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Abstract

This paper presents a systematic approach for the desiggntihaous-time controllers to robustly and exponentially
stabilize periodic orbits of hybrid dynamical systemsiaggrom bipedal walking. A parameterized family of contgus-
time controllers is assumed so that (1) a periodic orbit daiged for the hybrid system, and (2) the orbit is invariant
under the choice of controller parameters. PropertiesePiincaré map and its rst- and second-order derivatives ar
used to translate the problem of exponential stabilizaticihe periodic orbit into a set of Bilinear Matrix Inequis
(BMls). A BMI optimization problem is then set up to tune therameters of the continuous-time controller so that the
Jacobian of the Poincaré map has its eigenvalues in theitoié.dt is also shown how robustness against uncertanty i
the switching condition of the hybrid system can be incoaped into the design problem. The power of this approach
is illustrated by nding robust and stabilizing continuetise feedback laws for walking gaits of two underactuated 3
bipedal robots.
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1. Introduction

This paper addresses the problem of designing continumesebntrollers to robustly and exponentially stabilizeipeic
orbits of hybrid dynamical systems. Hybrid systems extth#racteristics of both continuous-time and discretetim
dynamical systems and are used to model a large range ofgsexBainov and Simeonov, 1989; Ye et al., 1998; Haddad
et al., 2006; Goebel et al., 2012) including power systeniskghs and Pai, 2000a) and mechanical systems subject
to impacts (Grizzle et al., 2001; Westervelt et al., 2007;e&ret al., 2009, 2007; Spong and Bullo, 2005; Manchester
etal., 2011; Gregg et al., 2012; Gregg and Spong, 2008; Hoah,2007; Dai and Tedrake, 2012; Tedrake et al., 2004;
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Akbari Hamed et al., 2012; Chevallereau et al., 2009; Stthegtal., 2013; Grizzle et al., 2014; Hurmuzlu and Marghitu,
1994; Martin and Schmiedeler, 2014). Our motivation is tsigle robust stabilizing continuous-time controllers far 3
bipedal robots with high degrees of underactuation, butrdisalts we present apply to non-hybrid as well as hybrid
systems (Arnold, 1996; Haddad and Chellaboina, 2008; PariedChua, 1989).

The most basic tool to investigate the stability of hybridipéic orbits is the method of Poincaré sections (Arnold,
1996; Parker and Chua, 1989; Haddad and Chellaboina, 2@@Riad et al., 2006; Grizzle et al., 2001). In this approach,
the evolution of the system on the Poincaré section, a hypfaxe transversal to the periodic orbit, is described by a
discrete-time system referred to as the Poincaré returnlimgpneral, there is no closed-form expression for thedzoin
map, and this complicates the design of continuous-timérotkers. Hence, stabilization of periodic orbits for hidr
systems is often achieved with multi-level feedback cdrarohitectures, in which continuous-time feedback laves ar
employed at the lower levels of the control scheme to créeggeriodic orbit. As the lower-level controllers may not
ensure exponential stability of the orbit, a set of adjustalarameters is introduced to the continuous-time cdetl
These parameters are then updated by higher-level eveattwamntrollers when state trajectories cross the Poincaré
section (Grizzle (2006); Chevallereau et al. (2009); Grepgl. (2012); Ramezani et al. (2013); Akbari Hamed and
Grizzle (2014); Sreenath et al. (201Bgibert (1986); Buehler et al. (1994); Carver et al. (208@karali and Saranli
(2011); Remy (2011); Seipel and Holmes (2007); SeyfartH.€R803)). The event-based controllers are designed to
render the Jacobian of the Poincaré map around the xed pdihirwitz matrix.This control strategy has a long history
in robotics, biomechanics, control, and applied math.

One drawback of achieving stability via event-based cdietr®is the potentially large delay between the occurrence
of a disturbance and the event-based control effort. Adtitra approaches attempt to achieve stability at the natle
Chevallereau et al. (2009) made use of a nonlinear optiinizatoblem to minimize the spectral radius of the Jacobian
of the Poincaré map for simultaneous design of periodict®rond continuous-time controllers. Diehl et al. (2009)
introduced a smoothed version of the spectral radius andlimear optimization problem to generate maximally stable
periodic orbits. This approach was employed to design pat@rsand optimal control inputs of a fully actuated bipedal
robot with 2 degrees of freedom (DOF). Both methods require recomputati the Jacobian matrix at each iteration
of the optimization. For mechanical systems with many degjod freedom and underactuation (such as the 3D bipedal
robot ATRIAS (Ramezani et al., 2013), which hk8 DOF and6 actuators), the cost of numerically computing the
Poincaré map and its Jacobian makes these methods impta€tiber approaches make use of the moving Poincaré
section analysis and transverse linearization technimugssign model-based and time (phase) varying LQR coatsoll
for asymptotic stability of periodic orbits (Shiriaev et,&010; Manchester et al., 2011). These approaches halie @it
extensively evaluated on legged robdEhevallereau et al. (2009) also made use of “physical intuitin designing
stabilizing continuous-time controllers based on thewartonstraints approach (Grizzle et al., 2001; Westentedt.,
2007; Freidovich et al., 2009; Ames, 2014, Gregg et al., 2Mafgiore and Consolini, 2013; Shiriaev et al., 2004) for
walking of a 3D bipedal robot. However, for ATRIAS, anothé& Bipedal robot with series elastic actuators, the same
physical intuition did not work (Ramezani et al., 2013).§binderlines the unreliability of non systematic approache
for designing stabilizing controllers.

The contribution of this paper is to present a systematihotebased on sensitivity analysis and bilinear matrix
inequalities (BMIs) to design continuous-time contraléinat provide robust exponential stability of a given peigo
orbit without relying on event-based controllefscondition requiring that a sum of matrices be positive dteris
called a matrix inequality. When the sum of matrices has areafarameterization, such as

x
LMI(X) := Ap + Ai xi > 0O;
i=1
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it is called a Linear Matrix Inequality (LMI). When the suméagpressed as

X xXn X
BMI(x;y) = Ag+  Ajxi+ By + Ci xiy; >0

i=1 j=1 i=1 j=1
it is called a BMI. Many problems in control, such as conttalisture selection, robust controller analysis and design
can be written in terms of LMIs and BMIs (VanAntwerp and Bra&000; Toker and Ozbay, 199%)ur approach
assumes that a family of parameterized continuous-timgaiters has been designed so that (1) the periodic orbit is a
integral curve of the closed-loop system and (2) the orbitvariant under the choice of parameters in the contrallers
By investigating the properties of the Poincaré map andris and second-order derivatives, a sensitivity analgsis
presented. On the basis of the sensitivity analysis, thel@nes of robust and exponential stability are translatéal in
a set of BMIs. A BMI optimization problem is then set up to tuthe parameters of the continuous-time controllers.
Finally, this approach is illustrated to design continutio®e controllers for two underactuated 3D bipedal robathw
8 and13 DOF, respectively.

Hobbelen and Wisse (2007) introduced the gait sensitivitymfor the study of disturbance rejection in limit-
cycle walkers. They calculated the Jacobian matrices oRdlirecaré section based on typical perturbation analysis. |
particular, for all initial conditions and disturbancese tapproach runs the full-state model to calculate the Jacob
matrices. Their approach was demonstrated @DéF bipedal robot. The current paper provides additionsilts.
First, a more systematic numerical approach is given tatatle the relevant Jacobian matrices. In particular, wageel
the sensitivity matrices on the Poincaré sectioth#nonlinear model using the variational equation (Parker@imda,
1989, Appendix D). Second, we present a closed-form exjoress calculate the sensitivity with respect to the ground
height changes. Finally, in regards to feedback designstesyatic approach based on BMls is presented to reduce the
sensitivity of a bipedal robot to step-down or step-up disamces.

Some of the results in this paper (hamely, those illustgagxponential stabilization of periodic orbits for tB®OF
bipedal robot) were already presented without mathematrcaf in (Akbari Hamed et al., 2014). This paper extends
the analysis to a broader class of systems and illustratesdsimultaneously optimize the continuous-time con&oll
for robustness and exponential stability. In particulantisated by the problem of stable walking on uneven ground,
the sensitivity analysis is extended to model robustnetissodrbit against uncertainty in the switching conditiortrod
hybrid system. Furthermore, the approach is extended tadhghstems with multiple continuous-time phases. Proofs
of the key theorems are provided. Finally, the paper extémalsarlier results for full-state stability as well as gtab
modulo yaw for 3D bipedal robots.

This paper is organized as follows. Section 2 presents thradode nitions related to hybrid systems and the
Poincaré map. Required conditions on the periodic orbitfandly of parameterized continuous-time controllers are
presented to set up the sensitivity analysis. Two famili@@otinuous-time controllers satisfying the requiredditions
are presented. Section 3 presents the BMI conditions touftat@ an optimization problem to guarantee exponential
stability. Section 4 extends the sensitivity analysis torféhe modi ed BMI optimization problem for robust stabylit
Section 5 presents effective numerical approaches forahsitdvity analysis. Section 6 extends the analytical ltesu
to the hybrid models of bipedal walking and illustrates thetimod to design robust and stabilizing continuous-time
controllers for two underactuated bipedal robots. Sectionntains concluding remarks.

2. Sensitivity Analysis for Stabilization of Hybrid Periodic Orbits

The objective of this section is to present the sensitiviglgsis for exponential stabilization of periodic orbibs hybrid
systems arising from bipedal walking. The results of thigise will be utilized in Sections 3 and 4 to set up the BMI
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optimization problems. We consider a hybrid system with cowinuous-time phase as follows
(

x_+:_f(x)+ gx)u; x 2S )
X" = (

X ); X 28S;

inwhichx 2 X andX R"*! denote thevector of state variableandn + 1 -dimensionastate manifolgdrespectively.
The continuous-time control input is representedil® U, whereU R™ is an operset of admissible control values
In addition,f : X ! TX and columns ofj are smooth (i.e.C! ) vector elds, in which TX represents theangent
bundleof the state manifolX . Theswitching hypersurfac8 is then-dimensional manifold

S:=fx2Xjs(x)=0g; (2)

on which the state solutions undergo a sudden jump accoilthgre-initialization rulex* = ( x ).Heres: X! R

is a real-valued an@® switching functiorwhich satis es%i(x) 6 0 forallx 2 S. Moreover, : X ! X denotesthe
C! resetmapx (t):=lim o x( )andx* (t):=lim g x( ) representthe left and right limits of the state trajectory
x(t), respectivelyAs in (Grizzle et al., 2001), the solution of the hybrid systél) is assumed to be right continuous.
In particular, it is constructed by piecing together the ofwx = f (x) + g(x) u such that the discrete transition takes
place when this ow intersects the switching hypersurf&c&he new initial condition fox_ = f (x) + g(x) u is then
determined by the resetmap = ( x ).

