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Stable Bipedal Walking with Foot Rotation Through Direct
Regulation of the Zero Moment Point

C. ChevallereauMember,IEEE,, D. Djoudi, and J.W. GrizzleFellow,IEEE,

Abstract— Consider a biped evolving in the sagittal plane.
The unexpected rotation of the supporting foot can be avoided
by controlling the zero moment point or ZMP. The objective
of this study is to propose and analyze a control strategy for
simultaneously regulating the position of the ZMP and the joints
of the robot. If the tracking requirements were posed in the time
domain, the problem would be underactuated in the sense that the
number of inputs would be less than the number of outputs. To
get around this issue, the proposed controller is based on a path-
following control strategy previously developed for dealing with
the underactuation present in planar robots without actuated
ankles. In particular, the control law is defined in such a way that
only the kinematic evolution of the robot’s state is regulated, but
not its temporal evolution. The asymptotic temporal evolution of
the robot is completely defined through a one degree of freedom
subsystem of the closed-loop model. Since the ZMP is controlled,
bipedal walking that includes a prescribed rotation of the foot
about the toe can also be considered. Simple analytical conditions
are deduced which guarantee the existence of a periodic motion
and the convergence towards this motion.

I. I NTRODUCTION

The majority of robot control policies are built around the
notion of controlling the Zero Moment Point (ZMP) [28],
[11], [17], [20], [18], [26]. The center of pressure or CoP
is a standard notion in mechanics that was renamed the ZMP
by Vukobratovic and co-workers [31], [30]. As long as the
ZMP remains inside the convex hull of the foot support region,
CoP = ZMP and the supporting foot does not rotate. In
particular, most of the control strategies are decomposed into a
low-level controller and a high-level controller, where the low-
level controller ensures the tracking of the reference motion for
each joint, and the high-level controller modifies the reference
motion in order to ensure that the ZMP remains strictly within
the convex hull of the foot support region.

In experimental studies, how to modify the reference motion
is not always explained [11]. Kagami et al. [14] showed
how to retouch a carelessly drawn reference into a physically
consistent motion with dynamical constraints including that
about ZMP taken into account. Also, Sugihara and Nakamura
[25] proposed the way to re-track the originally consistent
reference when a robot motion is perturbed. It guarantees that
ZMP moves in the vicinity of the reference in order to stabilize
the whole body motion. Obviously, the modification of the
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reference motion has an important effect on the stability of
the gait (in the sense of the convergence toward a periodic
motion) and its robustness (in the sense of the reaction of the
robot in the presence of perturbations).

The existence and stability of a periodic orbit depend on
much more than just the position of the ZMP: It is quite
possible to have gaits where the ZMP is within the convex
hull of the foot support region and where the robot remains
upright, but yet the gait is not periodic, or it is periodic, but
is not asymptotically stable [7].

A stability analysis of a flat-footed walking gait for a five-
link biped with an actuated ankle was carried out numerically
in [12], [13], using the Poincaré return map. The unilateral
constraints due to foot contact were carefully presented.
Motivated by energy efficiency, a feedback controller was
developed in [24] that allows a fully actuated bipedal robot
walking on a flat surface to realize a passive walking gait,
that is, a gait corresponding to walking down a slope without
actuation. Stability of the resulting walking motion has been
rigorously established, though realistic constraints on the ZMP
were not imposed.

Our control strategy is based on a path-following control
strategy previously developed for dealing with the underac-
tuation present in planar robots without actuated ankles [4],
[5], [10], [33]. Our controller is related to the work in [7],[6]
and [32, Chap. 10], which extended the work of Westervelt
et al. [33] on underactuated bipedal walking to the case of
a fully actuated robot where the walking gait allowed foot
rotation. In that work, the stance ankle torque was used to
regulate either the position of the stance ankle or the rate of
convergence to a periodic walking gait. In the present study,
the position of the ZMP will instead be prescribed, which
is important for robustly avoiding unexpected rotations ofthe
foot in the presence of perturbations or for taking into account
desired rotation of the supporting foot toward the end of the
single support phase. This new approach has the advantage of
building a link between the classical approach to the control
of fully actuated bipeds based on the ZMP and the study of
underactuated bipedal robots (either passive bipeds or robots
with a point foot contact) based on Poincaré stability analysis.
It is shown that when the ZMP position is controlled, the
robot can be viewed as an underactuated mechanism and that
the introduction of a foot-rotation phase in this context is
straightforward.

