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Abstract— Virtual constraints are functional relations (i.e.,
constraints) on the state variables of a robot’s model that
are achieved through the action of actuators and feedback
control instead of physical contact forces. They are called
virtual because they can be re-programmed on the fly without
modifying any physical connections among the links of the robot
or its environment. Previous analytical and experimental work
has established that vector relative degree two virtual holonomic
(i.e., only configuration dependent) constraints are a powerful
means to synchronize the links of a bipedal robot so as to
achieve walking and running motions over a variety of terrain
profiles. This paper introduces a class of virtual nonholonomic
constraints that depend on velocity through (generalized) an-
gular momentum, while maintaining the property of being
relative degree two. This additional freedom is shown to yield
control solutions that handle a wider range of gait perturbations
arising from terrain variations and exogenous forces. Moreover,
including angular momentum in the virtual constraints allows
foot placement control to be rigorously designed on the basis of
the full dynamic model of the biped, instead of on the basis of
an inverted pendulum approximation of its center of mass, as
is commonly done in the bipedal robotics literature. This new
class of control laws is shown in simulation to be robust to a
variety of common gait disturbances.

I. INTRODUCTION

Virtual holonomic constraints are functional relations
among the configuration variables of a robot that are dy-
namically imposed through feedback control. Their purpose
is to synchronize the evolution of the various links to an
internal phase or gait timing variable, such as the position
of the robot’s hip with respect to the stance leg end [1].
The gait timing variable is selected to be monotonically
increasing along a walking motion so that it can replace time
as a means to parameterize command “trajectories”. From a
theoretical perspective, virtual constraints turn the Isidori-
Byrnes theory of nonlinear zero dynamics [2] into a formal
gait and feedback design tool, while the experiments reported
in [3]–[8] attest to the applicability of the approach to realize
dynamic locomotion that meets a range of design objectives,
from speed of locomotion, to limits on actuator torque, and
available friction cone, to only name a few.

The purpose of this paper is to introduce a more general
class of nonholonomic virtual constraints that depend on
velocity. The motivation for this extension comes from the
work of [9], which plans the desired placement of a biped’s
swing foot as a function of the center of mass velocity in
the horizontal direction. The control law for foot placement
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is based on the linear inverted pendulum model (aka LIP)
proposed in [10], which approximates the robot’s dynamics
as an inverted pendulum with constant vertical height and
massless legs, as shown in Fig. 1. Due to the assumptions
of constant vertical height and massless legs, the pendulum’s
dynamic model is linear, the reset map associated with leg
impact is linear and energy conserving, and the overall hybrid
model can be solved in closed form. From the closed-form
solution of the LIP model, Pratt et al. [9], [11] propose a
foot placement policy to regulate forward walking speed, and
have illustrated it on complex robots, such as a simulation
model of the M2V2 biped undergoing “shoves” of up to
15 Ns [12].

In this paper, a velocity-dependent foot-placement strategy
is designed and implemented without relying on an inverted
pendulum approximation of the robot. In particular, the
distributed mass, multi-link nature of the robot can be fully
taken into account, including energy losses at impacts. The
control law is implemented through a set of virtual con-
straints that depend on velocity through angular momentum
about that stance leg end, in addition to the robot’s config-
uration variables. A set of parameterized splines appearing
in the virtual constraints are designed through a parameter
optimization process developed in [13], that explicitly allows
potential terrain profile variations to be taken into account
during the design of a periodic orbit [14]. The robustness of
the resulting control law to terrain and velocity perturbations

Fig. 1: Velocity-based swing foot placement has been de-
signed on the basis of the linear inverted pendulum model
[9]. Using velocity-dependent virtual constraints, it is possi-
ble to implement a swing foot placement policy that accounts
for the full dynamics of the biped, as well as a range of
terrain disturbances.



is evaluated through simulation and compared to other con-
trol laws. The control law based on nonholonomic constraints
is able to accommodate a wider range of perturbations than
a control law based on holonomic constraints.