2.1. Closed-Loop Hybrid Model

In this subsection, we assume that the continuous-timer@itert can be expressed as the followipgrameterized
feedback law

u=( x ); (3)
inwhich :=( 1; ;)" 2 and RP represent the nite-dimensionphrameter vectoandset of admissible
parametersrespectively, for some positive integerMoreover, : X U isaC' map and %" denotes the

matrix transpose. By employing the continuous-time feelltbaw (3), the closed-loop hybrid model is parameterized
as follows (
o 4
=(x ;) x 2S; “)
where the superscript “cl” stands for the closed-loop dyisarandf °(x; ):= f (x) + g(x) ( x; ) is the closed-loop
vector eld. For later purposes, the unique solution of tlised-loop ordinary differential equation (ODEF f °(x; )
with the initial conditionx(0) = Xg is represented by (t;xo; ), wheret 0 belongs to the maximal interval of
existence. Next, theme-to-reset functioi : X I R pisde nedasthe rsttime at which the solution(t; Xo; )

intersects the switching manifo#), i.e.,
T(Xo; ):=inf ft> 0" (t;xo0; ) 2 Sg: (5)

Remark 1 (Parameterized Reset Maph the closed-loop hybrid model of (4), the reset map is alE@meterized by

. Our motivation for this is to extend the sensitivity appriodor hybrid systems with multiple continuous-time phases
of bipedal walking in Section 6. In particular, hybrid systewith multiple continuous-time phases can be expressed
as hybrid systems with one continuous-time phase as inr(4yhich the reset map represents the composition of
the ows for the remaining continuous-time and discretadiphases. Consequently,includes the parameters of the
controllers employed during other phases (see Sectiondoe details).
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2.2. Periodic Orbit Assumptions
Throughout this paper, we shall assume that the followisgmptions are satis ed.

Assumption 1 (Invariant Periodic Orbit) There exists geriod-one orbitO for the parameterized closed-loop hybrid
model (4) which idnvariantunder the choice of the parameter vectorhis assumption can be expressed precisely as
follows:

1. There exists aominalinitial conditionx, 2 X n'S such that the solution of the ODE= f °(x; ) with x(0) = X,
is independent of, i.e., %(t; Xo; )=0 forallt Oandall 2 ,where h”represents the set difference. For
later purposes, thisivariant andnominal solutioris denoted by

)= (X )y 0 (6)
2. The time-to-reset function, evaluated at the nomingkihtonditionx = X, is boundedthat is,
T(Xe; )= T <1,; 8 2

whereT is the elapsed time for the nominal solution to hit the switgthypersurfacs.

3. The reset map satis es thereset invarianceondition
( X5 )=X%o 8 2 (1)
ie, & (x;; )=0forall 2 ,where
g ="' (T)2S (8)
is the intersection of the nominal solution with the switahhypersurfac§.

The invariant periodic orbi® is then given by
O:=1fx=" (1)j0 t<T g 9)

forwhichT is thefundamental periodAssumption 1 states th@ét is a periodic orbit of the parameterized closed-loop
hybrid model (4) forall 2 . The role of this assumption, versus a weaker assumptioneorxéll point alone, will
be clari ed later in the paper; see Remark 5 and Appendix C.

Assumption 2 (Transversality Condition)The period-one orbiD in (9) istransversalto the switching manifold in
the sense that

%3xf)f l(x,: ) 60: (10)
From Assumption 2, it can be concluded that the periodict@bis not tangent to the switching manifold at

the pointx = X; . In the next subsection, we will present two examples oficooius-time feedback laws satisfying
Assumption 1.

2.3. Two Families of Parameterized and Continuous-Timelbaek Laws Satisfying the Invariance
Assumption

This subsection presents two families of parameterizedcantinuous-time feedback laws satisfying the invariance
condition in Assumption 1 for a given periodic orldt If the hybrid system includes just one continuous-timesgha

1 Here, we assume that the solutions of the hybrid system éigit continuous.
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the reset map in (4) is not parameterized byand Item 3 of Assumption 1 is immediately satis ed. For theeaf
multiple continuous-time phases, Section 6 will presemiditions under which Item 3 is met. Here, we check Item 1
for the examples and we assume that Item 3 is satfs Edr this goal, we rst present the following lemma.

Lemma 1 (Invariant Solution of the ODE)Consider the solution of the ODE = f °(x; ) with x(0) = Xo. Then,

%(t;xo; )=0 forallt Oifand only if

|
%F(x; ) =0; 8 O

x=" (txo; )
Proof.See Appendix A. O

From Lemma 1, one can immediately conclude that Item 1 of Awgdion 1 is equivalent to

@f
@ % o

200+ 90 (%)
1)

@, .
900 S0 )
=0;

where

O:=fx=" ()j0o t T g=0I[f x9
denotes the set closure Gf. Next to present the families of controllers, we assume tthexte is aC' feedback law
(x), referred to as théeedforward termwhich generates the nominal trajectory(t) in the sense that (t) is the
unique solution ok = f (x) + g(x) (X). Suppose further that the following assumption is satis ed

Assumption 3 (Phasing Variable) Corresponding to the periodic orlfl, there exists a real-valued a@ function
: X I R, referred to as thphasing variablewhich is strictly monotonic (i.e., strictly increasing @ecreasing) on
the orbitO, that is, @
- = cley.- . ray
Ax) = @>$x)f (x; )60; 8x2O0:

Under Assumption 3, the desired evolution of the state #&gon the orbiD can be expressed in terms of the
phasing variable rather than the time variabte The phasing variable replaces time, which is a key to obtgitime-
invariant controllers that realize exponential orbitalslity of O. In particular, let( t) represent the time evolution
of the phasing variable 0®. Then, one can de ne theesired evolution of the state variables O in terms of as
follows?

xa():=" (1) _ Ny (12)

in whicht = () denotes the inverse of the strictly monotonic function ( t). Reference (Burden et al., 2015,
Section I1V-D) shows that Assumption 3 follows directly frékssumptions 1 and 2 on the periodic orbit.

Example 1(Feedforward and Linear State Feedback LaiW)e rstfamily of parameterized continuous-time contes$
can be expressed as

(x )= () K& xi); (13)
whereK 2 R™ ("*1) represents aontroller gain matrixto be determined. Here, one can assume that the parameter
vector includesthe elements of the gain matfixi.e., := vedK) 2 RP,inwhich veq:) is thevectorization operator

2 Since the orbit is given here, Item 2 is satis ed in the sehsé the fundamental period of the orbit is bounded.
3 This can also be expressedvag ) = xq(( t)) = ' (1).
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acting on matrices angl:= m (n + 1) . It can be easily shown th%(x; y=0 forallx 2 Oand 2 .Hence,from
(11), the feedback law (13) preserves the otbior all 2

Example 2 (Input-Output Linearizing Feedback Law}-or the second family of continuous-time controllers, a
parameterized output functigrix; ) with the property dinfy) = dim(u) = m is de ned as follows

y( )= H (x xd()); (14)

in whichH 2 R™ ("*1) s theoutput matrixto be determined and parameterized bgs := veqH) 2 RP, and
p:= m(n+1). The output functiory(x; ) in (14) vanishes on the ort@ and we assume thatis de ned as an open
subset oRP such thaty/(x; ) has uniform vector relative degreevith respect tas on an open neighborhood 6 for
all 2 . Theinput-outputlinearizing controller takes the form

1
(x )= Lgki 'y(x ) Liy(x)
N 1 X1 (15)
LoLi “y(x ) ki L y(x )
i=0
wherek;;i =0;1; ;r 1are constantscalars such that the polynonfiat k, 1 " *+  + kg = 0 is Hurwitz.

Employing the feedback law (15) results in the followingmuttdynamics
yO ke 2y P+ +koy=0; (16)

for which the origin(y;y; ;y Y)=(0;0; ;0)is exponentially stable. Next, we show tf%t(x; ) =0 forall
x 2 Oand 2 .Todo this, we de ne thgparameterized zero dynamics manifaioiresponding to the outpu(x; )
as follows

Z()="~1x2Xjyx )

Ley(x )
=L{ 'y(x; )=0g

on which the output function(x; ) is identically zero. From the assumption of a vector retatiegree, the decoupling
matrix Lg L} Ly(x; ) has full rank and is square on an open neighborhodd,aéind the control driving/(x; ) to
zero is unique on each zero dynamics manifold (Isidori, 1995 226). Furthermore, the orl@t is common to all of
the various zero dynamics manifolds. Hence, the contraticésd to the orbit is independent of One can de ne a
feedforward term as (LgL{ lyix; ) 1t L{ y(x; ) which is the rst term in (15). This term can also be obtained
by restricting the feedaback law (15) to the zero dynamicsifola Z ( ). In this example, the feedforawrd term is a
function of . However according to the explanation provided above fd@dforward term, when restricted to the orbit
O, is independent of.