The control law is defined in such a way that only the
kinematic evolution of the robot’s joints and the ZMP position
are controlled, but not their temporal evolution. This strategy
can be seen as an on-line modification of the joint reference
motion with respect to time in order to ensure that the position
of the ZMP will be satisfactory. The modification of the
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reference motion corresponds to adjusting the acceleration of
the robot along a given path1 in the joint space. Assuming
a perfect robot model, and without external perturbations,
the closed-loop temporal evolution of the robot is completely
defined and can be analyzed through the study of a one degree
of freedom subsystem. The Poincaré return map can be used
to study the existence and stability of periodic motions under
the proposed control law. Analytical conditions are obtained
and subsequently illustrated through simulations.

The modification of the reference motion can be related
to the work presented in [25], since the ZMP evolution is
prescribed. However two main differences appear in our work.
The modification of the joint motion to obtain the desired ZMP
evolution is provided by a temporal modification only, the joint
path is preserved. Since our references for the joint and the
ZMP position are not functions of time, the control does not
attempt to re-synchronize its motion with time.

Since the control method allows a desired evolution of the
ZMP to be prescribed, a desired rotation of the supporting
foot about the toe during walking can be taken into account.
During this sub-phase, the ZMP is placed at the forward
limit of the foot and the kinematic evolution of the internal
joints is prescribed, but the temporal (dynamic) evolutionof
the joints is determined by the controller to be compatible
with the model, which, in this case, is really underactuated;
the technique of [5] is used to address the underactuation.
Conditions for the existence of a periodic motion and for the
stability of a periodic gait that includes a prescribed rotation
of the foot about the toe are also given.

The approach developed in [7], [6] and [32, Chap. 10]
considers also a walking gait with foot rotation. The work
in [3] further elaborates on the Poincaré stability analysis of
walking gaits that include foot-rotation; in particular, the issue
of the state dimension varying from one phase to another
is emphasized. For walking gaits that include foot rotation,
various ad hoc control solutions have been proposed in the
literature [15], [16], [22], [27], [34], but none of them can
guarantee stability in the presence of the underactuation that
occurs during toe roll.

The first part of the paper considers only flat-footed walking.
Section II presents the dynamic model of the biped. A planar
biped is considered. Section III is devoted to the formulation of
the control strategy. In Section IV, a complete analytical study
of stability is proposed. Some simulation results are presented
in Section V; a response to a perturbation with a known model
of the robot is considered as well as a response with an
uncertain model of the biped. Section VI proposes an extension
of the control law considering a gait that includes a prescribed
rotation of the supporting foot; a simulation illustrates the
theoretical results. Section VII concludes the paper.

II. T HE BIPED MODEL

A. The biped

The biped under study walks in the sagittal plane identified
with a vertical x − z-plane. The robot is comprised of a

1The time evolution along the path is not specified a priori. Forrelated
work in nonlinear control, see [1] and references therein.

feet femur tibia torso

length inm 0.26 0.4 0.4 0.625
mass inkg 1 3.2 6.8 17

inertia in kg m2 0.012 0.048 0.069 1.869

TABLE I

BIPED PARAMETERS FOR SIMULATION.

torso and two identical legs, and each leg is composed of two
links and a foot. The ankles, the knees and the hips are one-
degree-of-freedom rotational frictionless joints. The walking
gait consists of single support phases where the stance footis
flat on the ground separated by impacts, that is, instantaneous
double support phases where leg exchange takes place. The
vector q = [q1, q2, q3, q4, q5, q6]

T of configuration variables
(see Figure 1) describes the shape and orientation of the biped
during single support. The torques are grouped into a torque
vector,Γ = [Γ1,Γ2,Γ3,Γ4,Γ5,Γ6]

T .
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Fig. 1. The studied biped and a choice of generalized coordinates.

In the simulation, we use the biped parameters given in T
able I. The dimensions of the feet arehp = 0.08m, lg =
0.06m and ld = 0.2m.

