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Abstract

This paper presents a systematic approach for the desigmtihaous-time controllers to robustly and exponentially
stabilize periodic orbits of hybrid dynamical systemsiaggrom bipedal walking. A parameterized family of contous-
time controllers is assumed so that (1) a periodic orbit daiged for the hybrid system, and (2) the orbit is invariant
under the choice of controller parameters. PropertiesePtiincaré map and its first- and second-order derivatiees ar
used to translate the problem of exponential stabilizaticthe periodic orbit into a set of Bilinear Matrix Inequais
(BMls). A BMI optimization problem is then set up to tune therameters of the continuous-time controller so that the
Jacobian of the Poincaré map has its eigenvalues in theitoié.dt is also shown how robustness against uncertainty i
the switching condition of the hybrid system can be incoaped into the design problem. The power of this approach
is illustrated by finding robust and stabilizing continudime feedback laws for walking gaits of two underactuated 3
bipedal robots.
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1. Introduction

This paper addresses the problem of designing continumesebntrollers to robustly and exponentially stabilizepic
orbits of hybrid dynamical systems. Hybrid systems extth#racteristics of both continuous-time and discretetim
dynamical systems and are used to model a large range ofgses@Bainov and Simeonov, 1989; Ye et al., 1998; Haddad
et al., 2006; Goebel et al., 2012) including power systenisk@ghs and Pai, 2000a) and mechanical systems subject
to impacts (Grizzle et al., 2001; Westervelt et al., 2007;e&ret al., 2009, 2007; Spong and Bullo, 2005; Manchester
etal., 2011; Gregg et al., 2012; Gregg and Spong, 2008; Hoah,2007; Dai and Tedrake, 2012; Tedrake et al., 2004;
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Akbari Hamed et al., 2012; Chevallereau et al., 2009; Stthegtal., 2013; Grizzle et al., 2014; Hurmuzlu and Marghitu,
1994; Martin and Schmiedeler, 2014). Our motivation is tsigle robust stabilizing continuous-time controllers fér 3
bipedal robots with high degrees of underactuation, butdisalts we present apply to non-hybrid as well as hybrid
systems (Arnold, 1996; Haddad and Chellaboina, 2008; ParieChua, 1989).

The most basic tool to investigate the stability of hybridipéic orbits is the method of Poincaré sections (Arnold,
1996; Parker and Chua, 1989; Haddad and Chellaboina, 2@@itiad et al., 2006; Grizzle et al., 2001). In this approach,
the evolution of the system on the Poincaré section, a hypfexe transversal to the periodic orbit, is described by a
discrete-time system referred to as the Poincaré returnimggneral, there is no closed-form expression for thedzoin
map, and this complicates the design of continuous-timérotkers. Hence, stabilization of periodic orbits for hidr
systems is often achieved with multi-level feedback cdrarohitectures, in which continuous-time feedback laves ar
employed at the lower levels of the control scheme to créeggériodic orbit. As the lower-level controllers may not
ensure exponential stability of the orbit, a set of adjustalrameters is introduced to the continuous-time cdetwl
These parameters are then updated by higher-level eveattmantrollers when state trajectories cross the Poincaré
section (Grizzle (2006); Chevallereau et al. (2009); Grepgl. (2012); Ramezani et al. (2013); Akbari Hamed and
Grizzle (2014); Sreenath et al. (201Bgibert (1986); Buehler et al. (1994); Carver et al. (200@karali and Saranli
(2011); Remy (2011); Seipel and Holmes (2007); SeyfartH.€R803)). The event-based controllers are designed to
render the Jacobian of the Poincaré map around the fixedgbiatwitz matrix.This control strategy has a long history
in robotics, biomechanics, control, and applied math.

One drawback of achieving stability via event-based cdiett®is the potentially large delay between the occurrence
of a disturbance and the event-based control effort. Adtiva approaches attempt to achieve stability at the fivst le
Chevallereau et al. (2009) made use of a nonlinear optiizatoblem to minimize the spectral radius of the Jacobian
of the Poincaré map for simultaneous design of periodict®rund continuous-time controllers. Diehl et al. (2009)
introduced a smoothed version of the spectral radius andlimear optimization problem to generate maximally stable
periodic orbits. This approach was employed to design pat@rsand optimal control inputs of a fully actuated bipedal
robot with 2 degrees of freedom (DOF). Both methods require recomputati the Jacobian matrix at each iteration
of the optimization. For mechanical systems with many degcd freedom and underactuation (such as the 3D bipedal
robot ATRIAS (Ramezani et al., 2013), which hes DOF and6 actuators), the cost of numerically computing the
Poincaré map and its Jacobian makes these methods imptaCtiber approaches make use of the moving Poincaré
section analysis and transverse linearization technimugssign model-based and time (phase) varying LQR coatsoll
for asymptotic stability of periodic orbits (Shiriaev et,&010; Manchester et al., 2011). These approaches halie @it
extensively evaluated on legged robdi$evallereau et al. (2009) also made use of “physical intuitin designing
stabilizing continuous-time controllers based on thewartonstraints approach (Grizzle et al., 2001; Westestedt.,
2007; Freidovich et al., 2009; Ames, 2014; Gregg et al., 20Mafgiore and Consolini, 2013; Shiriaev et al., 2004) for
walking of a 3D bipedal robot. However, for ATRIAS, anoth& Bipedal robot with series elastic actuators, the same
physical intuition did not work (Ramezani et al., 2013).§binderlines the unreliability of non systematic approache
for designing stabilizing controllers.

The contribution of this paper is to present a systematidhotebased on sensitivity analysis and bilinear matrix
inequalities (BMIs) to design continuous-time contralénat provide robust exponential stability of a given peigo
orbit without relying on event-based controllefscondition requiring that a sum of matrices be positive dtdirs
called a matrix inequality. When the sum of matrices has fineaparameterization, such as

LMI () := Ao + > Aiz; >0,

i=1
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it is called a Linear Matrix Inequality (LMI). When the suméagpressed as

n m n m

BMI (z,y) := A0+2Aixi+ZBjyj JrZZCZ-j:ciyj > 0,

i=1 j=1 i=1 j=1

it is called a BMI. Many problems in control, such as conttalisture selection, robust controller analysis and design
can be written in terms of LMIs and BMIs (VanAntwerp and Bra&000; Toker and Ozbay, 199%)ur approach
assumes that a family of parameterized continuous-timgaiters has been designed so that (1) the periodic orbit is a
integral curve of the closed-loop system and (2) the orbitvariant under the choice of parameters in the contrallers
By investigating the properties of the Poincaré map andrés fand second-order derivatives, a sensitivity analgsis
presented. On the basis of the sensitivity analysis, thelgnes of robust and exponential stability are translatéal in
a set of BMIs. A BMI optimization problem is then set up to tuthe parameters of the continuous-time controllers.
Finally, this approach is illustrated to design continutio®e controllers for two underactuated 3D bipedal robathw
8 and13 DOF, respectively.

Hobbelen and Wisse (2007) introduced the gait sensitivitymfor the study of disturbance rejection in limit-
cycle walkers. They calculated the Jacobian matrices oRdfirecaré section based on typical perturbation analysis. |
particular, for all initial conditions and disturbancese tapproach runs the full-state model to calculate the Jagob
matrices. Their approach was demonstrated @rD&F bipedal robot. The current paper provides additionsilts.
First, a more systematic numerical approach is given tatatle the relevant Jacobian matrices. In particular, wateel
the sensitivity matrices on the Poincaré sectiothenonlinear model using the variational equation (Parker@imda,
1989, Appendix D). Second, we present a closed-form exjoress calculate the sensitivity with respect to the ground
height changes. Finally, in regards to feedback designstesyatic approach based on BMls is presented to reduce the
sensitivity of a bipedal robot to step-down or step-up dishmces.

Some of the results in this paper (namely, those illustgagxponential stabilization of periodic orbits for t®OF
bipedal robot) were already presented without mathematrcaf in (Akbari Hamed et al., 2014). This paper extends
the analysis to a broader class of systems and illustratesdsimultaneously optimize the continuous-time conéoll
for robustness and exponential stability. In particulantisated by the problem of stable walking on uneven ground,
the sensitivity analysis is extended to model robustnesissodrbit against uncertainty in the switching conditiortrod
hybrid system. Furthermore, the approach is extended tachgistems with multiple continuous-time phases. Proofs
of the key theorems are provided. Finally, the paper extémasarlier results for full-state stability as well as gtgb
modulo yaw for 3D bipedal robots.

This paper is organized as follows. Section 2 presents thradodefinitions related to hybrid systems and the
Poincaré map. Required conditions on the periodic orbitfandly of parameterized continuous-time controllers are
presented to set up the sensitivity analysis. Two famili@@otinuous-time controllers satisfying the requiredditions
are presented. Section 3 presents the BMI conditions touftate an optimization problem to guarantee exponential
stability. Section 4 extends the sensitivity analysis torféhe modified BMI optimization problem for robust stalilit
Section 5 presents effective numerical approaches forahsitsvity analysis. Section 6 extends the analytical ltesu
to the hybrid models of bipedal walking and illustrates thetimod to design robust and stabilizing continuous-time
controllers for two underactuated bipedal robots. Sectionntains concluding remarks.

2. Sensitivity Analysis for Stabilization of Hybrid Periodic Orbits

The objective of this section is to present the sensitiviglgsis for exponential stabilization of periodic orbibs hybrid
systems arising from bipedal walking. The results of thigise will be utilized in Sections 3 and 4 to set up the BMI
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optimization problems. We consider a hybrid system with cowinuous-time phase as follows
:C+ = A(.T—)7 T &€ 87

inwhichz € X andx c R™*! denote thevector of state variableandn + 1-dimensionastate manifolgdrespectively.
The continuous-time control input is represented:by U/, wherel/ C R™ is an operset of admissible control values
In addition, f : X — TAX and columns ofy are smooth (i.e{>°) vector fields, in which ® represents theangent
bundleof the state manifoldr’. Theswitching hypersurfac§ is then-dimensional manifold

S :={z e X|s(x) =0}, (2)

on which the state solutions undergo a sudden jump accotlthgre-initialization rulez™ = A(z~).Here,s : X — R

is a real-valued an@* switching functiorwhich satisfie%—; (x) # 0forallz € S. MoreoverA : X — X denotes the
C>resetmapz (t) := lim, ~ x(7) andz™(t) := lim,; z(7) representthe left and right limits of the state trajectory
x(t), respectivelyAs in (Grizzle et al., 2001), the solution of the hybrid systél) is assumed to be right continuous.
In particular, it is constructed by piecing together the floiw: = f(x) + ¢g(z) v such that the discrete transition takes
place when this flow intersects the switching hypersurf&céhe new initial condition for: = f(z) + g(z) v is then
determined by the reset mapg = A(z ™).