In related work on terrain variations, an event-based
controller is given in [15] that updates parameters in a
continuous-time controller in order to achieve a dead-beat
control response, in the sense that following a change in
terrain height, in one step it steers the robot’s state back to
its nominal value on the periodic orbit. A control architecture
that switches among a finite-set of controllers when dealing
with terrain variation is studied in [4], [16]. A time-invariant
linear controller is developed in [17] using transverse lin-
earization [18] and a receding-horizon control framework,
with experiments performed on a compass-gait walker.

The current paper develops a single (non-switching) con-
troller and nominal periodic gait that are insensitive to a
predetermined and finite set of terrain variations and velocity
perturbations. This choice of a non-switching controller is
motivated in part by ease of implementation, but even in
the context of a switching controller, it would be desirable
that one of the controllers be insensitive to a pre-determined
range of disturbances. Two feedback controllers are stud-
ied that use nonholonomic virtual constraints. The first is
an application of the Optimization for Accommodation of
Unknown Terrain Disturbances method presented in [13]
applied to nonholonomic constraints. The second is an im-
plementation of swing foot placement [9] with the following
improvements:

• foot placement is based on velocity throughout the step
and not just the horizontal velocity of the center of mass
at mid-step;

• the dynamics of the full model including impact losses
and varying center of mass height are included; and

• a pre-specified range of terrain disturbances are included
in the controller design process.

With respect to prior work with virtual constraints, the
primary contributions include:

• the introduction of a new class of virtual constraints
that include angular momentum, but maintain control
outputs that are relative degree two for ease of imple-
mentation; and

• the demonstration of superior ability to attenuate veloc-
ity perturbations.

II. NONHOLONOMIC VIRTUAL CONSTRAINTS

Assume an n-degree of freedom mechanical model

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (1)

with Lagrangian

L(q, q̇) := 1

2
q̇>D(q)q̇ − V (q). (2)

Assume moreover that the configuration variables q =
(qu, qa) have been selected such that qu = (q1, · · · , qm) are

unactuated and qa = (q(m+1), · · · , qn) are actuated, so that,
by Lagrange’s equation

d

dt

∂L
∂q̇u

− ∂L
∂qu

= 0. (3)

The quantity

σ :=
∂L
∂q̇u

(q, q̇) (4)

is the momenta conjugate to qu, and for 1 ≤ i ≤ m, is equal
to

σi = Di(q)q̇, (5)

where Di(q) is the ith row of the mass-inertia matrix. From
(3) and (4),

d

dt
σ =

∂L
∂qu

(q, q̇), (6)

and thus if σ has a relative degree, is two or greater. Indeed,
differentiating σ a second time gives terms that depend on
acceleration, which via (1), may in turn depend on the input
torque.

Functional relations involving momenta are classic ex-
amples of nonholonomic constraints [19]. Consider now a
virtual constraint built from an output function of the form

y = h(q, σ) (7)

=: h̃(q, q̇). (8)

Then from the chain rule, its derivative along trajectories of
the model is

ẏ =
∂h(q, σ)

∂q
q̇ +

∂h(q, σ)

∂σ
σ̇

=
∂h(q, σ)

∂q
q̇ +

∂h(q, σ)

∂σ

∂L
∂qu

(q, q̇) (9)

and thus the relative degree cannot be less than two.
Remark: Equation (9) holds for one or more degrees of
underactuation. Thus, it can be applied to both planar and 3D
biped models, as well as models with our without compliant
elements.

III. CONTROL DESIGN

This section details the controller’s design using the non-
holonomic virtual constraints presented in Section II.

A. Bipedal Robot MARLO

The robot MARLO1 is shown in Fig. 2 and is described
in detail in [21]. The robot’s mass is approximately 55 kg
and its legs are one meter long. For this study, the robot is
attached to a boom, making it planar. Furthermore, while the
robot has series elastic actuators, the springs are sufficiently
stiff that in this study they are ignored. The resulting model
has five DOF in single support and four actuators.

1This is the Michigan copy of the ATRIAS-series of robots built by
Jonathan Hurst [20].
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Fig. 2: Robot MARLO and state description for planar model
of MARLO used for simulation and control design.