2.4. Poincaré Return Map and Sensitivity Analysis

The objective of this subsection is to present the Poineduém map and sensitivity analysis for exponential stzhiion
of the periodic orbiO for the closed-loop hybrid model (4). Here, the Poincaréiseds taken as the switching manifold
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S and the Poincaré return map is de nedras X IX by

POG )="(T(Cx ) (%)) (17)
which results in the following discrete-time system (seg E)

x[k+1]= P(x[k]; ); k=0;1, : (18)

The discrete-time system (18) maps the evolution of theitlydystem's state from a point dhback toS. According
to Assumption 1 and construction procedure (Xk7)js a xed point of the Poincaré map forall 2 ,i.e.,

P(x¢; )=x; 8 2 (19)

One immediate consequence of the invariant xed point in) {(§@hat

@P

—(%;; )=0; 8 2 ;

@ (X¢3 )
and hence, an event-based control action cannot be employeddify the stability property of the periodic orlii
(Grizzle, 2006), (Westervelt et al., 2007, Chap. 4)nearization of the discrete-time system (18) aroundsxed point

X; then results in

KIk+11= S ) X[k k=01 (20)

inwhich x [K] := x[k] X; . Inorder to exponentially stabilize the periodic o®itwe would like to tune the constant
parameter vector such that the Jacobian matr%i’(xf ; ), when restricted to théangent spacé, S, becomes
Hurwitz in the sense that all of its eigenvalues lie inside timit circle. However, in general there is no closed-form
expression for the Poincaré magx; ) norforits Jacobia%—f(’(xf ; ). Therefore the Poincaré map is usually obtained by
numerical integration of the closed-loop hybrid model (hjle the Jacobian matri-%f(’(xf ; ) is obtained by numerical
differentiation. The situation is more critical in mecheadisystems with high degrees of freedom and high degrees of
underactuation. For these systems, the numerical calougafire time consuming. In particular, employing nonlinea
optimization algorithms to tune the parameter vectamould require extensive recomputation of the high dimemaio
Jacobian matrix at each iteration. To resolve this problmturn our attention to theensitivity analysisFor this
purpose, let 2  represent aominal parameter vectoBy computing the Taylor series expans;ion%{(xf D)
around for suf ciently small k k, (20) becomes

_ er . ® @r , .
x[k+1]= @X(xf DR ~ m}gxf ) i x[k]; (21)
where :=( 1; ; p) = and %P@X(xf; );i =1; ;paresensitivity matricesThe objective is

totune  such that the origink = 0 becomes exponentially stable for (21). Section 3 will ttaresthe stabilization
problem into a BMI optimization problem. The robust stailproblem will be addressed in Section 4. In addition,
effective numerical approaches to calculate the senyitiwatrices will be presented in Section 5.

4 Here, the Poincaré map is considered as a partial mappingXreo X to simplify the computation of the sensitivity matrices iacBon 5. However
for the purpose of stabilization, Section 3 will provide & sEcoordinates for the tangent spacgf's to better represent the Jacobian matrix
DxP (x5 ): TXf S! TXf S.

5The event-based controller design approach of (Westeeted., 2007, Chap. 4) assumes controllability (or at letabikizability) of the pair
(Z2(x;; ) ZP(x;; ). Since@P(x; ; ) =0, this approach cannot be employed here.
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#(t) = [ (2(t),€)
2(0) = A (z[k], €) alk +1] = P (2[k], &)

Fig. 1. lllustration of the Poincaré return magk + 1] = P (x[K]; ) for the parameterized closed-loop hybrid model (4). Thelbol
and dashed curves correspond to the continuous-time anettistime dynamics = f ¢(x; ) andx* = ( x ; ), respectively.

3. Translation of the Stabilization Problem into a Set of BMIs

The objective of this section is to translate the problemxpbaential stabilization of the origix = 0 for the linearized
discrete-time system (21) into a set of BMIs. To this end, v&t present a set of coordinates for the tangent spacgé.T

In (20) and (21), the Poincaré map is considered f’rto X . In order to study the exponential stability behavior of
the periodic orbitO, we need to pre and post multiply the Jacobian m%{}(xf ;) by constantprojection and lift
matrices, respectively, to obtain a linear operator froemttdimensional tangent spacg 1S to Ty, S. In particular, let

proj 2 R™ ("D and i 2 R("D " denoteprojectionandlift matrices respectively. Next, assume that 2 R"*1

is a small perturbation such th%tj(xf ) x =0 (thisis to make sure that belongs to the tangent spacg B, see (2))
andletz 2 R" be the corresponding coordinates fqr 8, i.e.,

4 proj X

X litt Z:
Then, from (21), the evolution of [K];k =0;1;  can be expressed as

50 !
zk+1]= Ag+ A i z[k]; k=0;1; ; (22)
i=1

where

@P
Ao = proj @X(Xf ;) m2RTT

P .
Aj = pmjg—@gxf; ) 2R " i=1; ;p:

(23)

Remark 2 (Properties of the Projection and Lift Matrice§)he projection and lift matrices have the following projest

(i) proj it = In n
(ii) %zxf) it = 0:

Next, we present the following theorem to translate thertgoif the constant perturbation vector for exponential
stabilization of z = 0 into a set of BMIs.

Theorem 1 (BMils for Stabilizations of the Origin) The following statements are correct.
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1. There exists an  np matrixB such that
Ao+ Al i=Apg+B(lnn )i

in which“ " denotes the Kronecker product.

2. The origin z = 0 is exponentially stable fof22) if there existW = W> 2 R" ", 2 RP,andascalar 0
such that the following BMlI is satis ed

" #
W AoW + B (I n )W

? 1 )W (24)

in which “?” denotes the transpose of the blok 2).

Proof.For Part 1, we claim there exists a mat@x2 R" "P suchthatforall 2 RP,

X
Ai =B (In n ) (25)
i=1
To show this, let us partition th® matrix as
h i
B= B; B> Bn ;
whereB; 2 R" Pforj =1; ;n.From the de nition of the Kronecker product,
2 3
0
h ig o 0
B (In n )= B: Bn . e
0
Hence, thg -th column ofB (I, » ) isB; forj =1; ;n. To satisfy (25), one can conclude that
X) -
Bi = AGH @ (26)

i=1

whereA; (:;j ) represents thith column ofA; . Next, differentiating both sides of (26) with respect to together with

%: e;i=1; ;pyields

Bj = AiGii)e; i1=1; ;n (27)
which completes the proof of Part 1.
For Part 2, from (24), it can be concluded th&t > 0 and (1 )W > 0 which together with 0 result

in 2 [0;1). Let us consider the Lyapunov functiafk] := V(z[K]) := z[kK]> W ! z[k]. Next, using Schur's
complementemma(VanAntwerp and Braatz, 2000, Section 4.4)

W (Ao+ B (In n )" W *(Ag+ B (In n NW W< W (28)
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Pre and post multiplying (28) witv  * yields V[k]:= V[k+1] V[k]< V [k], and hence,

s
w 1)
k z [K]ko < &1 kk z [0k 29
Kke < "2 )¥kz [0k (29)
fork =1;2; ,inwhich i, (:) and max (:) denote the minimum and maximum eigenvalues, respectively. O

In order to have a good approximation based on the Tayloesesipansion in (21), we are interested in solutions
of (24) with minimum2-norm of . Moreover, according to the upper bound for the discretetolutions in (29),
reducing(1 ) will increase the rate of convergence. Hence, to tune thetaahperturbation , we set up the
following BMI optimization problem

min W+ (30)
W, #
s.t. W AoW+ B (In o )W >0
2 @ Hw
k ki<
0;

in whichw > 0is a positive weighting factor asteadeoff between improving the convergence rate and minimizing the
2-normof . In addition, using Schursomplementemmak k3 < can also be expressed as the following LMI
" #

min w o+ (31)
W, #
s.t. V,\)/ AOW+5(I”)”W )W >0
n ) #
o p >0
?
0:

For later purposes, we remark thaﬂmdO 1 represent an upper bound for k3 and an upper bound for the spectral
radius ofAg + B(Ih n ), respectively.

Remark 3. Many problems in control theory can be reduced to nding acdetcalars ; fori =1; ;p such that

an af ne combination of a given set of matricesfag + ipzl A; | becomes Hurwitz. One example is nding a static
output feedback gaild suchthaA BKC becomes stable. These problems are non-convex. Althoegh #éine some
analytical conditions for the cage= 1 (Soh, 1990; Gounaridis-Minaidis and Kalouptsidis, 1986)the best of the
authors' knowledge, no general analytical solutions eXistlerson et al. (1975) showed that the static output fegdba
design problem can be attacked using the Tarski-Seidemnleeigion methods. However, the computational burden can
become very large for even simple problems (Anderson el @¥.5, Conclusions). In this paper, we make use of the
proposed BMI optimization formulation in Theorem 1 to expaotially stabilize periodic orbits for hybrid systems. $hi
framework will be extended in Section 4 to handle the robtadtization problem during walking on uneven ground.
Furthermore, the proposed BMI optimization can be solvet existing software packages, e.g., (TOMLAB, 2015). In
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particular, Sections 6.3 and 6.6 will show that the robuaiization problem of periodic walking of an underactuhte
3D bipedal robot withp = 78 parameters can be solved in this BMI framework using avkilabftware packages.

4. Robust Stabilization of the Periodic Orbit as a BMI Optimization Problem

The objective of this section is to address the robust $aliibn of the periodic orbiO against uncertainty in the
switching condition of (2) as a BMI optimization problem. Quotivation for this problem comes from stable bipedal
walking over uneven ground (Manchester et al., 2011; Dai Bedtake, 2012; Hobbelen and Wisse, 2007; Saglam
and Byl, 2013). To make this precise, we assume a generaldbthe switching manifold in (2) and denote it I3,
parameterized by a scaldras follows

Sq = fx 2Xjs(x) = dg; (32)

in whichd 2 D andD :=[ dmax;dmax] R denotes a closed neighborhood of the origin for some pesitjyx -
One can assume thdtrepresents the height of the ground during stepping dowrteppgig up in bipedal walking.
In the new notationSy = S, whereS was already de ned in (2) as the nominal switching manifétdwhat follows,
we shall consided as adisturbance Corresponding to the switching manifdid, theextended time-to-reset function
Te: X D! R o is de ned as the rsttime at which the solution(t; xo; ) intersectsSy, i.e.,

Te(Xo; ;d):=inf ft> 0j" (t;Xo; ) 2 SqQ: (33)

One immediate result of (33) is th@t(xo; ; 0) = T(Xo; ), in whichT(Xp; ) is the nominal time-to-reset function
givenin (5). For models of bipedal walking on rough grouhe,instantaneous impact map on the manifjdextracted
based on rigid body contacts (Hurmuzlu and Marghitu, 198d§¢snot depend explicitly on the ground heigthtand
hence, it can be given by x; ). Now we are in a position to present tbeended Poincaré mdp, : X D!X
as follows

Pe(x; 5d) =" (Te(( x; );:d); (%5 )5 ) (34)

which results in thextendedliscrete-time system
X[k +1] = Pe(x[K]; ;d[K]); k=0;1, (35)

in whichd[k] 2 D represents the disturbance input.