2.1. Closed-Loop Hybrid Model

In this subsection, we assume that the continuous-timer@iertcan be expressed as the followipgrameterized
feedback law

u=1T(z,), 3)

inwhich¢ := (&,--+,&,)" € Zand= C R? represent the finite-dimensionzdrameter vectoandset of admissible
parametersrespectively, for some positive integerMoreover,I’ : X x = — U is aC> map and T" denotes the
matrix transpose. By employing the continuous-time feedltiaw (3), the closed-loop hybrid model is parameterized
as follows
7 { VRN @
xt =A(x,§), a” €S8,

where the superscript “cl” stands for the closed-loop dyiearandf® (z, ¢) := f(z) + g(z) T'(z, £) is the closed-loop
vector field. For later purposes, the unique solution of theed-loop ordinary differential equation (ODE)= f°(z, ¢)
with the initial conditionz(0) = =z, is represented by(t, zo, &), wheret > 0 belongs to the maximal interval of
existence. Next, thiéme-to-reset functiof” : X x Z — R is defined as the first time at which the solutioft, o, &)
intersects the switching manifoll, i.e.,

T(x0,&) :==1inf {t > 0] p(t,z0,&) € S}. (5)

Remark 1 (Parameterized Reset Maph the closed-loop hybrid model of (4), the reset map is am@mmeterized by

&. Our motivation for this is to extend the sensitivity approdor hybrid systems with multiple continuous-time phases
of bipedal walking in Section 6. In particular, hybrid systewith multiple continuous-time phases can be expressed
as hybrid systems with one continuous-time phase as inr(4yhich the reset map represents the composition of
the flows for the remaining continuous-time and discrateetphases. Consequently,includes the parameters of the
controllers employed during other phases (see Sectiondoe details).
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2.2. Periodic Orbit Assumptions
Throughout this paper, we shall assume that the followisgmptions are satisfied.

Assumption 1 (Invariant Periodic Orbit) There exists geriod-one orbitO for the parameterized closed-loop hybrid
model (4) which idnvariantunder the choice of the parameter ve@or his assumption can be expressed precisely as
follows:

1. There exists aominalinitial conditionz € X'\ S such that the solution of the ODE= f(x, &) with 2(0) = z}

is independent of, i.e., g—“g(t,x;‘),g) = 0forallt > 0andall¢ € Z, where “\" represents the set difference. For

later purposes, thisivariant andnominal solutioris denoted by
¢ (1) = p(t, 25,8), =0 (6)
2. The time-to-reset function, evaluated at the nomin&kihtonditionz = z{j, is boundedthat is,
T(zp,8) =T < o0, YEEE,

whereT™ is the elapsed time for the nominal solution to hit the switgthypersurface.

3. The reset map satisfies theeset invarianceondition

Az}, &) =), VEEE, (7)

oA

ie., 6—E(x;:,§) = 0forall ¢ € =, where

= (1T") €S (8)
is the intersection of the nominal solution with the switahhypersurface.

The invariant periodic orbi® is then given by
O ={x=¢p")|0<t<T"} 9)

for which T is thefundamental periodAssumption 1 states thét is a periodic orbit of the parameterized closed-loop
hybrid model (4) for al € =. The role of this assumption, versus a weaker assumptioneofixibd point alone, will
be clarified later in the paper; see Remark 5 and Appendix C.

Assumption 2 (Transversality Condition)The period-one orbi®) in (9) istransversalto the switching manifold in

the sense that 9
S * *
5 (@) £, €) # 0. (10)
From Assumption 2, it can be concluded that the periodictdbis not tangent to the switching manifold at
the pointz = z7%. In the next subsection, we will present two examples oficolts-time feedback laws satisfying

Assumption 1.

2.3. Two Families of Parameterized and Continuous-Timelbaek Laws Satisfying the Invariance
Assumption

This subsection presents two families of parameterizedcantinuous-time feedback laws satisfying the invariance
condition in Assumption 1 for a given periodic oright If the hybrid system includes just one continuous-timesgha

1 Here, we assume that the solutions of the hybrid system éigint continuous.
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the reset mag in (4) is not parameterized kiyand Item 3 of Assumption 1 is immediately satisfied. For theeaaf
multiple continuous-time phases, Section 6 will presemiditions under which Item 3 is met. Here, we check ltem 1
for the examples and we assume that ltem 3 is satfsfieat this goal, we first present the following lemma.

Lemma 1 (Invariant Solution of the ODE)Consider the solution of the ODE = (=, &) with 2(0) = zo. Then,

%g(t,xo,g) =0 forall t > 0 if and only if
ofd
23

Proof.See Appendix A. O

x, =0, Vt>0.
(z,8) ot

From Lemma 1, one can immediately conclude that Item 1 of Awgdion 1 is equivalent to

afe 9
ar 11
= 9(a) g (.0 ()

where
O:={z=¢*{t)|0<t<T*} =0 U{z}}

denotes the set closure 6f. Next to present the families of controllers, we assume tthexte is aC>° feedback law
I'*(z), referred to as théeedforward termwhich generates the nominal trajectgr¥/(t) in the sense thagt*(¢) is the
unique solution oft = f(z) 4+ g(x) I'*(«). Suppose further that the following assumption is satisfied

Assumption 3 (Phasing Variable) Corresponding to the periodic orlg, there exists a real-valued agé® function
0 : X — R, referred to as thphasing variablewhich is strictly monotonic (i.e., strictly increasing d@ecreasing) on
the orbitO, that is,

0(z) = %(z) Nz, €) #0, VzeO.

Under Assumption 3, the desired evolution of the state egaon the orbitD can be expressed in terms of the
phasing variabl@ rather than the time variabte The phasing variable replaces time, which is a key to obitgitime-
invariant controllers that realize exponential orbitaltslity of O. In particular, let©(t) represent the time evolution
of the phasing variable o®. Then, one can define thtesired evolution of the state variables O in terms off as
follows?

zd(0) == @*(t) (12)

t=6-1(0)’

in whicht = ©~1(¢) denotes the inverse of the strictly monotonic functios O(t). Reference (Burden et al., 2015,
Section I1V-D) shows that Assumption 3 follows directly frékssumptions 1 and 2 on the periodic orbit.

Example 1(Feedforward and Linear State Feedback Lai¥)e first family of parameterized continuous-time contr|
can be expressed as
Dz, &) :=T"(z) — K (z — z4(0)), (13)

whereK e R™*("+1) represents aontroller gain matrixto be determined. Here, one can assume that the parameter
vector¢ includes the elements of the gain matfixi.e., := veq K) € RP, inwhich vecg.) is thevectorization operator

2 Since the orbit is given here, Item 2 is satisfied in the semsiethe fundamental period of the orbit is bounded.
3 This can also be expressedaag) = xq(O(t)) = p*(t).
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acting on matrices ang:= m (n + 1). It can be easily shown th%(ag, ¢) =0forallz € O and¢ € =. Hence, from
(11), the feedback law (13) preserves the otbior all £ € =.

Example 2 (Input-Output Linearizing Feedback Law}-or the second family of continuous-time controllers, a
parameterized output functiarix, ) with the property dinfy) = dim(u) = m is defined as follows

y(, &) = H (x — xa(0)), (14)

in which H € R™*(»+1 is the output matrixto be determined and parameterizedébgsé := veq H) € R?, and
p :=m (n+ 1). The output functiony(z, ¢) in (14) vanishes on the orbi® and we assume thatis defined as an open
subset ofR? such that(z, £) has uniform vector relative degreavith respect ta: on an open neighborhood 67 for
all ¢ € =. The input-output linearizing controller takes the form

D€)==~ (L, Ly o(@.8) Ljy(e.o)

_1 r—1 ) (15)
(L L (@) Dk Ly y(,©)
1=0
wherek;,i = 0,1,--- ,r — 1 are constant scalars such that the polynoiial k,._; A"~ + - - - + kg = 0 is Hurwitz.

Employing the feedback law (15) results in the followingmuttdynamics
y kgD 4 koy =0, (16)

for which the origin(y, 7, - - - ,y"~Y) = (0,0, - - - ,0) is exponentially stable. Next, we show tf%t(m,g) =0 for all
r € O and¢ € =. To do this, we define thearameterized zero dynamics manifaigiresponding to the outpytz, £)
as follows

Z(&) ={r e X|y(x,&) = Lyy(x,¢)
==L y(z,6) =0}

on which the output function(z, €) is identically zero. From the assumption of a vector retatiegree, the decoupling
matrix L, L}_l y(z,€) has full rank and is square on an open neighborhoa@,adnd the control driving(z, ¢) to
zero is unique on each zero dynamics manifold (Isidori, 1995 226). Furthermore, the orlfit is common to all of
the various zero dynamics manifolds. Hence, the contratictsd to the orbit is independent ¢f One can define a
feedforward term as-(L, L’}*l y(z,€))~" L} y(x, &) which is the first term in (15). This term can also be obtained
by restricting the feedaback law (15) to the zero dynamicsifolal Z(¢). In this example, the feedforawrd term is a
function of¢. However according to the explanation provided above fe@dforward term, when restricted to the orbit
O, is independent of.

2.4. Poincaré Return Map and Sensitivity Analysis

The objective of this subsection is to present the Poineduém map and sensitivity analysis for exponential stzaiiion
of the periodic orbitD for the closed-loop hybrid model (4). Here, the Poincaréseds taken as the switching manifold
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S and the Poincaré return map is definedPast’ x = — X by*

Pz,§) == ¢ (T(A(x,£),6), Az, £),€) a7
which results in the following discrete-time system (seg E)

[k + 1] = P(x[k],§), k=0,1,---. (18)

The discrete-time system (18) maps the evolution of theibydystem’s state from a point @ back toS. According
to Assumption 1 and construction procedure (%7)js afixed pointof the Poincaré map for all ¢ € =, i.e.,

P(z},8) =2}, VE€E. (29)

One immediate consequence of the invariant fixed point iniglthat

oP

Gel =0, vEes

and hence, an event-based control action cannot be employeddify the stability property of the periodic orlit
(Grizzle, 2006), (Westervelt et al., 2007, Chap. 4)nearization of the discrete-time system (18) aroundittes point

z; then results in

6m[k+1]:g—i(x},§)6m[k], k=01, (20)
in whichéz[k| := z[k] — 27%. In order to exponentially stabilize the periodic orbitwe would like to tune the constant
parameter vecto¢ such that the Jacobian matr%g (z},€), when restricted to théangent spacél 35S, becomes
Hurwitz in the sense that all of its eigenvalues lie inside timit circle. However, in general there is no closed-form
expression for the Poincaré m&gx, ) nor for its Jacobia@% (2%, &). Therefore the Poincaré map is usually obtained by
numerical integration of the closed-loop hybrid model ()ijle the Jacobian matri%% (x}, £) is obtained by numerical
differentiation. The situation is more critical in mecheadisystems with high degrees of freedom and high degrees of
underactuation. For these systems, the numerical calwogasire time consuming. In particular, employing nonlmea
optimization algorithms to tune the parameter veétarould require extensive recomputation of the high dimemsio
Jacobian matrix at each iteration. To resolve this problmfurn our attention to theensitivity analysisFor this
purpose, let* € = represent aominal parameter vectoBy computing the Taylor series expansion%(m},g)
around¢™ for sufficiently small|¢ — £*||, (20) becomes

OP " 9?p
dalk+1] <—az €56+ 3 5eg7 016 @) oo ], 21)
whereA¢ = (A&, -+ ,AE,) T =& — ¢ and%(z},g*),i = 1,--- ,p aresensitivity matricesThe objective is

to tuneA¢ such that the originz = 0 becomes exponentially stable for (21). Section 3 will ttatesthe stabilization
problem into a BMI optimization problem. The robust stabilbroblem will be addressed in Section 4. In addition,
effective numerical approaches to calculate the seryitiwatrices will be presented in Section 5.