B. Dynamic model

The walking gait is composed of successive phases of single
support and instantaneous double support. A passive impact
exists at the end of the single support phase. The legs swap
their roles from one step to the next, and thus, because the
robot is symmetric, the study of a single step is sufficient to
deduce the complete behavior of the robot over a sequence of
steps on alternating legs. Only the dynamic model for support
on leg-1 is presented here.

1) The single support phase model:The dynamic model
can be written as follows:

M(q)q̈ + h(q, q̇) = Γ, (1)
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whereM(q) is a(6×6) matrix and the vectorh(q, q̇) contains
the centrifugal, Coriolis and gravity forces.

2) Global equilibrium in translation: The reaction force
during the single support phase:During single support, the
position of the center of mass of the biped can be expressed as
a function of the angular coordinates and is denoted byxg(q),
zg(q). When leg-1 is on the ground, a ground reaction force
R1 exists. The global equilibrium in translation of the robot
makes it possible to calculate this force. Thus we have

m

[

ẍg

z̈g

]

+mg

[

0
1

]

= R1. (2)

Equation (2) can also be written as

m
∂xg(q)

∂q
q̈ +mq̇T ∂2xg(q)

∂q2 q̇ = Rx1

m
∂zg(q)

∂q
q̈ +mq̇T ∂2zg(q)

∂q2 q̇ +mg = Rz1,
(3)

where ∂2xg(q)
∂q2 and ∂2zg(q)

∂q2 are (6 × 6) matrices.
3) Global equilibrium in rotation: the ZMP position:The

robot is submitted to the reaction force exerted by the ground
at the ZMP, and the force of gravity. Since the stance ankleA

is stationary during the single support phase, the equilibrium
of the foot around the axis of the ankle can be written (see
Figure 1):

σ̇A = mgxg − lRz1 − hpRx1, (4)

whereσA is the angular momentum of the biped aboutA. By
definition, the angular momentum is linear with respect to the
joint velocities and can be written

σA = N(q)q̇. (5)

The location of the ZMP is then defined directly by the
robot dynamics through the previous equation. Indeed, using
(3), (4) and (5), we have

(N0(q) + lNl(q))q̈ + h0(q, q̇) + lhl(q, q̇) = 0, (6)

where

N0 = N(q) + mhp
∂xg(q)

∂q

Nl = m
∂zg(q)

∂q

h0 = q̇T ∂N(q)
∂q

q̇ − mgxg(q) + mhpq̇T ∂2xg(q)

∂q2 q̇

hl = mq̇T ∂2zg(q)

∂q2 q̇ + mg.

Equation (4) can also be rewritten, using (2), in the form

d(σA + l(mżg) + hp(mẋg))

dt
−ml̇żg −mg(xg − l) = 0. (7)

By definition, the termσA + l(mżg)+hp(mẋg) is the angular
momentum about the ZMP withx-coordinate l, which is
denoted here byσP . This equation, corresponding to angular
momentum balance, can be also written as2

σ̇P = ml̇żg +mg(xg − l). (8)

2The equilibrium in rotation of the robot gives directly thisequation, the
term ml̇żg comes from the fact that the ZMP is not stationary.

C. The impact model

When the swing leg (i.e., leg-2) touches the ground with
a flat foot at the end of the single support phase, an impact
takes place. The velocity of foot-2 becomes zero just after the
impact. We study a gait with instantaneous double support so
that, just after the impact, the former stance leg-1 lifts off the
ground. The robot’s configurationq is assumed to be constant
during the instant of double support, while there are jumps in
the velocities. The velocity vectors just before and just after
impact, are denoteḋq− and q̇+, respectively, where+ means
after the impact and− before the impact. The impact model
can be written as [5]

q̇+ = E(△(q)q̇−), (9)

where△(q) is a6×6 matrix, andE is the permutation matrix
describing leg exchange. For the ensuing single support phase,
the joints are relabelled in order to limit the analysis to a single
dynamic model for single support.