The configuration variables are defined in Fig. 2. Specifi-
cally,

qu = phcm, (10)

where phcm is the horizontal position of the center of mass
relative to the stance foot and

qa =


qLA,ST

qKA,ST

ph2 − phcm
pv2

 . (11)

LA and KA are abbreviations of leg angle and knee angle,
ST designates the stance leg, and ph2 and pv2 are the horizontal
and vertical positions of the swing foot relative to the stance
foot. With this choice of configuration variables, σ is the
angular momentum about the stance foot end.

The complete hybrid model of the robot is derived as in
[21], including the dynamic model for the single support
phase and the reset map at leg impact. Using the natural state
variables x = (q; q̇), the Lagrange model (1) is expressed in
state variable form as in (29), with x ∈ X an open subset of
R10 and u ∈ R4. The model has one degree of underactuation
during single support. For reasons of space, the impact
surface (subset of X corresponding to the height of the swing
leg end equaling ground height) and the reset map (new
initial condition for the continuous dynamics resulting from
the impact) are not discussed here. They are briefly indicated
in the appendix; full details are in [21] and [1].

B. Family of Feedback Controllers

The feedback controller is designed using the method of
virtual constraints and hybrid zero dynamics [22], [23]. For
planar MARLO, four virtual constraints are defined, one for
each available actuator. The output vector y is defined in
terms of the configuration variables, q, angular momentum,
σ, and a set of parameters κ and β,

y = h(q, σ, κ, β) (12)

in such a way that the output has vector relative degree
2 [2, pp. 220] on a subset of interest, X × K × B. The

parameters κ are used to achieve invariance of the zero
dynamics manifold induced by (12), while the parameters
β will be tuned through optimization to achieve a desirable
periodic orbit.

The feedback controller is based on input-output lineariza-
tion, namely

uff (q, q̇, κ, β) := −
[
LgLfh(q, q̇, κ, β)

]−1
L2
fh(q, q̇, κ, β),

(13)

ufb(q, q̇, κ, β) := −
[
LgLfh(q, q̇, κ, β)

]−1(
Kpy +Kdẏ

)
,

(14)

with

u = Γ(q, q̇, κ, β) := uff (q, q̇, κ, β) + ufb(q, q̇, κ, β). (15)

Along solutions of the closed-loop system,

ÿ +Kdẏ +Kpy ≡ 0. (16)

An explicit choice of h(q, σ, κ, β) is now made,

h(q, σ, κ, β) = h0(q)− hd(τ(q), σ, κ, β), (17)
= h0(q)− [hd,σ(σ, β) + hd,τ (τ(q), κ, β)] ,

(18)

where hd(τ(q), σ, κ, β) specifies the desired evolution of
h0(q) and

h0(q) = qa, (19)

hd,σ(σ, β) =
[
0, 0, k1(β)σ + k2(β)σ

2, 0
]′
. (20)

The inclusion of angular momentum in the third component
of hd,σ allows step length to vary with velocity. The function
hd,τ (τ(q), κ, β) ∈ R4 is a vector of splines that specifies
desired evolution of defined h0(q) − hd,σ(σ, β) in terms of
the gait phasing variable τ(q). Here, the splines are Bézier
polynomials, with the ith polynomial given by

hd,τ,i(τ, κ, β) :=

M∑
k=0

αi,k
M !

k !(M − k) !
τk(1− τ)M−k, (21)

where the four degree-M Bézier polynomials are defined
by α(κ, β) ∈ R4×(M+1) [1, pp. 138]. The gait phasing
variable τ(q) is selected to be an affine function of phcm and
is normalized on the periodic orbit to take values in [0, 1].

The complete output equation using (12) and (18)-(21) is

y =


qLA,ST

qKA,ST

ph2 − phcm
pv2

−


0
0

k1σ + k2σ
2

0

− hd,τ (τ(q), κ, β). (22)

In the optimization phase, values for k1 and k2 will be chosen
such that a perturbation in velocity, and attendant deviation
of σ, results in a corrective change in swing foot placement.
Specifically, this will adjust the amount of time the center
of mass spends behind the stance foot, versus in front of
the stance foot, and will enable quicker convergence to the
periodic orbit [9]–[11].