4 Here, the Poincaré map is considered as a partial mapping¥r¢o X to simplify the computation of the sensitivity matrices iecBon 5. However
for the purpose of stabilization, Section 3 will provide & skcoordinates for the tangent spacg;‘lS to better represent the Jacobian matrix
DxP(x’JZ7§) : Tx}S — Tx?s.

5The event-based controller design approach of (Westeetedl., 2007, Chap. 4) assumes controllability (or at letaikzability) of the pair

opP

(%(x’},g), %(x’},g)). Sincea—é(z;,g) = 0, this approach cannot be employed here.
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#(t) = [ (2(t),€)
2(0) = A (z[k], €) alk +1] = P (2[k], &)

Fig. 1. lllustration of the Poincaré return magpk + 1] = P(z[k], &) for the parameterized closed-loop hybrid model (4). Thelbol
and dashed curves correspond to the continuous-time aciedigime dynamics = fc'(a:, & andxt = Az, ), respectively.

3. Translation of the Stabilization Problem into a Set of BMIs

The objective of this section is to translate the problenxpbaential stabilization of the origifi = 0 for the linearized
discrete-time system (21) into a set of BMIs. To this end, & firesent a set of coordinates for the tangent sp@;zé.T

In (20) and (21), the Poincaré map is considered frgrto X'. In order to study the exponential stability behavior of
the periodic orbitD, we need to pre and post multiply the Jacobian ma%%{m},g) by constantprojection and lift
matrices, respectively, to obtain a linear operator froerttdimensional tangent spacg;'lS to Tx;S. In particular, let
Tproj € R™* ("1 andmz € ROTD*" denoteprojectionandlift matrices respectively. Next, assume thiat € R"*!

is a small perturbation such th%;(:c}) ox = 0 (this is to make sure that: belongs to the tangent space: T, see (2))
and letdz € R™ be the corresponding coordinates fgr;;ls, ie.,

62 = 7Tpr0j 6$

ox = mjig 02.

Then, from (21), the evolution @¥z[k],k = 0,1, - - - can be expressed as

p
ozlk+1] = <A0+ZAZ- A&) oz[k], k=0,1,---, (22)
=1
where
8P * * nxn
Ap = Tproj %(zf,f ) mik € R™*

A; (;p}f*)mm eER™" j=1,---,p.

O S0

Remark 2 (Properties of the Projection and Lift Matrice§)he projection and lift matrices have the following projest

(') Tproj TMift = Lnxn
L Os
(II) %(xf)mm =0.

Next, we present the following theorem to translate thertgoif the constant perturbation vecidg¢ for exponential
stabilization ofoz = 0 into a set of BMIs.

Theorem 1 (BMis for Stabilizations of the Origin) The following statements are correct.
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1. There exists an x np matrix B such that

p
Ao+ Y Ai A& = Ag + B (Inwn ® AY),

1=1
in which “®” denotes the Kronecker product.

2. The originéz = 0 is exponentially stable fo{22)if there exist?V = W T € R"*" A¢ € RP, and a scalap > 0
such that the following BMI is satisfied

W AW + B (Inxn @ AE) W
*

> 0,
1-mw (24)
in which “x” denotes the transpose of the blogk 2).
Proof.For Part 1, we claim there exists a matfixe R™"*"? such that for allA¢ € R?,
p
D AiAG =B (Inxn @ AE). (25)
i=1
To show this, let us partition thB matrix as
B=[B By - B,
whereB; € R"*P for j = 1,--- ,n. From the definition of the Kronecker product,
A 0
0 0

AL
Hence, thej-th column of B (I,,x», ® Af) is B; A¢ for j = 1,--- ,n. To satisfy (25), one can conclude that

p
Bj AL =Y Ai(:,j) AG,
=1

(26)
where4, (:, j) represents thg-th column ofA;. Next, differentiating both sides of (26) with respectt¢ together with
%AA%‘ =el,i=1,---,pyields

By =% Ai(j)el, j=1,--.n
=1
which completes the proof of Part 1.

(27)
For Part 2, from (24), it can be concluded th&t > 0 and (1 — x) W > 0 which together with > 0 result
in € [0,1). Let us consider the Lyapunov functidn[k] := V(5z[k]) := dz[k]T W1 6z[k]. Next, using Schur’s
complementemma(VanAntwerp and Braatz, 2000, Section 4.4)

W (Ao + B (Inxn @ AE)) " W (Ag + B (Inxn @A) W =W < —puW.

(28)
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Pre and post multiplying (28) with/ —! yields AV [k] := V[k + 1] — V[k] < —u V[k], and hence,

)\max(Wil) .
0=[K]|l2 < ¢m(1 — )k [[62[0]]]2 (29)
fork=1,2,---,in which Ay (.) @andApnax(.) denote the minimum and maximum eigenvalues, respectively. O

In order to have a good approximation based on the Tayloesesipansion in (21), we are interested in solutions
of (24) with minimum2-norm of A¢. Moreover, according to the upper bound for the discretetolutions in (29),
reducing(1 — p) will increase the rate of convergence. Hence, to tune thetaahperturbatiol\¢, we set up the
following BMI optimization problem

min @ —wp+ 30
wlin —w gty (30)
A B (Inxn
ot w oW+ B (Inxn @ AW >0
* (I—p)W
[AE]I5 <~
=0,

in whichw > 0 is a positive weighting factor asteadeoff between improving the convergence rate and minimizing the
2-norm of A¢. In addition, using Schursomplementemma,||A¢||3 < ~ can also be expressed as the following LMI

Ly A& 0
AET oy '
Finally, the optimization problem (30) becomes
min —wpup+ 31
win —w gty (31)
A nxn
ot W Ao W + B (Inxn @ AW -0
* (I—p)W
IPXP Af > O
x
= 0.

For later purposes, we remark thaand,/T — 1 represent an upper bound fh¢ |2 and an upper bound for the spectral
radius ofAg + B(L,xn @ AE), respectively.

Remark 3. Many problems in control theory can be reduced to finding afstalarsy; fori = 1,--- ,p such that

an affine combination of a given set of matricesdast+ >.7_, A4; n; becomes Hurwitz. One example is finding a static
output feedback gaii such thatd — BK C becomes stable. These problems are non-convex. Althoegh e some
analytical conditions for the cage= 1 (Soh, 1990; Gounaridis-Minaidis and Kalouptsidis, 1986)the best of the
authors’ knowledge, no general analytical solutions elirtlerson et al. (1975) showed that the static output fegdba
design problem can be attacked using the Tarski-Seidewnleeigion methods. However, the computational burden can
become very large for even simple problems (Anderson el @¥.5, Conclusions). In this paper, we make use of the
proposed BMI optimization formulation in Theorem 1 to expaotially stabilize periodic orbits for hybrid systems. $hi
framework will be extended in Section 4 to handle the robtadtiszation problem during walking on uneven ground.
Furthermore, the proposed BMI optimization can be solvet existing software packages, e.g., (TOMLAB, 2015). In



12 Journal name 000(00)

particular, Sections 6.3 and 6.6 will show that the robuaiization problem of periodic walking of an underactuhte
3D bipedal robot withp = 78 parameters can be solved in this BMI framework using avkilabftware packages.

4. Robust Stabilization of the Periodic Orbit as a BMI Optimization Problem

The objective of this section is to address the robust &aliibn of the periodic orbitD against uncertainty in the
switching condition of (2) as a BMI optimization problem. Quotivation for this problem comes from stable bipedal
walking over uneven ground (Manchester et al., 2011; Dai Bedtake, 2012; Hobbelen and Wisse, 2007; Saglam
and Byl, 2013). To make this precise, we assume a generaldbthe switching manifold in (2) and denote it I$y,
parameterized by a scaldras follows

Si={x e X|s(x)=d}, (32)

in whichd € D andD := [—dmax, dmax] C R denotes a closed neighborhood of the origin for some pesitiy..
One can assume thdtrepresents the height of the ground during stepping dowrteppgig up in bipedal walking.
In the new notationSy, = S, whereS was already defined in (2) as the nominal switching manifisidvhat follows,
we shall considetl as adisturbance Corresponding to the switching manifafty, theextended time-to-reset function
T. : X x 2 x D — R>¢ is defined as the first time at which the solutip(t, =, £) intersectsS,, i.e.,

Te(xo,&,d) :=inf {t > 0] p(t,x0,§) € Sa} . (33)

One immediate result of (33) is th@t(zo,&,0) = T(xo, &), in whichT'(x¢, ) is the nominal time-to-reset function
givenin (5). For models of bipedal walking on rough grouhe,instantaneous impact map on the manifjdextracted
based on rigid body contacts (Hurmuzlu and Marghitu, 198d¢snot depend explicitly on the ground heigitand
hence, it can be given b (z, £). Now we are in a position to present teeended Poincaré ma : X x =x D — X
as follows

Pe(z,8,d) := o (T (A, 6),§,d) , Az, €), £) (34)

which results in thextendedliscrete-time system
xlk 4+ 1] = P, (z[k], &, d[k]), k=0,1,---, (35)

in which d[k] € D represents the disturbance input.