III. T HE CONTROL STRATEGY

The desired walking gait is assumed to be composed only
of single support phases where the stance foot is flat on the
ground and stationary (i.e., it neither rotates nor slips).While
a flat-footed gait is not a necessary condition for walking as
we will see in Section VI, we focus our attention in this part
on fully actuated phases. Direct control of the position of the
ZMP will prevent unwanted foot rotation, and thus a desired
ZMP position,ld, is prescribed [9]. As shown in the previous
section, the position of the ZMP is directly connected to the
acceleration of the robot’s motion. It is therefore impossible to
prescribe independently a desired evolution of the joints,qd(t),
and the position of the ZMP,ld(t). With respect to such a task,
the biped can be seen as an underactuated system. Thus, as in
[5], the objective of the control law presented in this section
is not to track a (time-based) reference motion forq andl, but
only the associated path in joint space. A reference motion
differs from a path by the fact that a motion is a temporal
evolution along a path. A joint path is the projection of a joint
motion in the joint space. The difference between a motion
and a path is illustrated in Figure 2 for a two-link robot.

Only tracking of the desired path is sought and a time-
scaling control law as in [8] is used. Reference paths for the
joints and ZMP,qd(s) and ld(s), respectively, are assumed to
be known as a function of a scalar path parameters, which
plays the role of a normalized virtual time. A desired gait of
the robot corresponds to specification ofs as an increasing
function of time,s(t).

A. Requirements for a Feasible Reference Path

The reference pathqd(s), ld(s) is designed in order to be
compatible with a periodic solution of the biped model. The
legs swap their roles from one step to the next, so the reference
path can be defined for one step only. For the first step, the
scalar path parameters increases strictly monotonically with
respect to time from0 to 1 and impact takes place ats = 1.
The evolution ofs for stepk is denotedsk(t).
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Fig. 2. The dotted lines are two motions(q1(t), q2(t)) corresponding
to the same path represented by the solid line. A path is a line in the
joint space, this line can be parametrized as a function of a new variable
denoteds, and then can be expressed by(q1(s), q2(s)). This functions is
defined such that the initial configuration corresponds tos = 0 and the final
configuration corresponds tos = 1. Any monotonic functions(t) defines a
motion corresponding to the pathq(s). For examples = t/T defines a motion
of durationT . If the desired path is such thatq1 for example is monotonic,
the path can also be written asq2(q1), and the control law proposed here can
be computed in this context [32, Chap. 11].

The single support phase corresponds to0 < s < 1. Due
to the leg exchange at impact, the vectorsqd(0) and qd(1),
describing respectively the initial and final desired positions
of the biped, must be such thatqd(1) = E(qd(0)).

The initial and final velocity of the biped are connected by
the impact model and leg exchange (9). The reference path is
designed so that if the reference path is exactly tracked before
the impact (but the robot state is not necessarily on the periodic
motion), then the reference path will be exactly tracked after
the impact. Just before thek + 1-st impact, on the reference
path, the vector of joint velocities iṡq− = dqd(1)

ds
ṡk(1). The

reference path is designed such that, after the impact, the
reference path is also perfectly trackedq̇+ = dqd(0)

ds
ṡk+1(0).

Since the impact model (9) connects the velocities before and
after impact, we must have

dqd(0)

ds
ṡk+1(0) = E△(qd(1))

dqd(1)

ds
ṡk(1). (10)

Whenqd(1) and dqd(1)
ds

are known, there are an infinite number

of possible choices fordqd(0)
ds

. The set of solutions can be
parametrized by a scalarα as

dqd(0)

ds
= E△(qd(1))

dqd(1)

ds
α, (11)

yielding ṡk+1(0) = ṡk(1)
α

.

B. Definition of the control law

The control law is selected to ensure that the joint co-
ordinates follow the joint reference path,qd(s), and that
the position of the ZMP isld(s). The torque acts on the
second derivative ofq and directly onl. It follows from the
definition of the joint reference path that the desired velocity
and acceleration of the joint variables are

q̇d(t) = dqd(s(t))
ds

ṡ

q̈d(t) = dqd(s(t))
ds

s̈+ d2qd(s(t))
ds2 ṡ2.

(12)

The functions(t) needs to be a strictly increasing function
of t, but because the control objective is only to track a
reference path, the evolution ofs(t) is otherwise free and
the second derivativës can be treated as a “supplementary
control input”. This allows the control law to be designed
for a system with equal number of inputs and outputs: The
control inputs are the six torquesΓj , j = 1, . . . , 6, plus s̈, and
the chosen outputs are the six components ofq(t) − qd(s(t))
and l(t) − ld(s(t)).