C. Optimization for Three Control Solutions

Three controllers are designed and subsequently tuned via
parameter optimization: a controller that does not include
nonholonomic virtual constraints and two controllers that
do. These will be denoted as HVC, NHVC, and NHVC-
SFP, where HVC and NHVC refer to the use of holonominc
and nonholonomic virtual constraints, respectively, and SFP
refers to an additional objective of swing foot placement
suggested by the LIP model. The controller based on HVC
serves as a comparison to work in [13]. The swing foot
placement policy used for the NHVC-SFP optimization is
derived in Section IV.

To account for uneven terrain, the Optimization for Ac-
commodation of Unknown Terrain Disturbances method
presented in [13] is used. This is a parameter optimization
problem in (β, x0), the parameters in hd and the initial state
of the robot, such that the resulting closed-loop system has
a periodic solution and can also accommodate (i.e., take
valid steps following) a given set of terrain disturbances.
The cost function is chosen as in [13] and [14] so that
it favors perturbed solutions that “return closely” to the
nominal periodic solution; in other words, the cost functions
is designed so that the closed-loop system attenuates the
potentially deleterious effects of the given set of ground
height variations. A key feature is that the gait phasing
variable is used to penalize more heavily deviations that
persist “late” into the gait.

Two primary changes have been made with respect to
[13]. First, nonholonomic virtual constraints are incorporated
using (20) as the outputs. Second, two steps following a
terrain disturbance are included in the cost so that the effect
of swing foot placement at the end of the first step after the
perturbation is captured during the second step.

Our optimization cost to penalize deviations is induced by
4 terrain height disturbances in D = {±4 cm,±8 cm}. The
nominal periodic solution corresponds to a terrain height of
0 cm. For perturbed steps 1 ≤ j ≤ 8, the deviation costs are
defined as

Jj =

1

(τ−j − τ+j )

∫ τ−
j

τ+
j

(
||δxj(τ)||2 + ||δuj(τ)||2)

(τ − τ+j )

(τ−j − τ+j )
dτ.

(23)

δxj(τ) and δxu(τ) are the differences in perturbed state
and control trajectories from the closest existing periodic

trajectories characterized by τ 2. The term
(τ−τ+

j )

(τ−
j −τ+

j )
under

the integral scales the errors so that initial deviations from
the nominal periodic trajectory are discounted with respect
to errors toward the end of the step. The term 1

(τ−
j −τ+

j )

outside the integral is included so that perturbed step costs
are normalized w.r.t. the varying ranges of τj resulting from
higher and lower terrain disturbances.

2See [13, Eqn. (16)-(17)]. A more comprehensive approach for calculating
errors of perturbed trajectories is available in [24].
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Fig. 3: Linear Inverted Pendulum model. Horizontal force F
results from the ground reaction forces caused by gravity.

The overall cost function is

J = J0 +

8∑
j=1

wjJj , (24)

where wj determines the relative weight of each perturbation
and the energy efficiency J0. J0 is calculated using step dis-
tance and mechanical actuator work of the nominal solution.
Parameter optimization problem: Find (β;x0) that (lo-
cally) minimize J subject to the existence of a periodic
solution that respects the following constraints: motor torque
is saturated at 6 Nm; vertical ground reaction force greater
than 100 N and friction coefficient less than 0.6; minimum
swing foot clearance of 0.1 m over stance foot; minimum
knee bend of 10o to avoid hyperextension; average walking
speed between 0.6-0.8 m/s. The computations were per-
formed with fmincon in MATLAB.

IV. SWING FOOT PLACEMENT USING NONHOLONOMIC
VIRTUAL CONSTRAINTS

Figure 3 shows the Linear Inverted Pendulum model used
to derive the foot placement strategy of [9]

v2k+1 = v2k − g

`
(r2accel,k − r2step,k), (25)

where k is step number, vk is the center of mass velocity
when the pendulum is vertical, and rstep,k and raccel,k are the
horizontal distances the center of mass travels from behind
the stance foot to in front of the stance foot during step k,
resulting in the velocity vk+1 in the next step.