Remark 4 (Geometric Description aP.). For afixedd € D, consider the switching manifol§l; in (32). We claim that

it can be used as a Poincaré section for (34). To see thistmattey definition of the extended time-to-reset function
in (33), for anyz € X for which it exists, the extended Poincaré magzx, £, d) is the flow of the closed-loop hybrid
system, evaluated &8y. Hence P.(., &, d) maps the state spadé(and more specificallg,) to S4, whereas the nominal
Poincaré magP(., £) in (17) mapsS, to Sy. Furthermore, the extended m&y(., £, 0) is equal toP(., £), that is

Pe(.,€,0) = P(,,§), VE€E. (36)
Under Assumptions 1;% is an invariant fixed point of%, ford = 0 and all§ € E, i.e.,

P.(z%,€6,0) = 25, VE€E. (37)
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Consistent with our perspective thatepresents a disturbance, we will study the robustnesseafidiminal fixed
pointz’; of the undisturbed system (i.ellk] = 0V k).% According to the invariance condition in (37), linearizatiof
(35) aroundz}, &, 0) results i

oP, 0P,

dulk +1] = ——=(x},£,0) oz[k] +

In this latter equatiomjz[k] := x[k] — 2} belongs to the: + 1-dimensional tangent space;I¥' = R™*1. Using the
Taylor series expansion % (z%,€,0) and aaf; (z%,&,0) arounds™, (38) becomes

8P «
(39)
aP
T} 0) A¢; .
Effective numerical approaches to calculate ¢éix¢ended sensitivity matric%% (x}. €% 0),i=1,---,p will be

presented in Section 5. Section 5 will also present theioglamong the sensitivity matrices and extended ones. In
addition, we will show that thelisturbance sensitivity matri%(x},g,o) in (38) isindependenbf ¢ and hence,
665 Igd (:rf, £*,0) = 0. Consequently, using an analysis similar to Part 1 of Thadre(39) can be rewritten as follows

5$[k + 1] = (AO,e + Be (I(n+1)><(n+1) & Af)) 51‘%] + Ce d[k]a (40)

in which the subscript¢” stands for the extended map and

0P,

Ao ::%(z;,g*vo) c R(v+1)x(n+1) (41)
0%P, .
Aie =peas@H€H0 € ROFIXMHD =1, p (42)
_ 0P,
Co 1= (07,€7,0) € RFUX (43)
B, = {31,6 o+ Bpiie| € R+ x(n+1)p (44)
p
Bj,e :ZAz,E(v.])ezTa jil, an+1 (45)

Now we turn our attention to the robustness problem. Forghipose, we assume thd0] # 0 is anunknown
disturbance and[k] = 0 for k = 1,2, ---. The initial condition is also assumed to coincide with thxedi point, i.e.,
z[0] = 2} € So. Then, from the discrete-time system (35)l] € Sqjo andz[k] € S for k = 2,3, - - -. Figure 2 shows
a geometric description of the problem for bipedal walkimgparticular,z[2] can be considered as an initial condition
for thenominalreturn mapP in (18). Next, the objective is to tune the constant perttiolbasectorA¢ to minimize the
2-norm of the deviationz[2] = x[2] — x for all possible disturbance§0] € D, that s,

F§ 46
min max |F 8z, (46)

6 Alternatively, one could study the behavior of (35) undeoastant disturbance (i.el[k] = d V k), assuming that a corresponding fixed point were
known.
7We note that from (37)6P€ (x3,6,0) =0forall ¢ € E.
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whereF € R*(+1) js a given constant matrfkFrom the problem statemertz[0] = 0 and (40) result iz[1] =
C. d[0], and hence,

max || F 6x[2]]|2

d[0]eD

= dmax [|F (Ao.c + Be (Int1)x(nt1) @ AE)) Ce |-

Next, using Schur'somplementemma, the optimization problem (46) is equivalent to tHefeing LMI optimization

min 7
A&n

[l><l F (AO,e + Be (I(n+1)x(n+1) b2 Af)) Ce

s.t. 5
* n/dmax

>0,

in which 7 is an upper bound for theorse casecost functionmax,ep || F 02[2]||2. Finally, one can combine the
stabilization (see (31)) and robustness optimization lgrab to end up with the following BMI problem

min  —wi g+ wen + 47
W,AE, 1,v,m s 20T (47)
s.t.

(W Ao W + B (Inxn @ AW -

| * 1-—pWw

I F (Aoe + Be (Iint1)x(n1) @ AE)) Ce -0

K 1/ diax

low A8

* Y
=0,

wherew; andw- are positive weighting factors corresponding to the cagwece rate and robustness, respectively.

Remark 5. In the above development, we have assumed the periodicisiibiiependent of the parameter vecgor
from which it follows that the fixed point} is independent of. One might ask if the same results could be obtained
if the orbit were allowed to change and the invariance assiompelaxed to the fixed point being independent @f
Appendix C will study the effects of the invariance assumptn the results.

5. Numerical Computation of Sensitivity Matrices

The objective of this section is to investigate the propsrdf the first- and second-order derivatives of the nominal
and extended Poincaré maps to present effective numepipedaches to calculate the sensitivity matrices used durin
translating the stability and robustness problems intd af¥8MIs in Sections 3 and 4.

Sensitivity Matrices for Stability Analysis: We first present the following theorem to numerically caddelthe first-
and second-order Jacobian matrices in (21) for the stahitialysis.

8 Griffin and Grizzle (2015) considered robustness to unitéytan the impact condition during motion planning by desitg the orbit so as to
minimize a function of the deviation from the periodic orafter a single step disturbance.
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Fig. 2. Geometric description of the robustness problem for bipedtking. Here,z[0] = 2} € So andd[0] € D is assumed to be

a nonzero and unknown disturbance. Furthermdlfe, = 0 for all & = 1,2, ---. In this caseg[1] = P.(z[0], &, d[0]) € Sy and

z[2] = P.(z[1],&,0) € So. The evolution ofz[k] for k = 3,4, - -- can then be described by the Poincaré return map in (18). The
objective is to findA¢ to minimize || F' §z[2]||- for all possibled[0] € D.

Theorem 2 (Calculation of the Sensitivity Matrices)Consider a parameterized closed-loop hybrid systenf4as
satisfying Assumptions 1 and 2. Let

0
D(t, 20,&) = a—fo(t,zo,g) € R(n+1)x(n+1)

represent the trajectory sensitivity matrix for the closedp ODE i = f%(x, &) and define the final value of the
trajectory sensitivity matrix on the orb as follows

(€)= B(T*, 23, 9).

Then the Jacobian matrix of the Poincaré map, i%g,(x;,g), depends org only through®7%(¢) and Y (7%, &) =
[ ANy .
E(wf’g)’ |.e.,

aP * * * * * —_

in which
Fo (s, €22 ()
2 (a5) fo (%, £7)

H(2%,€) = Itnt1yx(ns1) —

is a projection matrix independent ©f Furthermore, the sensitivity matrices are given by

ey, = Hp6) { L) Vo) + 236 T 6 | (@9)
fori=1,---,p.
Proof.See Appendix B. O
Theorem 2 simplifies the calculation of the sensitivity ritas ;;—ai(x;,g*),i = 1,---,p by relating them to

the final value of the trajectory sensitivity matrix o i.e., ®%(£"), and its derivatives?{% (7). In addition,®7% (&)
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can be obtained by numerical integration of a linear timesvg (LTV) matrix differential equation, referred to asth
variational equationParker and Chua, 1989, Appendix D), as follows

. ofc
b(t,3,€) = 2L

q)(ov I‘Ek)a 5) = I(TL+1)><(T1,+1)'

(@"(t),8) ®(t,x5,£), 0<t<T*

Finally, one can employ numerical differentiation appitues; like theéwo point symmetric differenceethod, to calculate

oD . )
8—?@(5*). In particular, fori = 1,--- | p,

0%
I

(€) = 5 (BHE" +9e) @} —be))

where{es, - -, e,} is the standard basis f& andd > 0 is a small perturbation value.

Theorem 2 also relates the sensitivity matrigiej-gg(:c},g*),i =1,---,ptothe sensitivity of the reset map Jacobian,
ie., g—g(x},g*) (see (49)). For hybrid systems with one continuous-timesphthe reset mag is independent of,
and hence, one can simplify (48) and (49) as follows

aP * * * * *

(@58 =T@}¢) 850 T(a}) (50)

m(iﬂpf ) = (2},£") 7€, (") Y(x}), (51)
where Y (z}) := %—ﬁ(x}). The calculation ofg—; (z%,&7) in (49) for hybrid systems with multiple continuous-time

phases for bipedal walking will be addressed in Section 6AgpEkndix E.

Remark 6. The result of (48) is different from what have already beenae¢ted in (Wendel and Ames, 2012; Hiskens
and Pai, 2000b; Aizerman and Gantmacher, 1958). To makadisn more precise, Theorem 2 states that under the
invariance assumption of the periodic orbit, the “saltatimatrix I1(z%, £*) is independentf the controller parameters

&. In particular it dependsnly on the orbitO. This simplifies the calculation of the sensitivity matsaes given in (49)

by only relating them to the variational equation of the cmmbus-time arc as well as the impact map. Appendix C.2
investigates the effects of a weaker set of invariance aggamon the results of Theorem 2.

Extended Sensitivity Matrices for Robustness AnalysisThe following theorem presents a numerical approach to
calculate the extended sensitivity matrices as well asigtarthance sensitivity matrix in (39).

Theorem 3(Calculation of the Extended Sensitivity Matrice§uppose that Assumptions 1 and 2 are satisfied. Then,

0P,
ox

or
(2}.6,0) =5=(}.€) (52)

for all ¢ € = which yields the following relation for the extended sevigjt matrices

9P, , o*pP
aglam (l’f,f,O) = 8&833 (CCf,E) . (53)

Furthermore, the disturbance sensitivity matrix can beresped as

0P,

5 (54)

1, €)
*’ 70 == 2
(5600 = ey i )
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In particular, the disturbance sensitivity matrﬁ(%(x’}, &,0) isindependent of, i.e.,

0P,
od

or,
od

(27,€,0) = ——(z7,£",0). (55)

Proof.See Appendix D. O

Remark 7. Theorem 3 first presents a closed-form expression for thebdat of the extended Poincaré map with
respect to the disturbandeSecond, it shows that under the invariance assumptianJ#uobian igwvariantunder the
change of controller parametersAppendix C.3 investigates the effects of a weaker set @friance assumption on the
results of Theorem 3.

Finally, from Theorem 3, (23), and (42), one can concludeadliewing relations among the sequendes; } and
{Ai-,e}

Ag = Tproj Ao, e Tift

Aj =mproj Aie mie, t=1,---,p.

Remark 8. The second-order derivatives of the Poincaré map in (39)rcprinciple be computed numerically using
finite differences as shown below, though accuracy depeigtiy/ton the choice of the variations,

92 Pk 1
c (i, )= ——(PF(Gj+1,i+1,)=PF(i—1i+1,.
0€;0x; (3) 45&5%‘( e (J+Li+1,.) e it 1)

*Pek(jJrl,if1,.)+Pe’“(j71,i71,.))

o*pr 1 (

— k - _ pk . B
a&ad(.,z,l) = wesal © (Lit1,l+1)—PF(i+1,01-1)

€

_ Pk (.,ifl,l+1)+Pe’“(.,i71,l71)).

