) and the viscous friction in the
transmission, as well as validating the pulley inertia estimates
provided by the CAD model, all with the cables removed
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that connect the legs of the robot to the transmission. Next,
the legs were included to validate the actuation-transmission
model in conjunction with the center of mass and moments
of inertias of the links comprising the thigh and shin. Each
link’s total mass, center of mass, and moment of inertia was
estimated from the CAD model, so the primary objective of
this step was to validate these values along with the identified
actuator parameters. For these experiments, the compliance
was removed from the system by blocking the appropriate
pulley; the torso was rigidly fixed in an upright position
as well. Following this, the mechanical parameters of the
robot’s torso were partially validated through static balancing
experiments.

The compliance was identified last. MABEL has two kinds
of compliance. One is the unilateral, fiberglass spring designed
into the transmission. The other source of compliance is
unplanned and arises from stretching of the cables between the
pulleys. The compliance of the unilateral spring was obtained
through static loading experiments. The compliance from cable
stretch was estimated from a set of hopping experiments. From
the same data set, the parameters for a compliant ground model
were roughly estimated.

A complete dynamic model of the robot was constructed
using the parameters identified in the above process. Using
this model, a hopping controller was designed and simulated.
When implemented on the robot, the controller yielded stable,
steady hopping. After 92 hops, the experiment was terminated.
A comparison of the experimental data and the model showed
very good agreement. We are confident that this dynamic
model will allow us to design and successfully implement
controllers for running on a smooth floor and robust walking
on an uneven floor.

APPENDIX A
MOTOR BIAS

The motor amplifier bias is estimated by the following
procedure. First, the motor pulley is isolated from all other
pulleys by simply disconnecting the cable between the motor
and the rest of the transmission, in order to minimize the
effect of friction from the rest of the pulleys. The motor is
actuated with an unbiased sinusoidal torque command. An
unknown amplifier bias will causes the motor position to drift
slowly as shown in Fig. 24. Differentiating the response of the
motor shown in Fig. 24 gives the angular velocity, which is
shown in Fig. 25. A first order ARX (Autoregressive model
with exogenous inputs [29]) model is used to identify the
system, because the transfer function between the input and
the angular velocity can be modeled as a simple first order
system (as explained in Section II). To identify the bias, a
constant sequence of1’s is augmented to the original input
signal as shown in Fig. 26. Thus, the input sequence used in
estimating the bias is defined by,

u =

[
u1,1, . . . , u1,k

u2,1, . . . , u2,k

]
=

[
τ

1, . . . , 1

]
, (31)

where,τ is the original input sequence.
The first order ARX model with two inputs is given by,
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Fig. 24: The amplifier has an unknown bias. This is evident
from the fact that an unbiased command input to the amplifier,
produces an output which slowly drifts with time.
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yk = a1yk−1 + b1u1,k−1 + b2u2,k−1. (32)

Arranging (32) gives,

yk = a1yk−1 + b1(u1,k−1 + b2/b1), (33)

where,b2/b1 is the actuator bias.

APPENDIX B
ROBOT MODEL DATA

Tables VII and VIII summarize the robot parameter iden-
tified in Sections IV, V and VI. The data for the compliance
is given in Table VI of Section VII-B.

TABLE VII: Mass, Center of Mass, and Moment of inertia of
the links from the CAD models

Link Mass Center of Mass Moment of inertia
(kg) [rx, ry] (m) (kg·m2)

Spring (Csp) 1.8987 [0.0009406, 0.1181] 0.04377
Torso (T) 40.8953 [0.01229, 0.18337] 2.3727
Cshin (Csh) 1.6987 [0.0004345, 0.08684] 0.03223
Thigh (Th) 3.2818 [0.0003110, 0.1978] 0.1986
Shin (Sh) 1.5007 [0.0009671, 0.1570] 0.08813
Boom 7.2575 [0.0, 1.48494153] 20.4951
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Fig. 26:u1 is command input andu2 is sequence of1’s which
is augmented to the input signal.

TABLE VIII: Moment of inertia of the transmission pulleys

Pulley
Moment of inertia
(kg·m2)

JmLS 9.0144e-004
JmLA 4.4928e-004
JAth 1.6680e-003
JBth 2.2181e-003
JDth 1.0826e-003
JAsh 1.6974e-003
JBsh 2.2181e-003
JDsh 2.0542e-003
JAsp 2.3464e-003
JBsp 1.8686e-003
JDsp 1.9313e-003
JmLSsd 2.7117e-003
JmLAsd 1.0950e-003

APPENDIX C
DETAILS OF THE HOPPINGCONTROLLER

This section provides the details of the hopping controller
used in Section VIII-B. For each phase X of Fig. 20, a simple
PD control scheme is used for tracking of the controlled
variablesh to a reference trajectoryhref