Remark 4 (Geometric Description d?.). Fora xedd 2 D, consider the switching manifol8} in (32). We claim that

it can be used as a Poincaré section for (34). To see thistmattey de nition of the extended time-to-reset function
in (33), for anyx 2 X for which it exists, the extended Poincaré nRyfx; ;d) is the ow of the closed-loop hybrid
system, evaluated @y. HencePe(:; ;d) maps the state spase(and more speci call\54) to Sq, whereas the nominal
Poincaré ma (:; ) in (17) mapsSy to Sp. Furthermore, the extended mBg(:; ; 0) is equal toP (:; ), thatis

Pe(:;;0)=P(5 ); 8 2 (36)
Under Assumptions X; is an invariant xed pointoPe ford=0 andall 2 ,i.e.,

Pe(X;; ;0)=x%;; 8 2 : (37)
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Consistent with our perspective théitepresents a disturbance, we will study the robustnessafdminal xed
pointx, of the undisturbed system (i.&[k] = 0 8 k).® According to the invariance condition in (37), linearizatiof
(35) aroundx, ; ; 0) results irf

x[k+1] = %1@f ;5 0) x[K]+ %;(xf; ; 0)dk]: (38)

In this latter equationx [k] := x[K] X; belongs to thex + 1-dimensional tangent space X = R"*1 . Using the
Taylor series expansion (%%(xf ; ; 0)and %%(xf ; 3 0)around , (38) becomes

@R X® @p.
x[k+1]= —(%;; ;0)+ Xi; ;00 i x[k
[ ] @X( f ) - @|@ f ) | [ ]
® @ ! (39)
@R Pe
—(X;; ;0)+ X:: 10 i dk]:
Effective numerical approaches to calculate éxéended sensitivity matricgip—@gx(xf ;500 =1; ;pwill be

presented in Section 5. Section 5 will also present theioglamong the sensitivity matrices and extended ones. In
addition, we will show that thelisturbance sensitivity matri>%(xf ; 5 0) in (38) isindependenbf and hence,
gfégo(xf ;;0) =0. Consequently, using an analysis similar to Part 1 of Thadrg(39) can be rewritten as follows

X [k + 1] = Ao;e + Be I(n+l) (n+1) X [k] + Ce d[k], (40)

in which the subscripté’ stands for the extended map and

_ @R

Ave =5 (X3 50) 2 RIMH (D (41)
Ape = g%yf: ;0)  2RMD (D=1, p (42)
1
Ce = %Bd(xf: ;00 2R 1 (43)
Be = Bie Bn+l;e| 2 R(N+1) (n+1)p (44)
xP . )
Bj;e = Ai;e(:;J)e| , J :1; ;n+1: (45)

i=1

Now we turn our attention to the robustness problem. Forghipose, we assume thdf0] 6 0 is anunknown
disturbance and[k] = 0 fork = 1;2; . The initial condition is also assumed to coincide with tixed point, i.e.,
X[0] = X; 2 Sp. Then, from the discrete-time system (3g)1] 2 Sgjq; andx[K] 2 Sp fork =2;3; . Figure 2 shows
a geometric description of the problem for bipedal walkimgparticular,x[2] can be considered as an initial condition
for thenominalreturn mapP in (18). Next, the objective is to tune the constant perttiolbasector  to minimize the
2-norm of the deviationx [2] = x[2] x; for all possible disturbancef0] 2 D, that is,

min max kF x [2]kz; (46)
d[0]2D

6 Alternatively, one could study the behavior of (35) undeorstant disturbance (i.&l[k] = d 8 k), assuming that a corresponding xed point were
known.

7 We note that from (C%?)%—Pe(xf ;;0)=0 forall 2
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whereF 2 R' ("1 s a given constant matrfFrom the problem statemenx [0] = 0 and (40) result inx [1] =
Ce d[0], and hence,

max kF x [2]k>

d[0]2D

= dmax F Age+ Be l(n+1) (n+1) Ce 5"

Next, using Schur'somplementemma, the optimization problem (46) is equivalent to tHefeing LMI optimization

min
' n #
li 1 F Aoe*t Be l(n+1) (n+1) Ce

s.t.
? =

> 0;

in which is an upper bound for theworse caseost functionmaxgpp KF X [2]k2. Finally, one can combine the
stabilization (see (31)) and robustness optimization lgrab to end up with the following BMI problem

min wy o+ w, + 47)

W5
s.t.
" #

W AgW+B(lh n )W -0
? @a )W

li 1 F Aoge+ Be l(nsy (n+1) Ce
? =dr2nax

wherew; andw, are positive weighting factors corresponding to the cagwece rate and robustness, respectively.

Remark 5. In the above development, we have assumed the periodicisiibiiependent of the parameter vector
from which it follows that the xed poink; is independent of. One might ask if the same results could be obtained
if the orbit were allowed to change and the invariance assiompelaxed to the xed point being independent &f
Appendix C will study the effects of the invariance assummptn the results.

5. Numerical Computation of Sensitivity Matrices

The obijective of this section is to investigate the propsrtif the rst- and second-order derivatives of the nominal
and extended Poincaré maps to present effective numepipedaches to calculate the sensitivity matrices used durin
translating the stability and robustness problems intd af¥8MIs in Sections 3 and 4.

Sensitivity Matrices for Stability Analysis: We rst present the following theorem to numerically calatd the rst-
and second-order Jacobian matrices in (21) for the stahitialysis.

8 Grif n and Grizzle (2015) considered robustness to undetyain the impact condition during motion planning by desitg the orbit so as to
minimize a function of the deviation from the periodic orafter a single step disturbance.
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Fig. 2. Geometric description of the robustness problem for bipediking. Here x[0] = x; 2 Sp andd[0] 2 D is assumed to be

a nonzero and unknown disturbance. Furthermdfid, = 0 forallk = 1;2; . In this casex[1] = Pe(x[0]; ;d[0]) 2 Sqp and

X[2] = Pe(X[1]; ; 0) 2 So. The evolution ofx[k] for k = 3; 4; can then be described by the Poincaré return map in (18). The
objective isto nd  to minimizekF x [2]k; for all possibled[0] 2 D .

Theorem 2 (Calculation of the Sensitivity Matrices)Consider a parameterized closed-loop hybrid systenf4as
satisfying Assumptions 1 and 2. Let

@I
(tXo; ):= @(t;xo; )y 2 R(MD (n+1)
represent the trajectory sensitivity matrix for the clodedp ODEx = f °(x; ) and de ne the nal value of the
trajectory sensitivity matrix on the orb@ as follows

1()= (T x5 )

Then the Jacobian matrix of the Poincaré map, i%%;(xf ; ), depends on only through ; () and ( x;; ) =

@ (% )ie,
Sxii)= (xis ) (O (X0 82 (48)

in which

fe(xy ; )%(Xf )
O3 )T (X, ;)

(X¢; )= l(n+1) (n+1)

is a projection matrix independent of Furthermore, the sensitivity matrices are given by

= Cxi ) GO (i (O 2 (49)
fori=1; i p-
Proof.See Appendix B. O
Theorem 2 simpli es the calculation of the sensitivity medis %P@X(xf ; );i=1; ;p by relating them to

the nal value of the trajectory sensitivity matrix d@, i.e., ,( ), and its derivative%( ). In addition, ()
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can be obtained by numerical integration of a linear timesvay (LTV) matrix differential equation, referred to asth
variational equationParker and Chua, 1989, Appendix D), as follows
s ef . .. NN
‘(‘thOl ) = @( (t), ) ( t,Xo, ), O t T
(0 ;%Xo5 )= l(nen) (n+1)

Finally, one can employ numerical differentiation apptues; like theéwo point symmetric differenceethod, to calculate
(?@_:( ). In particular, fori = 1; P,

@ ¢ 1
— = — + e ei) ;
g (V=3 ((+e) (e
wherefe;;  ;e,gis the standard basis f&° and > 0is a small perturbation value.
Theorem 2 also relates the sensitivity matrig%((xf 7 );i=1; ;ptothesensitivity of the reset map Jacobian,

ie., %(xf ;) (see (49)). For hybrid systems with one continuous-timesphthe reset map is independent of,
and hence, one can simplify (48) and (49) as follows

P
Sxii) = Cxis ) O (x) (50
@pr . \_ N :
m)gxf, )= ( X3 )E( ) (X¢); (51)
where ( x;) = %((xf ). The calculation of%(xf ;) in (49) for hybrid systems with multiple continuous-time

phases for bipedal walking will be addressed in Section 6AgpEkndix E.

Remark 6. The result of (48) is different from what have already beemnseted in (Wendel and Ames, 2012; Hiskens
and Pai, 2000b; Aizerman and Gantmacher, 1958). To makadisn more precise, Theorem 2 states that under the
invariance assumption of the periodic orbit, the “saltatimatrix ( x;; ) isindependentfthe controller parameters

. In particular it dependsnly on the orbitO. This simpli es the calculation of the sensitivity matrias given in (49)
by only relating them to the variational equation of the cmmbus-time arc as well as the impact map. Appendix C.2
investigates the effects of a weaker set of invariance agamon the results of Theorem 2.

Extended Sensitivity Matrices for Robustness AnalysisThe following theorem presents a numerical approach to
calculate the extended sensitivity matrices as well asigtarthance sensitivity matrix in (39).

Theorem 3(Calculation of the Extended Sensitivity Matrice§uppose that Assumptions 1 and 2 are satis ed. Then,

@R, .. ,_@F
@((Xf ;5 0)= @X(Xf ;) (52)
forall 2 which yields the following relation for the extended sevityt matrices
@Pe @pP
Xe; 3 0 = —— X4, 53
@ @x "' @i@x "' 53)
Furthermore, the disturbance sensitivity matrix can beresped as
@r fx; )
——(X;;;0)= (54)
@d’’ Os(x ) Fel(x; )
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In particular, the disturbance sensitivity matr%(xf ; ; 0)isindependent of, i.e.,

@R, .., @B . .
@dXii 0= Zxs 0y (55)

Proof.See Appendix D. O

Remark 7. Theorem 3 rst presents a closed-form expression for thelian of the extended Poincaré map with
respect to the disturbandeSecond, it shows that under the invariance assumptianJ#tobian igwvariantunder the
change of controller parametersAppendix C.3 investigates the effects of a weaker set @friance assumption on the
results of Theorem 3.