Here(j,i,1) denotes the grid number in the spatex = x D and P* represents thg-th element of the map’.. Fur-

thermorey¢;, dz; andod are the perturbations for the numerical differentiatiome@rems 2 and 3 presented systematic

approaches to calculate these Jacobian matrices based wgarthtional equation of the continuous-time arc and the
. . . . . .92 *

Jacobian of the impact map. In particular, Theorem 3 sholaiunder the invariance assumptlgg?% (x%,€,0)=0

which simplifies the computation of the disturbance serigitmatrices.

6. Application to Underactuated 3D Bipedal Robots

The objective of this section is to illustrate the sendiyianalysis and BMI optimization to systematically design
robust and stabilizing continuous-time feedback laws &miqalic 3D bipedal walking. Models of bipedal walking are
hybrid with continuous-time phases to describe the evahutif the mechanical system according to the Euler-Lagrange
equations and discrete-time phases to represent the taséanus impacts between the swing leg end and the ground
(Hurmuzlu and Marghitu, 1994). The state vector for thestesys is taken as:= (¢',¢") ", inwhichq € Q denotes
thegeneralized coordinates vectand Q represents theonfiguration spacelhe state manifold is the tangent bundle
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X := TQ. A hybrid model of walking that includes two continuous-tiphases can be expressed as

T T = fR(x) + gR(x) u, T ¢ SroL
") 2t = Aro(z7), 7 € SRl
(56)

o = fi(z) +o(r)u, = SR
xt = AL Lr(z7), 7 € SLoR,

in which the subscripts “R” and “L” represent the right anfil ##ance phases, respectively. In particular, the evarhudf
the robot during the stance phase {R,L} is given byi = f;(z) + ¢;(2) u. The right-to-left and left-to-right impact
manifolds are denoted k§k_,. andS, _,r as follows

}
2

SR_>|_ = {l’ cX | SR_,L(.T) =0
SR = {l’ ex | S|__>R(l’) =0
on which the right-to-left and left-to-right impacts occuespectively. The smooth functiorg_,| () and s _,r(z)
represent the height of the swing leg end with respect to thergl. The right-to-left and left-to-right impacts arerhe
given byzt = Ag (z7) andz™ = A gr(z7), inwhichAg : X — X andA_ g : X — X are smooth impact
maps (Hurmuzlu and Marghitu, 1994). Furthermore, durirggdbntinuous-time phagec {R,L}, the control input:
takes the form
u = Fi(ma El)a

wherel'; : X x Z¢ — U is aC*> state feedback law artd € =¢ denotes the parameter vector of phaSéhe closed-loop
vector field is also given by = f%(x, &%) == fi(x) + gi(z) Ti(w, &), whose unique solution with the initial condition
z(0) = z is represented by; (¢, zo, £'). The time-to-reset function during phase {R,L} isT; : X x E% — Rxg
where

T;(wo,&") »=inf {t > 0| @i(t,20,£") € Sisyj}

andj # i € {R,L}. Theone-phase map,_,; : Si,; x &/ — S, i # j € {R,L}, is defined as
Pii(2,8) =0 (T (Aiss;(2),87), Aisj(2), &) .

Using (Westervelt et al., 2007, Theorem 4.3), one can pteseequivalent hybrid model with one continuous-time
phase as in (4) for the 3D walking model of (58he equivalent system is given by

. | R _
cl . T = I%(x7§ ) €T ¢8R—>L
Eg ' { T = A(xf,fl‘), T € SR%L; (57)
in which
Az, ") == ALro ProL(z,€") (58)

is the composition of the left stance phase flow and the tefight impact map, §” denotes the function composition,
and

R
§:l€]EE:ERxEL (59)

is thefull parameter vector to be determinitthis kind of equivalence, the Poincaré magr, R, ¢4) for the closed-loop
hybrid model with two continuous-time phases is indeed tiiadaré map for the hybrid model with one continuous-time
phase in (57)Appendix E investigates Item 3 of Assumption 1 for the clekeap system (57) and presents a numerical
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calculation approach for the sensitivity of the reset mambiang—g(x}, &*),i =1,---,pin the sensitivity matrices
(49).

6.1. Reduced-Order Sensitivity Analysis based on LetttFegmmetry

For models of bipedal robots with left-right symmetry, thewber of sensitivity matrices in the sensitivity analyss a
well as the number of decision variables in the BMI optimi@atcan be reduced significantly. The objective of this
subsection is to present a systematic basis for this redoiait sensitivity analysis.

Definition 1 (Left-Right Symmetry) The hybrid model of bipedal walking in (56) is said to havel#feright symmetry
if the following conditions are satisfied.

1. dim(¢R) = dim(€L) = pr.

2. There arestate symmetry matri§, € R(+Dx(+1) andparameter symmetry matrig; € RP**P= such that
Sy Sy = I(n+1)><(n+1)v 55 Sf = IPRXPR’ and

fu(z) =Sz fr(Sz @)

gu(@) (. &) = Sy gr(S: ) TR(S: @, S¢ €7)
sLor(x) = SR (Sz @)

ALLRr(T) =5 ArsL(Sz )

forallz € X and all¢- € =-.

Corresponding to the hybrid model (56), a hybrid model witle continuous-time phase was already presented in
(57) whose reset map was parameterized.bdyowever, according to the symmetry (Akbari Hamed and Gj2014,
Theorem 4), an alternative and equivalent hybrid model with continuous-time phase can now be presented whose
reset map isndependendf £. This simplifies the sensitivity analysis as well as the BMtimization. To make this
clear, we present the following theorem.

Theorem 4 (Half Map). Assume that the hybrid model of walking has left-right sytnmeet O = Or U O, be a
symmetric periodic orbit for the hybrid mod@6) in the sense thad, = S, Or. Suppose further thaf and ¢t are
chosen according to the symmetry relation

=St (60)

Then, the following statements are correct.

1. The Poincaré return map : Sg_,. x ZR x 2 — Sg_,| for the closed-loop hybrid model with two continuous-time
phases can be factored as

P(I7§R5€L) = Phait (Phalf (x7§R) agR) )

in which P, is the half map given by
Prai (2,€7) == PR (S, z,€F) (61)

2. The half map is the Poincaré return map for the followiniiy system with one continuous-time phase

el .

E { {6 o™ ¢ Sh ©2)

zt=A(z7), =z~ €SroL,

inwhich¢ := ¢RandA(z) := AL_r(S, x) is independent of.
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Proof.The proof is immediate from the construction procedure @1J (Akbari Hamed and Grizzle, 2014, Theorem
4). O

Remark 9 (Reduced-Order Sensitivity AnalysisiFrom Theorem 4,

oP 9 Pha ?
a—:r (CC;7§R7§L) = ( 82} f (x}7€R)) (63)

and hence, the periodic orlii? is exponentially stable for the hybrid model with two conmius-time phases if and
only if O is exponentially stable for (62). Consequently, one caryaiye sensitivity analysis to the Jacobian matrix
%(ag}, ¢R) with fewer parameters rather th%%(m}, ¢R.¢L). Finally, ¢- can be obtained according to the symmetry
relation (60).

Remark 10. The results of Theorem 4 are different from the symmetryyspueésented in (Altendorfer et al., 2004).
Theorem 4 considers the symmetry betweemo" continuous-time phases, namely the right and left stareses,
whereas (Altendorfer et al., 2004) investigated the “tiesersal symmetry” within a continuous-time phase, sintdar
what is found in the SLIP model. This kind of symmetry doesaast in the 3D walking models of this paper. Instead,
the first part of Theorem 4 presents an equivalent hybricesystased on the left-right symmetry for the 3D walking
model whose impact map isdependenfrom £. This reduces the number of optimization variables in (31J @17).
Furthermore, the invariance of the impact map with respeg¢téduces the complexity in computation of the sensitivity
matrices as given in (51).

6.2. Virtual Constraints

This subsection applies the analytical results of the papénevirtual constraints approachvirtual constraints are
kinematic relations among the generalized coordinatesreed asymptotically by continuous-time feedback control
(Grizzle et al., 2001; Westervelt et al., 2007, 2003; Freicloet al., 2009; Ames, 2014; Lack et al., 2014; Ames et al.,
2014; Akbari Hamed and Grizzle, 2014; Gregg and Sensin@é#;X5regg et al., 2014; Chevallereau et al., 2003, 2009;
Sreenath et al., 2011, 2013; Morris and Grizzle, 2009; Maggand Consolini, 2013; Shiriaev et al., 2004). It has
been shown that for mechanical systems with more than omeeef underactuation, the choice of virtual constraints
affects the stability of the periodic orbit (Chevallereaalk, 2009). Chevallereau et al. (2009) showed that cdirtgpl
the actuated coordinates for a five-link underactuated fledal robot cannot stabilize a periodic walking gait. Next,
based omphysical intuition a different choice of virtual constraints was proposedabitize the same orbit. However,
for ATRIAS (Buss et al., 2014; ATRIAS, 2013 related robot with additional degrees of freedom duerieselastic
actuators, the same intuition did not lead to a stable pera®it (Ramezani et al., 2013). This underlines the imgce
of having asystematianethod for choosing these constraints. This subsectiateethe problem of choosing virtual
constraints to the BMI optimization. This will be illusteat on the dynamical models of the five-link 3D bipedal robot
of (Chevallereau et al., 2009) and of ATRIAS.

During phaseé € {R,L} of the hybrid model of walking (56), the virtual constraiate defined as the-dimensional
output function

yi(q.€") = H' (¢— q4(0:(q))) . (64)

inwhichm = dim(«) is the control input dimensior]? is a constant output matrix to be determingd = veq H'), and
qi(0;) represents the desired evolution of the generalized coatet vectog on the orbit®; in terms off),;. Moreover,
0;(¢q) denotes the phasing variable during phaas a function of the configuration variablgésee Assumption 3). We
note that in (64)H g denotes the set @bntrolled variableswhereas?’ ¢i(6;) represents the desired evolution of the
controlled variables on the orbit. If the output functiod)tas uniform vector relative degree= 2 on the periodic
orbit, the continuous-time controll&y; (x, £%) is then taken as the input-output linearizing feedback la&xample 2.
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Remark 11 (Symmetry in Virtual Constraints)For mechanical models of bipedal robots, the state symnnedtyix
can be expressed &s = block diaq S,, S, }, whereS,, is theposition symmetry matribSuppose further théf, is an
output symmetry matriwith the propertyS, S, = L,.xm. If the output functions and phasing variables during thatri
and left stance phases are chosen such that

y(q,€5) = Sy yr(Sy q. Se &)
0L(q) = O0r(Sqq)

forall g € Q and¢t € =%, then one can conclude that
L R
H- =5, HRS,,

or equivalently, the symmetry relation (60) is satistiadth S; = SqT ®9Sy. Inaddition, it can be shown that all conditions
of Definition 1 are satisfid. Hence, we can apply the reduced-order sensitivity arsdysi BMI optimization of Remark
9 to tuneHR (the output matrix during the right stance phase).