X :

u = Kp

(
href
X − h

)
+Kd

(
−ḣ

)
, (34)

where the controlled variables are

h :=




qLAL

qmLSL

qLAR

qmLSR


 , (35)

Kp is a 4 × 4 diagonal matrix of proportional gains,Kd is
a 4 × 4 diagonal matrix of derivative gains, andhref

X is the
desired trajectory calculated from (38)-(43) for phaseX of
Fig. 20. In the detailed simulation model,h in (34) is quantized
to the same level as the encoders on the robot, andḣ is
obtained by numerical differentiation. The control inputsare
updated with a sampling time of 1ms, which is the same as
the sampling time used on the robot. Desired trajectories and
transition conditions presented in (38)-(43) are calculated and
checked for corresponding phase, and are inserted into (34).
The following parameters are used in the trajectory calculation.

Ud := {δLA, h
d
LSL

, hd
LSR

, δ−LSL
, δ−LSR

, δ+LSL
, δ+LSR

, hd
Tor}

(36)
whereδLA, hd

LSL
, hd

LSR
, δ−LSL

, δ−LSR
, δ+LSL

, δ+LSR
, andhd

Tor ∈
R

1, and

xd =




xd
1

xd
2

xd
3

xd
4


 =




π − 0.5δLA − hd
Tor

γLS→mLSh
d
LSL

π + 0.5δLA − hd
Tor

γLS→mLSh
d
LSR


 . (37)

Phase I :





href
I =




xd
1

xd
2

xd
3

xd
4




SI→II : {ptoeL = 0, ptoeR = 0}

(38)

Phase II :






href
II =




qTor + qLAR
− hd

Tor − δLA

xd
2

qTor + qLAR
− hd

Tor

xd
4




SII→III : {|φ̇v| < 0.01}

(39)

Phase III :






href
III =




qTor + qLAR
− hd

Tor − δLA

xd
2 − γLS→mLSδ

−
LSL

qTor + qLAR
− hd

Tor

xd
4 − γLS→mLSδ

−
LSR




SIII→IVa
: {ptoeL > 0, ptoeR ≤ 0}

SIII→IVb
: {ptoeL ≤ 0, ptoeR > 0}

SIII→V : {ptoeL > 0, ptoeR > 0}

(40)

Phase IVa :






href
IVa =




H1h
ref
III (tIII→IV)

xd
2 + γLS→mLSδ

+
LSL

H3h
ref
III (tIII→IV)

xd
4 − γLS→mLSδ

−
LSR




SIVa→V : {ptoeR > 0}

, (41)

whereH1 = [1 0 0 0], H3 = [0 0 1 0], andtIII→IV is the time
when the transition fromIII to IV happens.

Phase IVb :






href
IVb =




H1h
ref
III (tIII→IV)

xd
2 − γLS→mLSδ

−
LSL

H3h
ref
III (tIII→IV)

xd
4 + γLS→mLSδ

+
LSR




SIVb→V : {ptoeL > 0}

(42)

Phase V :





href
V =




H1h
ref
III (tIII→IV)

xd
2 + γLS→mLSδ

+
LSL

H3h
ref
III (tIII→IV)

xd
4 + γLS→mLSδ

+
LSR




SV→I : {t = tIV→V + 0.05}

, (43)
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where tIV→V is the time when the transition fromIV to V
happens.

In addition to the control structure explained above, we have
the following event based update of the desired torso angle for
better stability:

φ∗
h[k] = φh (tI→II)

δφh[k] = φ∗
h[k]− φ∗

h[k − 1]

δhd
Tor[k] = KTor(δφh[k]− δφd

h)

hd
Tor[k] = hd0

Tor + δhd
Tor[k],

(44)

where k is the hopping count,tI→II is the time when the
transition from I to II occurs, andKTor is the gain. Basically,
this controller updateshd

Tor based on the distance traveled
horizontally during one hop. If MABEL travels less thanδφd

h

during the previous hop, the torso is leaned back from the
center valuehd0

Tor, and vice versa. Adding new parameters for
the update law to the parameter set, we define a new parameter
set:

Ũd := {δLA, h
d
LSL

, hd
LSR

, δ−LSL
, δ−LSR

, δ+LSL
, δ+LSR

, hd0
Tor, δφ

d
h}
(45)

With the control structure explained in this section, simula-
tion study shows that the following parameter set yields steady
state dynamic hopping motion:

δLA = 30◦, hd
LSL

= 12◦, hd
LSR

= 12◦,

δ−LSL
= 5◦, δ−LSR

= 13◦, δ+LSL
= 5◦,

δ+LSR
= 5◦, hd0

Tor = 8◦, φd
h = −6.9◦

(46)
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