Finally, from Theorem 3, (23), and (42), one can concludegaoliewing relations among the sequendés g and
fAi;e g

Ag = projAO;e lift

Ai = pojAie s =15 P

Remark 8. The second-order derivatives of the Poincaré map in (39)rcprinciple be computed numerically using
nite differences as shown below, though accuracy depeigtgyon the choice of the variations,

k
gp@e}( B5)= g ilxj PEG+1;i+15) PEG Li+l;)
PXG+1;i L)+ PSG Li 1)
k
g‘% i) = %d Pe(5i+1;1+1) PE(5i+1;1 1)

PXG LI+1)+ PE(i 11 1)

Here(j;i;1 ) denotes the grid number in the spate D andPX represents thk-th element of the mape. Fur-
thermore, ;, x; and d are the perturbations for the numerical differentiatiome®@rems 2 and 3 presented systematic
approaches to calculate these Jacobian matrices based wgarthtional equation of the continuous-time arc and the
Jacobian of the impact map. In particular, Theorem 3 showaiinder the invariance assumptig%o(xf ;;0)=0
which simpli es the computation of the disturbance semgitimatrices.

6. Application to Underactuated 3D Bipedal Robots

The objective of this section is to illustrate the sendiyivanalysis and BMI optimization to systematically design
robust and stabilizing continuous-time feedback laws fmigalic 3D bipedal walking. Models of bipedal walking are
hybrid with continuous-time phases to describe the evahutif the mechanical system according to the Euler-Lagrange
equations and discrete-time phases to represent the taséaus impacts between the swing leg end and the ground
(Hurmuzlu and Marghitu, 1994). The state vector for thestesys is takenas:= (q” ;¢ )~ , in whichg 2 Q denotes
thegeneralized coordinates vectandQ represents theon guration space The state manifold is the tangent bundle
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X := TQ. A hybrid model of walking that includes two continuous-tiphases can be expressed as

_( x=fr(X)+ gr(X)U; X ZSgr

RToxt= g L(x ); X 2Sr L
( (56)
o x=fix)+a(x)u; x 2SR

Xt = Lor(X); X 2SSy R

in which the subscripts “R” and “L” represent the right anfil ##ance phases, respectively. In particular, the evarhudf
the robot during the stance phdase f R,Lgis given byx = f;(x) + gi(x) u. The right-to-left and left-to-right impact
manifolds are denoted i3k | andS,, g as follows

Sri L= fx2Xjsp L(X)=0g
SL R= fXZXjSL! R(x)=Og;

on which the right-to-left and left-to-right impacts occuespectively. The smooth functiosg | (x) andsy; r(X)
represent the height of the swing leg end with respect to thergl. The right-to-left and left-to-right impacts arerthe
givenbyx® = g | (x )andx* = |, gr(X ),inwhich g | :X !X and L g:X !X aresmoothimpact
maps (Hurmuzlu and Marghitu, 1994). Furthermore, durirggdbntinuous-time phase? f R,Lg, the control inpuu
takes the form

u= (% ')
where ; : X "1U isaC! statefeedbacklawand2 ' denotesthe parameter vector of phiagehe closed-loop
vector eld is also given by = ff(x; ') := fi(x)+ g(x) i(x; '), whose unique solution with the initial condition
x(0) = Xo is represented by; (t;xo; '). The time-to-reset function during phasé f R,Lgis T; : X "1 R
where

Ti(xo; ") :=inf t> 0j"i(txo; ')2Si ;
andj 6 i 2f R,Lg. Theone-phase maPBi: j : Sii j 11s j,,i6 ) 2fR,Lg, isdenedas
PO )= T ;s )]

Using (Westervelt et al., 2007, Theorem 4.3), one can pteseequivalent hybrid model with one continuous-time
phase as in (4) for the 3D walking model of (58he equivalent system is given by

( | R
o . X = fI%(X, ) X 2SR! L (57)
CoxP=E(x Y x 2Sm o

in which

(x 9= Lur Pri(x ") (58)
is the composition of the left stance phase ow and the leftight impact map, “” denotes the function composition,
and "#

R

= 2 = R ¢ (59)

is thefull parameter vector to be determingthis kind of equivalence, the Poincaré niagx; R; L) for the closed-loop
hybrid model with two continuous-time phases is indeed tiiedaré map for the hybrid model with one continuous-time
phase in (57)Appendix E investigates Item 3 of Assumption 1 for the cleksap system (57) and presents a numerical
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calculation approach for the sensitivity of the reset malxcbbiiatn%(xf ;)i =1; ;pinthe sensitivity matrices
(49).

6.1. Reduced-Order Sensitivity Analysis based on LefttF8gmmetry

For models of bipedal robots with left-right symmetry, thewber of sensitivity matrices in the sensitivity analyss a
well as the number of decision variables in the BMI optimi@atcan be reduced signi cantly. The objective of this
subsection is to present a systematic basis for this redoidit sensitivity analysis.

De nition 1 (Left-Right Symmetry) The hybrid model of bipedal walking in (56) is said to havelgferight symmetry
if the following conditions are satis ed.

1.dim( R) = dim( %) = pr.

2. There arestate symmetry matris, 2 R("*D (%1 andparameter symmetry matri®@ 2 RPr Pr such that
S Sk = |(n+1) (n+1) , S S = IPR PR and

fL(x) = Sk fr(Sx X)
g () L Y)=Scgr(SxX) R(Sx%S )
St r(X) = Spr L(Sx X)

L r(X) =S r L(SxX)

forallx 2 X andall L2 L.

Corresponding to the hybrid model (56), a hybrid model witle continuous-time phase was already presented in
(57) whose reset map was parameterized.liyowever, according to the symmetry (Akbari Hamed and Ga{22014,
Theorem 4), an alternative and equivalent hybrid model with continuous-time phase can now be presented whose
reset map isndependendf . This simpli es the sensitivity analysis as well as the BMitimization. To make this
clear, we present the following theorem.

Theorem 4 (Half Map). Assume that the hybrid model of walking has left-right sytnmeetO = Or[O | be a
symmetric periodic orbit for the hybrid mod@6) in the sense thad, = S, Og. Suppose further thaf® and " are
chosen according to the symmetry relation

L-=gs R (60)

Then, the following statements are correct.

1. The Poincaré return mal : Sp | R L1'S g | forthe closed-loop hybrid model with two continuous-time
phases can be factored as
PO R Y= Phar Prar x; R 5 R

in which Py is the half map given by

Prar X; R = Pu r Sxx; R (61)

2. The half map is the Poincaré return map for the followingiiy system with one continuous-time phase

(

X = flgl(X; R) X 2ZSp L
x*=(x); X 2Sgr L;

cl .

(62)

inwhich := Rand ( x):= | r(Sx X) is independent of.
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Proof.The proof is immediate from the construction procedure @1J (Akbari Hamed and Grizzle, 2014, Theorem
4). O

Remark 9 (Reduced-Order Sensitivity AnalysisiFrom Theorem 4,

@P . R. L _ @IRaIf . R
@x T Tax M

(63)

and hence, the periodic orlii is exponentially stable for the hybrid model with two comtus-time phases if and
only if Or is exponentially stable for (62). Consequently, one caryaiye sensitivity analysis to the Jacobian matrix
%(xf ;. R) with fewer parameters ratherth%ﬁ(xf : R. L), Finally, ' can be obtained according to the symmetry
relation (60).

Remark 10. The results of Theorem 4 are different from the symmetryysprésented in (Altendorfer et al., 2004).
Theorem 4 considers the symmetry betweemo" continuous-time phases, namely the right and left stareeses,
whereas (Altendorfer et al., 2004) investigated the “tiesersal symmetry” within a continuous-time phase, sintdar
what is found in the SLIP model. This kind of symmetry doesaast in the 3D walking models of this paper. Instead,
the rst part of Theorem 4 presents an equivalent hybridesysbased on the left-right symmetry for the 3D walking
model whose impact map isdependenfrom . This reduces the number of optimization variables in (31 &17).
Furthermore, the invariance of the impact map with resgectéduces the complexity in computation of the sensitivity
matrices as given in (51).

6.2. Virtual Constraints

This subsection applies the analytical results of the papénevirtual constraints approachvirtual constraints are
kinematic relations among the generalized coordinatesreed asymptotically by continuous-time feedback control
(Grizzle et al., 2001; Westervelt et al., 2007, 2003; Freicloet al., 2009; Ames, 2014; Lack et al., 2014; Ames et al.,
2014; Akbari Hamed and Grizzle, 2014; Gregg and Sensin@é#;,Z5regg et al., 2014; Chevallereau et al., 2003, 2009;
Sreenath et al., 2011, 2013; Morris and Grizzle, 2009; Maggand Consolini, 2013; Shiriaev et al., 2004). It has
been shown that for mechanical systems with more than omeeefunderactuation, the choice of virtual constraints
affects the stability of the periodic orbit (Chevallereaalk, 2009). Chevallereau et al. (2009) showed that cdirtgpl
the actuated coordinates for a ve-link underactuated 3@etal robot cannot stabilize a periodic walking gait. Next,
based omphysical intuition a different choice of virtual constraints was proposedabitize the same orbit. However,
for ATRIAS (Buss et al., 2014; ATRIAS, 2013 related robot with additional degrees of freedom duelieselastic
actuators, the same intuition did not lead to a stable pera®it (Ramezani et al., 2013). This underlines the imaoce
of having asystematianethod for choosing these constraints. This subsectiatethe problem of choosing virtual
constraints to the BMI optimization. This will be illusteat on the dynamical models of the ve-link 3D bipedal robot
of (Chevallereau et al., 2009) and of ATRIAS.

During phase 2 f R,Lg of the hybrid model of walking (56), the virtual constraiate de ned as then-dimensional
output function

yi(; D= H" g d(i(@) ; (64)

inwhichm = dim(u) is the control input dimensiof ' is a constant output matrix to be determinéd= veqH'), and
dy( i) represents the desired evolution of the generalized coatel vectog on the orbitO; in terms of ;. Moreover,

i (9) denotes the phasing variable during phiage a function of the con guration variablggsee Assumption 3). We
note that in (64)H ' g denotes the set @ontrolled variableswhereadd ' d( i) represents the desired evolution of the
controlled variables on the orbit. If the output functiod)tas uniform vector relative degree= 2 on the periodic
orbit, the continuous-time controller (x; ') is then taken as the input-output linearizing feedback laEample 2.
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Remark 11 (Symmetry in Virtual Constraints)For mechanical models of bipedal robots, the state symnnedtyix
can be expressed & = block diag Sq; Sqg, whereS, is theposition symmetry matriSuppose further th&, is an
output symmetry matriwith the propertysy Sy = Im m . If the output functions and phasing variables during thatri
and left stance phases are chosen such that

yu(@; 9= Syyr(Sqq;S )
L(a) = R(SqQ)

forallg2 Q and - 2 %, then one can conclude that
H- =S, HRS,;

or equivalently, the symmetry relation (60) is satis’adth S = Sg Sy. Inaddition, it can be shown that all conditions
of De nition 1 are satis ed®. Hence, we can apply the reduced-order sensitivity arssdysi BMI optimization of Remark
9 to tuneH R (the output matrix during the right stance phase).