6.3. PENBMI Solver

In order to solve the stability and robustness BMI optinmi@aproblems in (31) and (47), we make use of the solver
PENBMI* (TOMLAB, 2015) integrated with the MATLAB environmentthugh the YALMIP'? (Lofberg, 2004). BMIs
are NP-hard problems (VanAntwerp and Braatz, 2000; TokéGabay, 1995) however, PENBMI is a general-purpose
solver for BMI optimization problems which guarantees tlo@wergence to a critical point satisfying the first-order
Karush-Kuhn-Tucker optimality conditions (Henrion et, &005). It is a local optimizer and its behavior (speed of
convergence) depends on the initial guess. For the nunharialyses of this papese do not provide an initial guess for
the solver to initiate the algorithm and hence, YALMIP s#ddbat starting value for the optimizatiofhe optimization
procedure for the five-link robot wit DOF (see Section 6.4) and ATRIAS witl3 DOF (see Section 6.6) on a computer
with dual6-core,2.4 GHz Intel Xeon processors took approximat2lyseconds and5 minutes, respectively.

6.4. Five-Link Walker

This subsection applies the results of the paper to deslgst@nd stabilizing virtual constraints for a walking gait

an underactuated 3D bipedal robot witlidegrees of freedom aritdldegrees of underactuation. The robot model was
previously presented in (Chevallereau et al., 2009). Thetroonsists of a torso and two identical legs with revolute
knees and point feet. Each hip has two degrees of freedonfige®). It is assumed that there is no yaw motion about
the stance leg end. Furthermore, the roll (igg),and pitch (i.e.g2) angles at the leg end are unactuated, whereas all
of the internal joints are independently actuated. Thectitire and configuration variables of the robot during thatrig
stance phase are shown in Fig. 3. Here, the phasing varmdkfined as the angle of t@tual leg connecting the
stance leg end to the stance hip in the sagittal plane. A gierirbit O is then designed using the motion planning
algorithm of (Chevallereau et al., 2009). The virtual coasits controller of (Chevallereau et al., 2009) can siabdthe
orbit. However, it cannot handle rough ground walking. Teottee this problem, the set of nominal controlled variables
is taken to be simply the actuated coordinates

H? q:=(g3,q4, 95,96, 47, G8) "+ (65)

9We make use of the vectorization operator property aéNé¢ = veq(Sy HR S,) = (S, ® Sy) ved HR).
0he proof is similar to the one of (Akbari Hamed and Grizzi¢12, Theorem 7).
Lhttp://www.penopt.com/penbmi.html

Lhttp://users.isy.liu.se/johanl/yalmip/
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Fig. 3. A five-link 3D bipedal robot during the right stance phasehwibint feet and the associated configuration variables
(Chevallereau et al., 2009).

in which HR?* € R®*8 is the nominal value of th&/ R matrix. By employing this nominal output function, the doait
eigenvalues of th&5 x 15 Jacobian matrix of the half map becofne3.3475, 0.8558, —0.2064 }, and hence)is unstable.
Next, we lett = veq HR) € R*® and employ the reduced-order sensitivity analysis as givRemark 9. The-norm of
the extended sensitivity matricds . versus the elements of ti£R matrix is depicted in Fig. 4. From this figure, the most
important sensitivity matrices around the nominal outpattion correspond to the first column of tH& matrix, which

is related to the roll anglg,. According to this observation, we reduce the dimensioh@BMI optimization problem
(47) by lettingA¢ parameterizes only the first column of th& matrix, i.e.,HR = HR* + {Ag Ogx1 - 06><1]
For robust stability, letem := (vZ,, vém) T € R? denote the horizontal components of the robot’s center sir@OM)
velocity expressed in the world frame. Next, thematrix in (46) is taken as

OVem,
=5 1)
to minimize the deviation in the COM velocity just before iagbduring uneven ground walking. Solving the optimization
problem (47) with the weighting factots; = 30 andw, = 40, and the maximum ground height variati@g.., = 0.01
(m) results in the following controlled variables

g3 +0.4173 1 |
g1 + 0.5094 ¢
+0.8000
HRg— |© | (66)
de — 0.8000 q1
g7 + 0.2130 ¢

gs + 0.0966 ¢,

Corresponding to thi&R matrix, the dominant eigenvalues of the Jacobian of theilicaré map, calculated based
on the Taylor series expansion (21), &r€0.9329,0.9341, 0.3463}. Next, the dominant eigenvalues of the real Jacobian
of the half Poincaré map beconfe0.9319, 0.8269, 0.5869}. Figure 5 depicts the phase portraits of the roll and pitch
angles during0 consecutive steps on flat ground. Here, the simulation ofldsed-loop system is started off the orbit
with an error of6 (deg/s) on each component of the generalized velocity véctdonvergence to a stable limit cycle is
clear.
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column

Fig. 4. Plot of the2-norm of the extended sensitivity matrices versus the corapts of thes x 8 HR matrix around the nominal
output function. Herej, = row + 6(column— 1).

0.6

0.4

0.2

G (rad/s)

—Roll
-0.05 0 0.05 -0.2 -0.1
a (rad) a> (rad)

Fig. 5. Phase portraits of the closed-loop hybrid system for thlearodl pitch coordinates during) consecutive steps of walking
corresponding to the optimal solutions of (47). The circlggresent the initial condition of the simulator.

The results of the sensitivity analysis shown in Fig. 4 aredftimized virtual constraints (66) have an important
interpretation. The nominal output function

y(q,§") = H* (q — qd(Bpiteh(q)))

(67)
=: ho(q) — ha(Bpitcn(q)),

coordinates the links based only upon a phasing varighig(q) = 6(q) defined in the sagittal plane. Thus it ignores
deviations from the periodic orbit in the roll directiddowever, the optimized output function can be expresstd as

y(q,6§) = (H" + AH) (¢ — qd(Opitcn(q)))

= H"q— H" qa(bpich(q)) + AH1 (1 — q1d(Opiten(q))) (68)
=: ho(q) — ha(Bpitcn(q)) — ha(fron(q)),

wherehq(0roi (q)) := —AH1(q1 — q1d(Opitcn(q))) @andgra(fpiten(¢)) denotes the desired evolution of the roll angle on the
orbit. FurthermoreQ H is the first column (nonzero column) of the perturbation imak /. Thus the modified output
responds to roll angle errors by adjusting the desired ¢wouis of the controlled variables. This new output enhances
stability of the periodic orbit by coupling pitch and roll @way that would be difficult to discover through intuition.

To evaluate the robustness of the closed-loop system foremnground walking, aandomly generatedround
height profiled[k] with d[k] € [—dmax, dmax] IS cOnsidered, in whicli,,,., = 0.01 (m). Itis further assumed thdfk] is
periodic with the period of steps, i.e.d[k + 7] = d[k] forallk = 0, 1, - - -. Figure 6 presents the ground height profile

INote that the ternk (froi1(¢)) vanishes on the orbit. Furthermore, the pseudo-phasingol@d;o (¢) need not satisfy Assumption 3.
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Fig. 6. Plot of arandomly generatedround height profilel[k] (m) and the correspondingandy components of the deviation in
the five-link robot’s COM velocity (i.e. duem[k]) (m/s) for the optimal solution of (47) versus the step nunibe

d[k] and correspondingandy components of the COM velocity deviatiénm[k] for the robust optimal solution versus
the step numbek. The animation of this simulation can be found at (Grizz[&1%).

6.5. Exponential Stability Modulo Yaw

The five-link walker of Subsection 6.4 does not have yaw nmogibout the stance leg end. For bipedal robots with yaw
motion, there are two kinds of stability during walking on at fyround:full-state stabilityandstability modulo yaw
If the closed-loop hybrid system is equivariant under ioteg about the z-axis of the world frame, then the Jacobian
of the Poincaré map always has an eigenvaluetatand thus the full-state model cannot have an exponengtdlyle
periodic orbit. Stability modulo yaw refers to stability\ S*, whereS' := [0, 27) denotes the unit circle (Shih et al.,
2012; Spong and Bullo, 2005).

This subsection extends the sensitivity analysis develap&ubsection 2.4 for exponential stabilityodulo yaw
in 3D bipedal walking. To achieve this goal, without loss ehgrality, we assume that the first component of the state
vectorz represents thgaw positionof the robot with respect to the world frame and we denote ¢himponent by
Tyaw. From theequivariance propertyf (Shih et al., 2012), if the feedback laws(z, ¢%),i € {R,L} do not depend
on the yaw position (i.eyaw), then the first column of the Jacobian mat¥k (%, €R,€5) becomes1,0,---,0) . In
particular, there is an eigenvalug’‘corresponding to the yaw position. Hence, for exponerstiability modulo yaw,
we apply the sensitivity analysis to §

Z—Qx;,em

in which g—f(x},gR,gL) represents thén — 1) x (n — 1) matrix obtained by removing the first row and column of
%—f(az}, ¢R €LY, This approach can also be applied to the half map develop&Héorem 4. For this goal, we assume
that on the orbitD, the symmetry condition for the yaw position can be given as

Tyaw(t + 1) = —zyan(t), Vt>0.

Then, the(1, 1) element of the state symmetry matfx is —1, and hence, the first column 3%‘”(3:}, ¢R) would be
(—=1,0,---,0)T. Similarly, for exponential stability modulo yaw, one capéy the sensitivity analysis to the, — 1) x
(n — 1) matrix
O Pha
ox

obtained by removing the first row and column—aé,?r;ﬁiIf (z%, Ry,

(z%,€F)

Remark 12 (Equivariance Property for Virtual Constraintdh the virtual constraints approach, it can be shown that
if (i) the columns corresponding to the yaw position in thépa matricesH? are zero and (i) the phasing variables
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0;(¢q) do not depend on the yaw position, then the input-outpuélizeng feedback law (15) is independent of yaw and
hence, the equivariance property of (Shih et al., 2012, ¢%itipn 1) is satisfied.

6.6. ATRIAS

ATRIAS 2.1 is a human scale 3D bipedal robot wjthint feetand series-compliant actuatorslesigned for energy
efficient and robust walking (Ramezani et al., 2013; ATRIZ813; Grimes and Hurst, 2012) (see Fig. 7). The robot
consists of a torso and two identical legs. During the sisgigport phase, the mechanical model of the robotiBas
DOF and6 actuators. Hence, the system is highly underactuatedidggrees of underactuation.