For implementation on the full dynamic model of
MARLO, adjustments are made to (25). First, the height of
the center of mass, `, is calculated in this work as the average
center of mass height during the periodic orbit of the full
model. Second, (25) does not take impact losses into account
and will generally require raccel > rstep to compensate for
this. Finally, because swing foot height relative to the stance
foot is included in (22), raccel does not change when walking
on flat ground.
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In (25), let v∗, r∗step, and r∗accel denote nominal values on
a periodic orbit, so that

v∗2 = v∗2 − g

`
(r∗accel

2 − r∗step
2). (26)

In (25), setting raccel,k = r∗accel and vk+1 = v∗ from (26)
gives step length to return to the nominal velocity, namely

rstep,k =

√
`

g
(v2k − v∗2) + r∗step

2. (27)

The step-length policy (27) is implemented using the full
model and nonholonomic virtual constraints. The variable
rstep is equivalent to the configuration variable ph2 − phcm at
the end of a step. Since ph2 − phcm is paired with an angular
momentum-based virtual constraint in (22), the horizontal
position of the swing foot can vary with velocity.

Define rerror,k as the difference between the actual swing
foot placement and rstep,k from (27). The NHVC-SFP con-
trol solution is optimized with an additional cost, JSFP ,
based on rerror,k

J = JSFP + J0 +

8∑
j=1

wjJj . (28)

A comparison of the error in rstep for the three control
solutions is shown in Fig. 4. The NHVC-SFP controller stays
within 4 mm of the theoretical swing foot placement policy
for the terrain disturbances used during optimization.

V. RESULTS

Simulation results are presented here with discussion given
in Section VI. The nominal periodic orbits resulting from the
three control solutions are very similar as shown in Table I.

A. Disturbance Types

Figure 5 shows the three types of disturbances used to
evaluate each of the control solutions. Step changes in terrain
height consist of a vertical displacement of d (m) per step,
as was done during optimization. A change in terrain slope
of θ (deg) causes a similar disturbance as a step change in
terrain height, but accounts for variations in terrain elevation
with longer and shorter steps. A sloped terrain may be more

TABLE I: Periodic step velocity, impact losses, and energy
efficiency on flat ground.

Control
Metric HVC NHVC NHVC-SFP

Step Velocity (m/s) 0.63 0.65 0.66
Impact Losses (J) 19.9 20.1 19.6

Energy Efficiency (J/m) a 347 346 365

aEfficiency is calculated using J0 from (24) and (28).

𝜃𝑑

𝐹

Fig. 5: Step terrain disturbance (left), change in terrain slope
(middle), and horizontal force to center of mass (right).

representative of natural outdoor terrain. A third type of
disturbance is a horizontal force F (N) applied to the center
of mass over the entire duration of a step. This induces a
velocity perturbation to the robot without the complication of
early or late impacts that may occur with terrain disturbances.

B. Repeated Disturbance Limits

The three control solutions are first compared under the
action of a persistent disturbance whose magnitude is grad-
ually increased each step until the robot falls3. For example,
with step changes in terrain, each controller is initialized
on the periodic orbit, and then the terrain height change is
varied as dk+1 = dk + 0.5 mm, where k is step number.
Once a fall occurs, the simulation is reset from the periodic
orbit, and a decrease of 0.5 mm is applied to dk until failure.
The same procedure is applied to terrain slopes with 0.1o

increments and to horizontal force with 0.1 N increments.
The results of these simulations are summarized in Table II
and the resulting perturbed velocities for each step are plotted
in Fig. 6.

C. Velocity Perturbation

An additional simulation is performed to evaluate the
response of each controller to a velocity perturbation. The
velocity perturbation is applied through a ±25 N horizontal
force acting throughout an entire step, starting from the pe-
riodic orbit. The response is monitored through the resulting
average velocity over the steps following the perturbation.
Figure 7 shows the results.