6.3. PENBMI Solver

In order to solve the stability and robustness BMI optinmi@aproblems in (31) and (47), we make use of the solver
PENBMI* (TOMLAB, 2015) integrated with the MATLAB environmentthugh the YALMIP'? (Lofberg, 2004). BMIs
are NP-hard problems (VanAntwerp and Braatz, 2000; TokéGabay, 1995) however, PENBMI is a general-purpose
solver for BMI optimization problems which guarantees tlo@wergence to a critical point satisfying the rst-order
Karush-Kuhn-Tucker optimality conditions (Henrion et, &005). It is a local optimizer and its behavior (speed of
convergence) depends on the initial guess. For the nunharialyses of this papene do not provide an initial guess for
the solver to initiate the algorithm and hence, YALMIP s#ddbat starting value for the optimizatiofhe optimization
procedure for the ve-link robot witl8 DOF (see Section 6.4) and ATRIAS witlBDOF (see Section 6.6) on a computer
with dual6-core,2:4 GHz Intel Xeon processors took approximat2f/seconds and5 minutes, respectively.

6.4. Five-Link Walker

This subsection applies the results of the paper to deslgst@nd stabilizing virtual constraints for a walking gait

an underactuated 3D bipedal robot willegrees of freedom arzldegrees of underactuation. The robot model was
previously presented in (Chevallereau et al., 2009). Thetoonsists of a torso and two identical legs with revolute
knees and point feet. Each hip has two degrees of freedonfrige®). It is assumed that there is no yaw motion about
the stance leg end. Furthermore, the roll (ig),and pitch (i.e.p) angles at the leg end are unactuated, whereas all
of the internal joints are independently actuated. Thecsitine and con guration variables of the robot during thentig
stance phase are shown in Fig. 3. Here, the phasing varmdkened as the angle of thértual leg connecting the
stance leg end to the stance hip in the sagittal plane. A gier@rbit O is then designed using the motion planning
algorithm of (Chevallereau et al., 2009). The virtual coaisits controller of (Chevallereau et al., 2009) can siadthe
orbit. However, it cannot handle rough ground walking. Teottee this problem, the set of nominal controlled variables
is taken to be simply the actuated coordinates

HR q:= (s 006G 07 %) (65)

9 We make use of the vectorization operator property aétéy = vedSy HRSq) = (S;  Sy) veqHR).
1%rhe proof is similar to the one of (Akbari Hamed and Grizz/@12, Theorem 7).
Uhttp://iwww.penopt.com/penbmi.html

Ihttp://users.isy.liu.se/johanl/yalmip/
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Fig. 3. A ve-link 3D bipedal robot during the right stance phase hwijpoint feet and the associated con guration variables
(Chevallereau et al., 2009).

inwhichHR 2 R® 8is the nominal value of thel R matrix. By employing this nominal output function, the doraint
eigenvaluesofth&s 15Jacobian matrix ofthe half map become3:3475 0:8558 0:2064y, and henceDis unstable.
Next, we let = veqH R) 2 R*® and employ the reduced-order sensitivity analysis as givBemark 9. Th@-norm of
the extended sensitivity matricAse versus the elements of theR matrix is depicted in Fig. 4. Fromthis gure, the most
important sensitivity matrices around the nominal outpattion correspondto the rst column of theR matrix, which

is related to the roll angle, . According to this observation, we reduce the dimensiohefiMI optimization problem
(47) by letting  parameterizes only the rst column of the&R matrix, i.e.,HR = HR + 05 1 O 1 -
For robust stability, letcy := (VX Vém)” 2 R? denote the horizontal components of the robot's center asnji@OM)
velocity expressed in the world frame. Next, thenatrix in (46) is taken as

_ @¥m
F="ax

to minimize the deviation in the COM velocity just before iagbduring uneven ground walking. Solving the optimization
problem (47) with the weighting factovg; = 30 andw, = 40, and the maximum ground height variatidg.x = 0:01
(m) results in the following controlled variables

Xt )

g +0:4173
oy + 0:509401
05 + 0:80000
0 0:800001
a7 +0:2130
Og + 0:096601

(66)

Corresponding to thisl R matrix, the dominant eigenvalues of the Jacobian of thefilicaré map, calculated based
on the Taylor series expansion (21), fre0:9329 0:9341; 0:3463y. Next, the dominant eigenvalues of the real Jacobian
of the half Poincaré map becorhe 0:9319 0:8269 0:5869). Figure 5 depicts the phase portraits of the roll and pitch
angles durin@0consecutive steps on at ground. Here, the simulation ofttbeed-loop system is started off the orbit
with an error of6 (deg/s) on each component of the generalized velocity vectoonvergence to a stable limit cycle is
clear.
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column

Fig. 4. Plot of the2-norm of the extended sensitivity matrices versus the corapis of thes 8 H R matrix around the nominal
output function. Herej, = row + 6( column  1).
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Fig. 5. Phase portraits of the closed-loop hybrid system for thleamodl pitch coordinates during0 consecutive steps of walking
corresponding to the optimal solutions of (47). The circlggresent the initial condition of the simulator.

The results of the sensitivity analysis shown in Fig. 4 areddfptimized virtual constraints (66) have an important
interpretation. The nominal output function

y(@;, )=H (@ &l pien(a)))

(67)
= ho(d)  ha( picn(d));

coordinates the links based only upon a phasing varighlg(d) = () de ned in the sagittal plane. Thus it ignores
deviations from the periodic orbit in the roll directiddowever, the optimized output function can be express&d as

y(@; )=(H + H)(q ol picn())
=H g H o pitch(Q))"' Hi(h 0o pitch(q))) (68)
= ho(q) hq( pitch(q)) ha( ron());
wherehg( on(Q)) = Hi(h  ud( picn(@))) andowa( picch(d)) denotes the desired evolution of the roll angle on the

orbit. Furthermore, Hj isthe rst column (nonzero column) of the perturbation matr H . Thus the modi ed output
responds to roll angle errors by adjusting the desired ¢wouis of the controlled variables. This new output enhances
stability of the periodic orbit by coupling pitch and roll away that would be dif cult to discover through intuition.

To evaluate the robustness of the closed-loop system foremnground walking, aandomly generatedround
height pro led[k] with d[k] 2 [ dmax ; dmax ]IS considered, in whiclnax = 0:01(m). Itis further assumed thdfk] is
periodic with the period of steps, i.e.d[k + 7] = d[k]forallk =0;1; .Figure 6 presents the ground height pro le

Note that the ternig ( roi(q)) vanishes on the orbit. Furthermore, the pseudo-phasinablar ;o (q) need not satisfy Assumption 3.



24

Journal name 000(00)

0.01 T T T T
=
E] l l l l l ! l

0oLy 10 20 20 0 50 60 70
Xg Ol_T- Py o '. - '.I' '- - " - " - " - " - "
S P I YU Iy Uy Uy Uy Oy Y Y
015 10 20 30 0 50 60 70
ﬁg il 0 9 _vT.T crerte Lt R L. rerte AKS e te L1
e B P T P i
0 10 20 ‘ ‘ 50 60 70

30 40
Step Number

Fig. 6. Plot of arandomly generatedround height pro led[k] (m) and the correspondingandy components of the deviation in
the ve-link robot's COM velocity (i.e., v cm[k]) (M/s) for the optimal solution of (47) versus the step numbe

d[k] and correspondingandy components of the COM velocity deviation.,[k] for the robust optimal solution versus
the step numbek. The animation of this simulation can be found at (Grizz[&l%).

6.5. Exponential Stability Modulo Yaw

The ve-link walker of Subsection 6.4 does not have yaw motidout the stance leg end. For bipedal robots with yaw
motion, there are two kinds of stability during walking on at ground:full-state stabilityandstability modulo yaw
If the closed-loop hybrid system is equivariant under iotet about the z-axis of the world frame, then the Jacobian
of the Poincaré map always has an eigenvaldeGtand thus the full-state model cannot have an exponengtdlyle
periodic orbit. Stability modulo yaw refers to stabilityn St, whereS! := [0;2 ) denotes the unit circle (Shih et al.,
2012; Spong and Bullo, 2005).

This subsection extends the sensitivity analysis develap&ubsection 2.4 for exponential stabilityodulo yaw
in 3D bipedal walking. To achieve this goal, without loss ehgrality, we assume that the rst component of the state
vectorx represents thgaw positionof the robot with respect to the world frame and we denote ¢himponent by
Xyaw- From theequivariance propertpf (Shih et al., 2012), if the feedback laws(x; ');i 2 f R,Lg do not depend
on the yaw position (i.eXyaw), then the rst column of the Jacobian matl%é(xf ; R. L) becomegl1;0; ;0)”.In
particular, there is an eigenvalug’‘corresponding to the yaw position. Hence, for exponerstiability modulo yaw,
we apply the sensitivity analysis to

%X(xf D ROh;

in which %&(xf ; R L)representsthén 1) (n 1) matrix obtained by removing the rst row and column of
%—z(xf : R. L), This approach can also be applied to the half map develop&teorem 4. For this goal, we assume
that on the orbiD, the symmetry condition for the yaw position can be given as

Xyaw(t+ T )= Xyaun(t); 8t O

Then, the(1; 1) element of the state symmetry mat8x is 1, and hence, the rst column c,@%(xf : R) would be

( 1,0; ;0).Similarly, for exponential stability modulo yaw, one carpdy the sensitivity analysistoti@ 1)
(n 1) matrix

@haf,. . r

@x (X¢; 7)

obtained by removing the rst row and column %(xf : Ry,

Remark 12 (Equivariance Property for Virtual Constraintdp the virtual constraints approach, it can be shown that
if (i) the columns corresponding to the yaw position in thépat matricesH ' are zero and (ii) the phasing variables
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i (9) do not depend on the yaw position, then the input-outpualizéng feedback law (15) is independent of yaw and
hence, the equivariance property of (Shih et al., 2012, #%itipn 1) is satis ed.