The orientation of the torso with respect to a world frame lsanlescribed by threfeuler anglesg.t, ¢, andg,T,
referred to as thgaw, roll andpitch. In the sagittal plane, the angles of the shin and thigh hnikis respect to the torso
are denoted by;r andgor for the right leg (again see Fig. 7) and fy andgs, for the left leg. To control these angles,
two DC motors in series with harmonic drives are located ahed the hips. The angles of the outputs of harmonic
drives with respect to the torso are representeg by andg,.-2r (spring coordinatedpr the right leg and,,.;. and
qqroL for the left leg(see the bottom representation in Fig. 7 for the ATRIAS legiaidon system)in addition,ur,
u9R, u1L andug denote the torques generated by the corresponding DC mdtwrhips are driven by two DC motors,
located in the torso. In the frontal plane, the angles of ihletiand left hips with respect to the torso are represented
by ¢3r andgs., respectively (again see Fig. 7). The generated torquelédliip motors are denoted liyg andus, .
Finally, the generalized coordinate vector of ATRIAS careRpressed as

q = (=T, @yT,qxT q1Rs G2R: Q1L Q2L+ dgriRs dgraRs 3R, QgriLs dgraLs G3L) | s (69)

in which the first seven componentsydire unactuated, whereas the remaining six componentstasgedt. The control
inputw is taken as the following-dimensional vector

L T
U= (U1R7U2R7U3RaU1L7U2LaU3L) .

Furthermore, the phasing variable is defined as the angleafittual leg in the sagittal plane.
In what follows,O = Or U O, is a periodic orbit for walking at.1 (m/s) designed using the motion planning
algorithm of (Ramezani et al., 2013).

Stability Modulo YawTo stabilize the periodic orb® module yaw, the nominal controlled variables are taken as

%(QgrlR + Qgr2R)

%(QerL + Qgr2L)

HR* q= dgr2R — 4griR 7 (70)

qgr2L — qgriL
d3RrR

| 5 (zsw — zcom) (27) ¢

where the first and second components are the stance and Iegiaggles, respectively. The leg angle is defined in
the sagittal plane as the angle between the torso and thuaMirie connecting the hip to the leg end. The third and
fourth components of the controlled variables in (70) asestance and swing knee angles, respectively. We note that
since the legs are actuated through springs, the leg andaagges have been defined at the outputs of the harmonic
drives. These components can stabilize periodic orbitplaorar walking of ATRIAS (Ramezani et al., 2013). The fifth
component is then defined as the stance hip angle in the Fpolatze. Finally,the sixth component of the controlled
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Fig. 7. (Top): Sagittal and frontal planes of ATRIAS 2.1 during tight stance phase with the associated configuration vasabl
The Euler angleg.t (yaw), g,7 (roll) and ¢.7 (pitch) describe the rotation of the torso frafverryrzr with respect to the world
frameOozoyozo. (Bottom):A conceptual representation of the series elastic actsiatoployed in the sagittal dynamics of ATRIAS
as well as spring coordinates.

variables in (70) is taken as the horizontal distance batlee swing leg end and the robot COM in the frontal plane.
In our notationxsw(q) andzcom(q) represent the horizontal coordinates of the swing leg eddZ®M in the frontal
plane, respectively (see Fig. 7). However, to be compatiitethe virtual constraints structure in (64), we studyekn
controlled variables in (70) (i.e., linear i). Hence, one can linearize the distance functigi{q) — zcom(q) around a
point on the nominal orbit to get linear controlled variab/ithout loss of generality, we do the linearization at¢hd
of the nominal gait on the fixed point;. The idea of controlling the distance between the COM and g\eg end in
the frontal plane originated in (Chevallereau et al., 2086} the five-link robot of Subsection 6.4, the distance fiamc
can stabilize the gait, whereas for the ATRIAS structureaitnot. In particular, the dominant eigenvalues othe 25
Jacobian of the half Poincaré map 4rel.0000, —1.3011, 0.8363, —0.1602}. We remark that:sy(¢) andzcom(q) are
defined in the frontal plane which is rotating around thaxis of the world frame by the yaw angle. As a consequence,
the distance functiorsw(q) — xcom(¢) and its linearization are yaw invariant. This implies theiggriance property
of the closed-loop system as stated in Remark 12, and threrétfe eigenvalue-1 corresponds to the yaw coordinate.
Figure 8 represents tlenorm of the extended sensitivity matrices versus the etésmaf the /R matrix. From this
figure, the most important sensitivity matrices relate tlems1 — 7 and13. However, the first column corresponds to
the yaw position and we do not consider it for stability madyaw. Based on these observations, weNéparameterize
only the column® — 7 and13. Next, the optimization problem (47) with; = 1, wy = 1 anddy.x = 0.01 (M) is
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Fig. 8. Plot of the2-norm of the extended sensitivity matrices versus the corapts of thes x 13 H~ matrix around the nominal
output function (70). Here, = row + 6(column— 1).

solved for exponential and robust stability. The optimaiteolled variables, i.e HR ¢, are then given by

1(ggr1r + qgror) [—0.1193 g, — 0.1277 gs_ |

3 (ggriL + qgraL) +0.0786 g, + 0.0842 g3,
dgr2r — qgriR n —0.0313 g1 — 0.0334 g3 71)

QgraoL — QgriL +0.0400 gy + 0.0428 g3

q3r +0.0038 g, 7 + 0.0041 g3

|2 (wsw— zcom) (¥5)q] [ —0.2731 g7 — 0.2923 g31

Corresponding to these controlled variables, the domigigenvalues of the5 x 25 Jacobian of the half Poincaré map,
calculated based on the Taylor series expansion (21),-ate)000, —0.9033, 0.8087, 0.5410, —0.1128}. For compar-
ison, the dominant eigenvalues of the real Jacobian of tfeéPlaéncaré map becomg—1.0000, —0.8183, 0.8686 +
0.10114,—0.1104}. The controlled variables (71) can also be interpreted fisidg a modified output of the form (68).

Figure 9 depicts the phase portraits of the closed-loopesysturing50 consecutive steps of walking. Here, the
simulation starts at the end of the left stance phase on thedieorbit (see the circles in the plots). During the fdurt
step, an external horizontal force with a magnitude@f(N) is applied to the COM of the robot f&0% of the step.
Convergence to the periodic orbit is clear. The oihas been designed to walk along tjraxis of the world frame
which corresponds to the yaw anglgr being zero. However, since the orbit is exponentially stabbdulo yaw, the
horizontal disturbance changes the direction of walkinglufting the phase portrait in the yaw coordinates.

To evaluate the robustness of the closed-loop system, waati®d walking over aandomly generategeriodic
sequence of ground height disturbamfk] € [—dmax, dmax] With period20. The maximum disturbance sidg,.x =
0.03 (m) corresponds t8.75% of robot’s leg lengthFigure 10presents the evolutions of the disturbanifk] and
corresponding: andy components of the COM velocity deviatiom.y[k] for the optimal solution. An animation of
this simulation can be found at (Grizzle, 2015).

Yaw Stability Next, our objective is to design the controlled variablesftdl exponential stability including yaw. For
this goal, the sensitivity analysis is done around the im@dmutput function (71). Since the orbit is already stabii
modulo yaw, we only le\¢ parameterizes the first column of thER matrix which corresponds to the yaw coordinate.
Next, the optimization problem (47) is solved with = 1 andws = 0. The optimal perturbation in the controlled

¥For this optimal solution, the elements Af corresponding to columris— 7 are very small and are not reported here.
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Fig. 9. Phase portraits of the closed-loop hybrid system for theEangles and right hip duririg) consecutive steps corresponding
to the optimal solutions of (47) for stability modulo yaw. & bircles represent the initial condition of the simulator.

variables is then given by
[0.0263 g.1 |
0.0230 ¢.7
—0.0112 q.7
—0.0186 q.1
—0.0729 ¢
| 0.1065¢.7 |

for which the dominant eigenvalues of the estimated andJaalbian matrices beconfie 0.8836 + 0.0529:, 0.8694 +
0.10514,—0.1109} and {—0.8854, —0.8854,0.8757,0.8757, —0.1109}, respectively. Figure 11 illustrates the phase
portraits of the closed-loop system corresponding to thiemgbsolution during80 consecutive steps of walking. During
the fourth step, an external horizontal force with a magtetaf70(N) is applied to the side of the robot to its COM
over50% of the step. Finally, Fig. 12 depicts the trajectory of theNC@nd the foot step locations in the-plane of the
world frame. Convergence to the periodic orbit even in the gasition is clearThe controller stabilizing yaw does not
reject as large an external horizontal disturbance as thiealer achieving stability modulo yaw( N vs 100 N). The
robot’s hip joints have only 2 DOFs, with rotations in the itiafjand frontal planes, but lack internal/external rimtas

in the transverse plane. It may be that turning is an effesikategy to accommodate lateral disturbances in a roltiot wi
this morphology. In any case, lateral disturbance rejaatias not part of the design objective.

Other Nominal Output Function§o demonstrate the power of the sensitivity and BMI approachstudy the sta-
bilization of other nominal output functions. We start witbminal controlled variables as in (70) in which the sixth
component is replaced by

g (1
a_q (gl’sw - «TCOM) (m}) q (72)
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Fig. 10. Plot of arandomly generateground height profilel[k] (m) and the correspondingandy components of the deviation in
ATRIAS’s COM velocity (i.e.,dvem[k]) (M/s) for the optimal solution of (47) versus the step nuribe

Where%zsw(q) — xzcom(q) represents the distance between the COM and the point mide@yeen the the leg ends

in the frontal plan&. In (72), the distance function has been linearized arobedtbit O just before the impact.
The dominant eigenvalues of the Jacobian of the half Pagntap arg —1.0000, 1.0499, —0.8455,0.8430, —0.1130}

and hence, zeroing the output function cannot stabilizeotb& O. The optimization problem (31) is then solved for
exponential stability modulo yaw. The dominant eigenvaloéthe Jacobian of the half Poincaré map based on the
linear approximation of (21) arge—1.0000, —0.8702, 0.8359 4+ 0.0851¢, —0.1329}. Next, the dominant eigenvalues of
the real Jacobian of the half Poincaré map correspondingisgerturbation becomg—1.0000, —0.8623, 0.8630 +
0.0713i, —0.1465}.