VI. DISCUSSION

While Table I showed that the nominal periodic gait for
each controller was similar, differences emerge when testing

3A fall can occur from losing momentum and tumbling backward, or
violating ground contact constraints.
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TABLE II: Simulation results for all control solutions.

Step Terrain Slope Horizontal
Disturbance (cm) (degrees) Force (N)

Control Min. Max. Rng. Min. Max. Rng. Min. Max. Rng.
HVC -8.9 12.5 21.4 -12.0 28.1 40.1 -14.2 11.2 25.4

NHVC -15.4 12.8 28.2 -17.8 35.0 52.8 -37.5 19.9 57.4
NHVC-SFP -14.8 13.1 27.9 -16.9 37.0 53.9 -89.6 26.5 116.1
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Fig. 7: Velocity stabilization after a 25 N horizontal force
applied over entire second step and a -25 N force applied
over the entire fifteenth step.

the limits of performance as seen in Table II and Fig. 6.
The two controllers using nonholonomic constraints have a
similar range on uneven terrain, but both outperform the
controller based on holonomic constraints. For all three
controllers, velocity initially decreases as expected on up-
hill disturbances, but then increases as the height change
exceeds the limits used in the optimization. The speed up
occurs because limited swing foot clearance leads to an
early impact, which in turn results in the center of mass
initializing the step in a more vertical position; this limits
the deceleration period and causes an increase in velocity4.

4Eventually the speed increases to a point where ground reaction forces
are violated.
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ratio (top) and rstep (bottom) vs. step terrain

disturbances.

Figure 8 shows this effect to be most prominent for HVC as
rstep values, the distance the center of mass must travel to
be over the stance foot, are cut nearly in half when moving
from 8 cm to 12 cm disturbances. The two controllers using
nonholonomic constraints exhibit less variation because rstep
naturally increases as velocity increases. raccel is consistent
between control solutions, increases with downhill walking
due to late impacts, and is nominally greater than rstep to
offset impact losses. NHVC-SFP has the greatest increase
in rstep for negative disturbances, which leads to tighter
velocity regulation in Fig. 6 when walking downhill.

When testing the three control solutions for external
forces, the NHVC-SFP controller was able to outperform



the two other controllers by a fair margin, especially for
negative horizontal forces. In fact, the NHVC-SFP controller
can maintain a periodic gait despite negative impulses as
high as 180 Ns per step. Additionally, in Fig. 7 the NHVC-
SFP controller exhibits nearly dead-beat behavior for velocity
regulation following external forces.

The swing foot placement policy (25) is designed to
reject velocity changes when walking on flat ground, and
by “embedding this event-based controller” into the NHVC-
SFP control solution, the resulting continuous-time swing
foot placement policy is able to accommodate a wide range
of disturbances. This is especially evident when the external
disturbance corresponds to an extreme loss in velocity and
changing rstep can reduce deceleration from gravity.

VII. CONCLUSIONS

A speed control law suggested by the linear inverted
pendulum [9] was embedded into the controller for a planar
biped, while accounting for the full ten-dimensional hybrid
model of the robot, and also accounting for unexpected
terrain height changes. A key factor in the controller design
was the use of nonholonomic virtual constraints. Leveraging
knowledge from low-dimensional models, as illustrated with
swing foot placement, the optimization process was guided
toward more successful outcomes. We plan to test this new
control policy in the laboratory. Previous work has shown
very good agreement between our simulator and planar
experiments with MARLO. Additionally, we plan to extend
this work to 3D walking to enhance sagittal and frontal plane
stability.

APPENDIX I
WALKING MODEL

The following material is taken almost verbatim from
Sections II and IV of [13]. It is included for the convenience
of the reviewers and can be removed before final publication.

A. Hybrid Model

The walking model assumes alternating phases of single
support (one foot on the ground) and double support (both
feet in contact with the ground). The single support phase
assumes the stance foot is not slipping and evolves as
a passive pivot. (1) gives a second order model that is
expressed in state variable form

ẋ = f(x) + g(x)u, (29)

where x ∈ X is the state of the system and u ∈ Rm−n are the
control inputs. A parameterized family of continuous-time
feedbacks is assumed to be given

u = Γ(x, β), (30)

where β ∈ B are control parameters from an admissible set.
The resulting closed-loop system is

ẋ = f cl(x, β) := f(x) + g(x)Γ(x, β). (31)

Local existence and uniqueness of solutions is guaranteed as-
suming the closed-loop system is continuously differentiable
in x and β.