6.6. ATRIAS

ATRIAS 2.1 is a human scale 3D bipedal robot wjthint feetand series-compliant actuatorslesigned for energy
ef cient and robust walking (Ramezani et al., 2013; ATRIA®13; Grimes and Hurst, 2012) (see Fig. 7). The robot
consists of a torso and two identical legs. During the sisgigport phase, the mechanical model of the robotli3as
DOF and6 actuators. Hence, the system is highly underactuatedAxdtigrees of underactuation.

The orientation of the torso with respect to a world frame lsanlescribed by threfeuler anglest, 1, gyt andoyT,
referred to as thgaw, roll andpitch. In the sagittal plane, the angles of the shin and thigh hnikis respect to the torso
are denoted byyr andcpr for the right leg (again see Fig. 7) and @y anday, for the left leg. To control these angles,
two DC motors in series with harmonic drives are located ahed the hips. The angles of the outputs of harmonic
drives with respect to the torso are representedybyr andog or (spring coordinatedpr the right leg anab, 1. and
qgr 2L for the left leg(see the bottom representation in Fig. 7 for the ATRIAS leyiaidon system)in addition,usr,
Uzg, U1 @anduy denote the torques generated by the corresponding DC matips are driven by two DC motors,
located in the torso. In the frontal plane, the angles of iletiand left hips with respect to the torso are represented
by qsr andg,, respectively (again see Fig. 7). The generated torquelediiip motors are denoted lggr andus, .
Finally, the generalized coordinate vector of ATRIAS careRpressed as

q:= (% GTi0T; ChR; OR; Chi; O ; Ogr 1R} Cgr 2R; CBR; Ogr 1l ; Ogr 2L L) ; (69)

in which the rst seven components Qfire unactuated, whereas the remaining six componentstaeted. The control
inputu is taken as the following-dimensional vector

U := (U1R; U2R; U3R; U1 ; U s UsL)”

Furthermore, the phasing variable is de ned as the anglee¥irtual leg in the sagittal plane.
In what follows,O = Ogr [ O _ is a periodic orbit for walking af:1 (m/s) designed using the motion planning
algorithm of (Ramezani et al., 2013).

Stability Modulo YawTo stabilize the periodic orb® module yaw, the nominal controlled variables are taken as

2 3
%(Ogr 1R+ Ogr2r)

%(OgrlL + OgroL)
HR q= Qgr2r  Qgrir . (70)
Ogrot OgriL
R
S (s Xcom) (X;) 9

where the rst and second components are the stance and $sgrangles, respectively. The leg angle is de ned in
the sagittal plane as the angle between the torso and thuaMirtie connecting the hip to the leg end. The third and
fourth components of the controlled variables in (70) asegtance and swing knee angles, respectively. We note that
since the legs are actuated through springs, the leg anddagges have been de ned at the outputs of the harmonic
drives. These components can stabilize periodic orbitplaorar walking of ATRIAS (Ramezani et al., 2013). The fth
component is then de ned as the stance hip angle in the frptdae. Finally,the sixth component of the controlled
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Fig. 7. (Top): Sagittal and frontal planes of ATRIAS 2.1 during tlght stance phase with the associated con guration veagibl
The Euler angles,t (yaw), g,7 (roll) and gt (pitch) describe the rotation of the torso fra®vexryrzr with respect to the world
frameOpXoYoZo. (Bottom):A conceptual representation of the series elastic actiataployed in the sagittal dynamics of ATRIAS
as well as spring coordinates.

variables in (70) is taken as the horizontal distance batvlee swing leg end and the robot COM in the frontal plane.
In our notationxsw(q) andxcom(0) represent the horizontal coordinates of the swing leg eddZ®M in the frontal
plane, respectively (see Fig. 7). However, to be compatifitethe virtual constraints structure in (64), we studyekn
controlled variables in (70) (i.e., linear @). Hence, one can linearize the distance funciigf{q) Xcom(q) around a
point on the nominal orbit to get linear controlled variab/ithout loss of generality, we do the linearization at¢hd
of the nominal gait on the xed point; . The idea of controlling the distance between the COM and g\eg end in
the frontal plane originated in (Chevallereau et al., 2086} the ve-link robot of Subsection 6.4, the distance ftioic
can stabilize the gait, whereas for the ATRIAS structureaiinot. In particular, the dominant eigenvalues ofthe 25
Jacobian of the half Poincaré map &re1:0000 1:3011 0:8363 0:16023. We remark thaks,(q) andxcom(q) are
de ned in the frontal plane which is rotating around thexis of the world frame by the yaw angle. As a consequence,
the distance functiorsw(Q) Xcom(Q) and its linearization are yaw invariant. This implies theliggriance property
of the closed-loop system as stated in Remark 12, and threréife eigenvalue 1 corresponds to the yaw coordinate.
Figure 8 represents tl&enorm of the extended sensitivity matrices versus the etesaf theH R matrix. From this
gure, the most important sensitivity matrices relate téueonsl 7 and13. However, the rst column corresponds to
the yaw position and we do not consider it for stability madyaw. Based on these observations, we leparameterize
only the column® 7 and13. Next, the optimization problem (47) witlr; = 1, w, = 1 anddmax = 0:01(m)is
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kAi-eka

Fig. 8. Plot of the2-norm of the extended sensitivity matrices versus the corapts of thes 13 H R matrix around the nominal
output function (70). Herd,= row + 6( column  1).

solved for exponential and robust stability. The optimaitecolled variables, i.eH R g, are then given by

2 3 2 3
5(Qgrir + Cgr2r) 0:1193q,t 0:12770.
(i + GgraL) +0:0786q, 1 + 0:08420s,
Ogr2r  Ogrir N 0:0313qyt 0:033403. (71)
Ogral  CgriL +0:0400q, 1 + 0:0428qs,
kR +0:0038q 7 + 0:004105.
& (Xsw  Xcom) (X() @ 0:2731gyt  0:2923ckL

Corresponding to these controlled variables, the domigigenvalues of the5 25Jacobian of the half Poincaré map,
calculated based on the Taylor series expansion (21, ate€000Q 0:9033 0:8087 0:541Q0 0:1128j. For compar-
ison, the dominant eigenvalues of the real Jacobian of tlePloancaré map becomfe 1:000Q 0:8183 0:8686
0:1011%; 0:1104y. The controlled variables (71) can also be interpreted asrdea modi ed output of the form (68).

Figure 9 depicts the phase portraits of the closed-loopesysturing50 consecutive steps of walking. Here, the
simulation starts at the end of the left stance phase on thedieorbit (see the circles in the plots). During the fdurt
step, an external horizontal force with a magnitudé@®(N) is applied to the COM of the robot f&0% of the step.
Convergence to the periodic orbit is clear. The ofbihas been designed to walk along thexis of the world frame
which corresponds to the yaw angler being zero. However, since the orbit is exponentially gabbdulo yaw, the
horizontal disturbance changes the direction of walkinglufting the phase portrait in the yaw coordinates.

To evaluate the robustness of the closed-loop system, waati®d walking over aandomly generategeriodic
sequence of ground height disturbamifle] 2 [ dmax ; dmax ] with period20. The maximum disturbance sigg.x =
0:03 (m) corresponds t@:75% of robot's leg lengthFigure 10presents the evolutions of the disturbarmifie] and
corresponding andy components of the COM velocity deviationem[k] for the optimal solution. An animation of
this simulation can be found at (Grizzle, 2015).

Yaw Stability Next, our objective is to design the controlled variablesftd exponential stability including yaw. For
this goal, the sensitivity analysis is done around the im@domutput function (71). Since the orbit is already stabii
modulo yaw, we only let parameterizes the rst column of t&R matrix which corresponds to the yaw coordinate.
Next, the optimization problem (47) is solved with = 1 andw, = 0. The optimal perturbation in the controlled

1% or this optimal solution, the elements of corresponding to columr 7 are very small and are not reported here.
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Fig. 9. Phase portraits of the closed-loop hybrid system for theEangles and right hip durirs0 consecutive steps corresponding
to the optimal solutions of (47) for stability modulo yaw. & bircles represent the initial condition of the simulator.

variables is then given by 2 3
0:0263q, 7
0:0230q, 7
0:0112q,7
0:0186q, 1
0:0729q, 7
0:1065q, 7

for which the dominant eigenvalues of the estimated andJegadbian matrices becorhe 0:8836 0:0529; 0:8694
0:105%; 0:1109y andf 0:8854 0:88540:8757 0:8757 0:1109, respectively. Figure 11 illustrates the phase
portraits of the closed-loop system corresponding to thiengb solution during30consecutive steps of walking. During
the fourth step, an external horizontal force with a magtataf 70(N) is applied to the side of the robot to its COM
over50%of the step. Finally, Fig. 12 depicts the trajectory of theMC@nd the foot step locations in thg -plane of the
world frame. Convergence to the periodic orbit even in the gasition is clearThe controller stabilizing yaw does not
reject as large an external horizontal disturbance as theealter achieving stability modulo yaw?Q N vs 100N). The
robot's hip joints have only 2 DOFs, with rotations in the is@djand frontal planes, but lack internal/external rimtas

in the transverse plane. It may be that turning is an effesikategy to accommodate lateral disturbances in a roltot wi
this morphology. In any case, lateral disturbance rejaatias not part of the design objective.

Other Nominal Output Function§o demonstrate the power of the sensitivity and BMI approachstudy the sta-

bilization of other nominal output functions. We start witbminal controlled variables as in (70) in which the sixth
component is replaced by
@ 1

@q EXSW Xcom (Xf)q (72)
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Fig. 10. Plot of arandomly generatedround height pro led[k] (m) and the correspondingandy components of the deviation in
ATRIAS's COM velocity (i.e., v cm[K]) (m/s) for the optimal solution of (47) versus the step numbe

Where%xsw(q) Xcom(Q) represents the distance between the COM and the point mibdetsyeen the the leg ends
in the frontal plan&. In (72), the distance function has been linearized arobedtbitOr just before the impact.
The dominant eigenvalues of the Jacobian of the half Poénoap aré  1:0000 1:0499 0:84550:843Q 0:113Q@
and hence, zeroing the output function cannot stabilizeoth& O. The optimization problem (31) is then solved for
exponential stability modulo yaw. The dominant eigenvalaéthe Jacobian of the half Poincaré map based on the
linear approximation of (21) afe 1:000Q 0:8702 0:8359 0:0851; 0:1329. Next, the dominant eigenvalues of
the real Jacobian of the half Poincaré map correspondingiggoerturbation becomie 1:0000 0:8623 0:8630
0:0713; 0:146%.