If the sixth component of the nominal controlled variablas(70) is defined as the swing hip angjg , the
periodic orbit® is extremely unstable and the dominant eigenvalues of tbebian of the half Poincaré map are
{—1.0000, —2.4587,0.8414, —0.4228}. Next, for exponential stability modulo yaw, the optimipat problem (31)
is solved. The optimal perturbation values are then pluggetthe output functions. However, the values are not
small enough to have a good approximation based on the Tagligs expansion and as a consequence, the orbit
O is not stable. In particular, the dominant eigenvalues @f itbal Jacobian of the half Poincaré map become
{—1.0000, —1.2608, 0.8087, —0.2036 } . Next, the sensitivity analysis is performed again arotnedésultant perturbed
output function. The optimal solution of (31) is then calted. Finally, the dominant eigenvalues of the Jacobian of
the half Poincaré map, based on Taylor series expansiong24)—1.0000, —0.8561, 0.8418 + 0.10307, —0.1084},
while the actual eigenvalues of the half Poincaré map’stiiacare{ —1.0000, —0.8764, 0.7773+ 0.10564, —0.1308},
establishing exponential stability modulo yaw.

7. Conclusion

This paper introduced a method for designing continuaus-tiontrollers to robustly and exponentially stabilize qaic
orbits for hybrid systems. In contrast with previous methtitht rely on recomputing the Jacobian of the Poincaré map
at each step of a nonlinear optimization, the proposed ndeghiploys a sensitivity analysis to approximate the Jacobia
by an affine function of the control parameters. The resgiltiptimization problem involves LMI and BMI constraints
and can be solved effectively with existing software paesadhe power of this approach was illustrated in the design
of robust and stabilizing virtual constraints for two unatguated 3D bipedal robots withand13 DOF. The approach
can handle both full-state stability and stability moduéow

The algorithm presented in this paper can be extended to geweral forms of robust stabilization problems,
including ., robustness against uncertainties rising from externaéf®acting on the robot. In future research, we will
investigate these forms of uncertainties. We will also @tigmte the results for stable and 3D underactuated rurying

15The expression (72) assumes that the stance leg end is orighread the world frame.
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Fig. 11. Phase portraits of the closed-loop hybrid system for theilEangles and right hip durirt) consecutive steps corresponding
to the optimal solutions of (47) for full stability. The cles represent the initial condition of the simulator.
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Fig. 12. Trajectory of the COM and feet trace durifg consecutive steps of walking with yaw stability.

ATRIAS with 32 states and actuators. Furthermore, the BMI optimization of this pagamn be extended to improve
stability of bipedal walking by designing proper phasingiailes.

One potential limitation of the proposed algorithm is theuasption of invariant periodic orbits for the closed-loop
hybrid system. An interesting research direction would d@acing the assumption of invariant orbits with a set of
weaker assumptions. Another direction could can be extgrttie algorithm for robust stabilization of a-periodicitsb
of hybrid systems.

A. Proof of Lemma 1

Letus define the sensitivity of the solution with respechegarameter vector 85¢, o, §) := %ﬁg(t, zo, &) € R(VDxp,
From the definition of the solutiop(t, z¢, £),

Qp(ta Zo, E) =0 + /() fd (90(7—7 Zo, 5)7 E) dr. (73)



Akbari Hamed, Buss, and Grizzle 31

Differentiating both sides of (73) with respecand next with respect to the time yields the following madifterential
equation

o cl
\Ij(t,xo,f) = afl’ ( ) ) o= (t,20,€) \I/(t,xo,f)
ord (74)
"o (=€) 2=p(tw0,£)
\I/(O,l’o,f) =0.

Sincef® is C*°, the solutions of (74) are unique over the maximal interdabistence. Consequently,(t, o, &) = 0
it and only if 9 (z,€) = 0 for all = = (t, 2, £).

B. Proof of Theorem 2

According to Items 2 and 3 of Assumption(x7, §) = T andA(x},§) = x5 for all § € E. This fact together with
(17) implies that the Jacobian of the Poincaré return magpeaxpressed 45

Dl P(ZE}, 5) = Dl @(T*a ff(*)v 5) Dl T@Sa 5) Dl A(IE}, 5)

(75)
+ Dy (T, 25, &) D1 A(x%,€).
Furthermore,

Dl @(T*v :rga 5) = @(T*a :E87 5)
__ gcl * ok
- f l (SD(T ax07£>a§) (76)
= f(z},)
= fd(w;ag*)v

in which we have made use of the invariance condition (seg (flthe last equality. Bp(T*, z§, ) can also be
expressed as

00 e
_8—1'0(7—’7'%'0)5)

— B(T*, 5, €) (77)
= ®5(9).

D2 SD(T*7 xSa €)

From the switching and invariance conditions (see Item 2 sfuinption 1),

s(p(T™,25,€)) =0, VEe€&E

which together with the Implicit Function Theorem impliést

LFollowing common convention for the partial derivativesaaf! function p(z1, - - - , x4),
8 .
Djp(l‘1,~-~,xv)::—p(x17...7xv)7 j=1- 0.

Ox;
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for all z in an open neighborhood af; and all{ € =. Differentiating (78) with respect to around(zf, £) results in

D S(I’}) Dy QO(T*7 xév 5) D T(I’S, 5)
+ Ds(LjZ) D2 (T, 2(,€) =0
which in combination with (76), (77) and the transversadisgumption results in
5 (23) 93(¢)
(%) f°'( %, &%)

D1 T(z0,8) = — 5

- (79)
9z \ T

In particular, the Jacobian of the time-to-reset functiepehds org only through@}(ﬁ). Replacing (79) in (75) yields
(48), from which (49) follows immediately.

C. Effects of the Invariance Assumption on Sensitivity Anaysis and BMI optimization

C.1. Invariance Assumption

We remark that if the invariant periodic orbit assumptiomidated, by changing the controller parametgrthe orbit

O may change and it may be no longer periodic. Thus, one woudd teeadd extra equality constraints offor the
optimization problems (31) and (47) to satisfy theetiodicity assumptich In addition, some inequality constraints on

¢ are required to check for théeasibility’ of the new generated orbit (e.g., feasibility of positipmslocities, torques
and ground reaction forces in case of bipedal walking). regal, these constraindannotbe expressed in the format of
BMiIs and LMIs as given in the optimization problems (31) add)( In Subsections C.2 and C.3, we shall assume that
the periodicity and feasibility assumption are somehovgiatl and we focus on a weaker set of invariance assumption.

C.2. Effects of the Invariance Assumption on Theorem 2 angpDtation of the Sensitivity Matrices

Let us assume that the invariance condition of the whold 6t Assumption 1 is reduced to a weaker assumption. In
the new assumption, the initial and final poinfsandz} of the continuous-time arc are assumed to be invarian (i.e.
fixed) under the choice of the parameters veétd. However, the solution of the ODE = f%(x, &), #(0) = z} can
change between these two fixed boundaries wheries!'®. Analogous to the proof of Theorem 2, it can be shown that
the saltation matrix isolonger independent gf and can be given by

fd(wf ‘E)a (z }
25,€) = Iiny1)x(n R AT
7 &= Loy = @)

Thus, the factorization of the sensitivity matrices as giire (49) isnot valid. In addition, at the variational equation
level, one would need to integrate a more complex andymentetisystem as follows

] _ [%i (p(t, 75, €),€) B(t,75,€)
£ (ot 5, €),€)

Oaxgag) _ I(n+1)><(n+1)
0,a7,€) oo

since the solutio(¢, z§, £) is not knowna priori. This complicates the computation of the sensitivity neaisi

], 0<t<T(z,¢)

1This assures the periodicity assumption.
14f ¢ is close enough to a feasible nominal paraméteone can assume that the resultant orbit is feasible.
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C.3. Effects of the Invariance Assumption on Theorem 3 abdifRt&Gtabilization Problem

If the invariance condition is reduced to a weaker assumpatiostated in Subsection C.2, one would hagalapendent
Jacobian matrix in Theorem 3 given by

OF.
od

Fo(%,6)
28 (%) f (%, €)

(z},¢,0) =

In this case, we cannot have a const@ptmatrix in (40). In particular(. depends orf and as a result, the robust
stabilization problem of (47) is no longer in the format of B

D. Proof of Theorem 3

The proof of (52) is immediate from (36). To extract (54),nfrdAssumption 1T, (z{,£,0) = T* for all § € E.
Furthermore, the Implicit Function Theorem is applied to

s(p(Te(z,€,d),2,8)) =d (80)
from which, it can be concluded that
DS($}) D, w(T*vxzk)vS) Ds Te(xzk)vf; 0) -1=0.

This latter equation together with (76) results in

1
28 () [, 6%)

D3 Te (17(*); Ev 0) = (81)

Finally, P, depends om only through the extended time-to-reset functign(see (34)), and hence,
D3 Pe(27},¢,0) = D1 (1™, 25, §) Ds Te (4, €, 0).

This together with (81) and (76) completes the proof.

E. Numerical Calculation of the Sensitivity of the Reset MapJacobian

The objective of this appendix is to investigate Item 3 of uxaption 1 for the hybrid model of 3D walking in (56).
This section also provides a systematic approach to nualgrzalculate the sensitivity of the reset map Jacobian, i.

S (@3,€7), whereY (2%, €) := 52 (x}, €) was already defined in Theorem 2.

Theorem 5(Sensitivity of the Reset Map Jacobiaet©O = OrUO, be atransversal periodic orbit for the closed-loop
hybrid model of 3D walking. Then the following statemenésarrect.

1. Items 1 and 3 of Assumption 1 are satisfied if

off i —0.
agz (xvf ) 9366-; - 0) (S {R’L}

2. Let{z} g} = OrN SrL, {25} = OL NS LR andz} := z7} . Suppose further tha@t* denotes the nominal
full parameter vector. TherfE (¢}, £%),i = 1,- -+, pin (49)can be expressed as

oY xRy 8ALHR % 82PRH|_ " "
agz (:Cfag )_ ox (xf,L) 85233: (mf,R7§ )7
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in which
PPRoL, o . e O OARLL,
e Wi €)= My, €) LA E) R
Cl(x* 76*) BSLHR(I* L)
I (2%, &) =Lt 1)x (nt1) — t f,L* 0 7,
fs )% ( 85;R(xf7L) Ifl(wf_’L;g*)

and®? | (£) denotes the final value of the trajectory sensitivity mabiixt, zo, §) := g—f;(t,xo,g) on the orbitO, .

Proof.According to (11),%%@,@) = 0 for all z € Og follows Item 1 of Assumption 1. In an analogous manner,

cl —
%(m,&) =0 forall z € O results ing—*gt(t, AR%L(m;,R),gL) = 0forall ¢t > 0, and hence,

ProL(afp. &) =2}, Ve e =N

This together with (58) completes the proof of Item 3 of Asgtion 1. The proof of Part 2 is similar to the one presented
in Theorem 2. O
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