Using the configuration variables from (11), the double
support phase occurs when the swing foot strikes the ground
which is modeled as

pv2(x)− d = 0, (32)

for d ∈ D, a finite collection of ground heights used to
account for varying terrain. It will be assumed at impact that
the transversality condition ṗv2(x) < 0 is met. Physically,
this corresponds to the impact occurring at a point in the
gait where the swing foot is moving down toward the
ground, as opposed to the impact occurring early in the gait
which would lead to tripping [4]. The impact is modeled
as a collision of rigid bodies using the model of [25].
Consequently, the impact is instantaneous and gives rise to
a continuously-differentiablereset map

x+ = ∆(x−), (33)

that does not depend on the ground height since the vector
of pre-impact states, x−, provides foot height at impact.
Here, x+ is a vector of the post-impact states. As in [1,
pp. 57], the impact map is assumed to include leg swapping
so that only one continuous-phase mechanical model is
needed. Moreover, for reasons that will become clear in
Appendix I-B, the impact map is allowed to depend on β.

The overall hybrid model is written as

Σ :

{
ẋ = f cl(x, β) x− /∈ Sd

x+ = ∆(x−, β) x− ∈ Sd
(34)

where
d ∈ D := {d0, d1, · · · , dN} (35)

is the set of ground height variations and

Sd := {x ∈ X | pv2(x)− d = 0, ṗv2(x) < 0} (36)

is the hypersurface in the state space where the swing leg
impact occurs at ground height d ∈ D.
Remark: The reference [1, pp. 109] shows how to augment
the state variables with control parameters in order to accom-
modate event-based control, as used in [15]. This extension
is employed later in (40).
Model Solutions: For a given value of β ∈ B, a solution of
the hybrid model (34) is defined by piecing together solutions
of the differential equation (31) and the reset map (33); see
[1, pp. 56], [25]. Because we are interested in periodic orbits
and their perturbations, we exclude Zeno and other complex
behavior from our notion of a solution.

B. Extended Model for Invariant Hybrid Zero Dynamics

Parameters κ are used to maintain hybrid zero dynamics
following impact deviations. With output (22), it is straight-
forward to construct a function Ψ : Sd × B → K such that
for all

β ∈ B and
[
q+

q̇+

]
= ∆(q−, q̇−)



the initial values of the outputs are zeroed, that is,[
0
0

]
=

[
y+

ẏ+

]
=[

h(q+, σ+, κ+, β)
∂
∂qh(q

+, σ+, κ+, β)q̇+ + ∂
∂σh(q

+, σ+, κ+, β)σ̇+

]
(37)

for κ+ = Ψ(q−, q̇−, β).
Parameters κ are constant within each step and are reset

at the end of each step, hence, they are included as states in
the dynamics with

xe :=
[
q, q̇, κ

]′
(38)

and κ̇ = 0. The extended closed-loop model used is then

Σ :

{
ẋe = f cl(xe, β) x−

e /∈ Sd
e

x+
e = ∆e(x

−
e ) x−

e ∈ Sd
e ,

(39)

where

f cl(xe, β) = f cl(x, κ, β) :=

[
f(x) + g(x)Γ(x, κ, β)

0

]
,

(40)

∆e(x
−
e , β) :=

[
∆(q−, q̇−)

Ψ(q−, q̇−, β)

]
, (41)

and
Sd
e := Sd ×K. (42)

Remarks: (a) (37) is independent of the current value of κ.
(b) Because of the second-order system (16) and the reset
map in (37), solutions of (40) that are initialized in Sd

e satisfy
y(t) ≡ 0. This has two consequences: (i) The solutions
evolve on the zero dynamics manifold. (ii) The feedback
term ufb in (14) is identically zero, and thus Γ in (15) is
independent of the gains Kp and Kd.
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