If the sixth component of the nominal controlled variablas(70) is de ned as the swing hip angtg_, the
periodic orbitO is extremely unstable and the dominant eigenvalues of tbebian of the half Poincaré map are
f 1:000Q 2:45870:8414 0:4228. Next, for exponential stability modulo yaw, the optimipat problem (31)
is solved. The optimal perturbation values are then pluggetthe output functions. However, the values are not
small enough to have a good approximation based on the Tagligs expansion and as a consequence, the orbit
O is not stable. In particular, the dominant eigenvalues ef itbal Jacobian of the half Poincaré map become
f 1:000Q 1:2608 0:8087 0:2036). Next, the sensitivity analysis is performed again arotned esultant perturbed
output function. The optimal solution of (31) is then calted. Finally, the dominant eigenvalues of the Jacobian of
the half Poincaré map, based on Taylor series expansiondgdf) 1:000Q 0:8561,0:8418 0:1030; 0:1084y,
while the actual eigenvalues of the half Poincaré map'sidiaccaref  1:0000 0:8764 0:7773 0:1056; 0:1308j,
establishing exponential stability modulo yaw.

7. Conclusion

This paper introduced a method for designing continuausg-tiontrollers to robustly and exponentially stabilize qeaic
orbits for hybrid systems. In contrast with previous methtitht rely on recomputing the Jacobian of the Poincaré map
at each step of a nonlinear optimization, the proposed ndeghwploys a sensitivity analysis to approximate the Jacobia
by an af ne function of the control parameters. The resgltiptimization problem involves LMI and BMI constraints
and can be solved effectively with existing software paesadhe power of this approach was illustrated in the design
of robust and stabilizing virtual constraints for two uraigtuated 3D bipedal robots wighand13 DOF. The approach
can handle both full-state stability and stability moduéow

The algorithm presented in this paper can be extended to geweral forms of robust stabilization problems,
includingH 1 robustness against uncertainties rising from externaéf®acting on the robot. In future research, we will
investigate these forms of uncertainties. We will also gtigmte the results for stable and 3D underactuated rurmying

15The expression (72) assumes that the stance leg end is origheas the world frame.
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Fig. 12. Trajectory of the COM and feet trace duriB consecutive steps of walking with yaw stability.

ATRIAS with 32 states and actuators. Furthermore, the BMI optimization of this pagemn be extended to improve
stability of bipedal walking by designing proper phasingiables.

One potential limitation of the proposed algorithm is theuasption of invariant periodic orbits for the closed-loop
hybrid system. An interesting research direction would dé@@acing the assumption of invariant orbits with a set of
weaker assumptions. Another direction could can be extgrttie algorithm for robust stabilization of a-periodicitsb
of hybrid systems.

A. Proof of Lemma 1
Letus de nethe sensitivity of the solution with respecttie parameter vector dst; Xo; ) := %(t;xo; ) 2 R P,
From the de nition of the solutioh (t; Xo; ),

Zt
"(tXo; )= Xo+ i 90 (;xo; ); ) d: (73)
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Differentiating both sides of (73) with respecand next with respect to the time yields the following matifterential
equation

ef

txoi )= @X' )x=‘(t;xO;) (txoi )
@f . (74)
¥ @ x )X='(t:><o;)
(0 ;Xo; )=0:

Sincef @ is C' , the solutions of (74) are unique over the maximal interé@bistence. Consequently, t;xo; ) O
if and only if%fd(x; )=0 forallx =" (t;Xo; ).

B. Proof of Theorem 2

According to Items 2 and 3 of AssumptionT(xy; )= T and ( X;; )= Xgforall 2 . This fact together with
(17) implies that the Jacobian of the Poincaré return magpeaxpressed 45

DiP(Xt; )= D1" (T ;Xg; )D1T(Xg; )D1 ( X¢5 )

(75)
+D2" (T ;%5 )D1 ( X5 ):
Furthermore,
D1" (T 5%o; )= Z(T 5Xo; )
=90 (T ;%05 )5 ) 76)
— fC|(Xf; )
= fCl(Xf; )i

in which we have made use of the invariance condition (se@ (hlthe last equality. B' (T ;Xy; ) can also be
expressed as

@I

D2' (T ;Xo; )= @(T i Xo; )
= (T X ) (77
= ()

From the switching and invariance conditions (see Item 2 sfuinption 1),
s(" (T ;%e; ))=0; 8 2

which together with the Implicit Function Theorem impliést

s( (T(x; );x ))=0 (78)
1% ollowing common convention for the partial derivativesa@®! function (x1; i Xv),
Dj (X1, Xv):= 9(xl; Xv), ) =1 5w

@x
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for all x in an open neighborhood &f, and all 2 . Differentiating (78) with respect to around(x,; ) results in

Ds(x¢)D1' (T ;Xg; )D1T(Xg; )
+ Ds(x¢)D2" (T ;Xq; )=0

which in combination with (76), (77) and the transversaiissumption results in

%:(Xf) () )
Tx, ) 901 )

D1 T(Xq; )= (79)
In particular, the Jacobian of the time-to-reset functiepehds on only through ; ( ). Replacing (79) in (75) yields
(48), from which (49) follows immediately.

C. Effects of the Invariance Assumption on Sensitivity Anaysis and BMI optimization

C.1. Invariance Assumption

We remark that if the invariant periodic orbit assumptiomiated, by changing the controller parameterthe orbit

O may change and it may be no longer periodic. Thus, one woidd teeadd extra equality constraints offor the

optimization problems (31) and (47) to satisfy theetiodicity assumptich In addition, some inequality constraints on
are required to check for théeasibility’ of the new generated orbit (e.g., feasibility of positipmslocities, torques

and ground reaction forces in case of bipedal walking). regal, these constraindannotbe expressed in the format of

BMis and LMIs as given in the optimization problems (31) add)( In Subsections C.2 and C.3, we shall assume that

the periodicity and feasibility assumption are somehovg &t and we focus on a weaker set of invariance assumption.

C.2. Effects of the Invariance Assumption on Theorem 2 anggDtation of the Sensitivity Matrices

Let us assume that the invariance condition of the wholée @i Assumption 1 is reduced to a weaker assumption. In
the new assumption, the initial and nal pointg andx; of the continuous-time arc are assumed to be invariant (i.e.
xed) under the choice of the parameters vectdr. However, the solution of the ODE = f ¢/(x; ), x(0) = X, can
change between these two xed boundaries whearies'®. Analogous to the proof of Theorem 2, it can be shown that
the saltation matrix isolonger independent of and can be given by

Felxes ) Gs(xr)

( X¢3 )= lneny (net :
f (n+1) (n+1) %)s((Xf)fd(Xf; )

Thus, the factorization of the sensitivity matrices as giire (49) isnot valid. In addition, at the variational equation
level, one would need to integrate a more complex andymentetisystem as follows

" § o 4
Ctixor ) _ GrC (xoi i) (txei) . o o )
(X, )# } fe (t#xo; ); ) ’ o
0 :x%0: ) _ Tieny (o)
' (0;%q; ) Xo '

since the solutioh (t; X; ) is not knowna priori. This complicates the computation of the sensitivity ncaisi

17T his assures the periodicity assumption.
18f s close enough to a feasible nominal parametemmne can assume that the resultant orbit is feasible.
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C.3. Effects of the Invariance Assumption on Theorem 3 abdifRRGtabilization Problem

If the invariance condition is reduced to a weaker assumpatiostated in Subsection C.2, one would havalapendent
Jacobian matrix in Theorem 3 given by

@R _ felix ;)

@(Xf; ;0) = —%Xf)fc'(xf; ):

In this case, we cannot have a const@atmatrix in (40). In particularCe depends on and as a result, the robust
stabilization problem of (47) is no longer in the format of BM

D. Proof of Theorem 3

The proof of (52) is immediate from (36). To extract (54),rfraAssumption 1Te(Xy; ; 0) = T forall 2
Furthermore, the Implicit Function Theorem is applied to

S(* (Te(x; ;d);x; )= d (80)
from which, it can be concluded that
Ds(X;)D1" (T ;Xg; )D3Te(Xq; ;0) 1=0:

This latter equation together with (76) results in

1

Osx ) Fel(x; )

D3 Te(Xg; ; 0) = (81)

Finally, P depends ol only through the extended time-to-reset functign(see (34)), and hence,
D3 Pe(X;; ; 0)= D1' (T ;Xg; ) DsTe(Xq; ; 0):

This together with (81) and (76) completes the proof.

E. Numerical Calculation of the Sensitivity of the Reset MapJacobian

The objective of this appendix is to investigate Item 3 of uxaption 1 for the hybrid model of 3D walking in (56).
This section also provides a systematic approach to nualgrzalculate the sensitivity of the reset map Jacobian, i.
%(xf 7 ), where( x; )= %((xf ; ) was already de ned in Theorem 2.

Theorem 5(Sensitivity of the Reset Map JacobiaimetO = Ogr[O | be atransversal periodic orbit for the closed-loop
hybrid model of 3D walking. Then the following statemenésarrect.

1.Items 1 and 3 of Assumption 1 are satis ed if

@f' i .
@f(x; D) 25 =0; i2fR,Lg:
2. Letf X, g = Or\S&wr L, fxf; 9= OL\S | R andx; := Xf. g SUppose further that denotes the nominal
full parameter vector. Ther%(xf ;o );i=1; ;pin(49)can be expressed as
@ @ v @Pr
(X7 )= ==X ) =X R )

@; @x @ @x
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in which
P | @ ) |
Gt )7 w0 S
felx,. @s r(y.
L(Xf; L; ) = I(n+1) (n+1) L ( fiL ) @x ( f; L)

@E-)!XR(XI‘; L) f fl(xf; L; )
and . ( )denotesthe nalvalue of the trajectory sensitivity matrixt; Xo; ) := %(t;xo; ) on the orbitO, .

Proof.According to (11),%—%‘(& R) = 0 for all x 2 Ok follows Item 1 of Assumption 1. In an analogous manner,

9€(x; 1)=0 forallx 2 O resultsin@t(t; w L(x;,g): H)=0forallt 0, andhence,
Pro L pi D)= % 852 L

This together with (58) completes the proof of Item 3 of Asgtion 1. The proof of Part 2 is similar to the one presented
in Theorem 2. O
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