The control law is based on computed torque, which is
quite commonly used in robotics, with a small modification
to ensure finite-time convergence to the desired paths. The
finite-time feedback function proposed in [2], [10] is used.
The joint tracking errors are defined with respect to trajectories
satisfying (12)

eq(t) = qd(s(t)) − q(t)

ėq(t) = dqd(s(t))
ds

ṡ− q̇(t).
(13)

The desired behavior of the configuration variables in closed
loop is

q̈ = q̈d + ψ(q, q̇, s, ṡ), (14)

where ψ(q, q̇, s, ṡ) from [2], [10] is the term that imposes
(

q(t) − qd(s(t))
)

→ 0 in finite time; in fact, the settling time
can be chosen to be less than the time duration of a step.ψ

is a vector of five componentsψk, k = 1, . . . , 5 with

ψk = −sign(ǫėql
)|ǫėql

|ν − sign(φl)|φl|
ν , (15)

whereφl = eql
+ 1

2−ν
sign(ǫėql

)|ǫėql
|2−ν , and the parameters

0 < ν < 1 and ǫ > 0 are used to adjust the settling time
of the controller. Taking into account the expression for the
reference motion, (14) can be rewritten as

q̈ =
dqd(s)

ds
s̈+ v(s, ṡ, q, q̇), (16)

with v(s, ṡ, q, q̇) = d2qd(s)
ds2 ṡ2 + ψ. For the position of the

ZMP, the desired closed-loop behavior is

l(t) = ld(s(t)).

Combining expression (16) with the dynamic model (1) of
the robot and the relation (6) for the ZMP determines the
feedback controller. Thus, the control law must be such that

M(q)(dqd(s)
ds

s̈+ v) + h(q, q̇) = Γ

(N0(q) + ld(s)Nl(q))(
dqd(s)

ds
s̈+ v)

+h0(q, q̇) + ld(s)hl(q, q̇) = 0.

(17)

It follows that, in order to obtain the desired closed-loop
behavior, it is necessary and sufficient to choose

s̈ =
−(N0(q)+ld(s)Nl(q))v−h0(q,q̇)−ld(s)hl(q,q̇)

(N0(q)+ld(s)Nl(q))
dqd(s)

ds

Γ = M(q)(
dqd(s)

ds
s̈ + v) + h(q, q̇).

(18)

As long as(N0(q) + ld(s)Nl(q))
dqd(s)

ds
6= 0, the control

law (18) is well defined, and, by (14), ensures that,q(t)
converges toqd(s(t)) in finite time, and thatl(t) = ld(s(t)).
Without initial errors, a perfect tracking ofqd(s(t)) and ld(s)
is obtained.

At this point, the behavior ofs(t) is unknown. Properties
of its temporal evolution are developed next.
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IV. STABILITY STUDY

Since the control law is designed to converge before the
end of the first step, after that, perfect tracking is obtained
and therefore

q(t) = qd(s(t))

q̇(t) = dqd(s)
ds

ṡ(t)

q̈(t) = dqd(s)
ds

s̈(t) + d2qd(s)
ds2 ṡ(t)2

l(t) = ld(s(t)).

(19)

These equations define the zero dynamics manifold corre-
sponding to the proposed control law. On the zero dynamics
manifold, the evolution oḟs during one step can be determined
by integration of the dynamic equation corresponding to the
global equilibrium in rotation (8).

Since the occurrence of an impact depends only on the
configuration of the robot and not its velocity, and due to the
characteristics of the joint reference path (Section III-A), each
step begins withs = 0 and finishes withs = 1.

The stability of the control law is defined in the sense
of the convergence towards a periodic motion. A periodic
motion of the biped corresponds to a periodic evolution of
the angular momentum. Thus we study the evolution of the
angular momentum from one step to the next one and deduce
a condition allowing the existence of an attractive periodic
solution.

A. Evolution of the angular momentum for one step

On the zero dynamics, (8) becomes

σ̇P = m
dld(s)

ds

∂zg(qd(s))

∂q

dqd(s)

ds
ṡ2 + mg(xg(qd(s)) − ld(s)) (20)

and
σP (s, ṡ) = I(s)ṡ, (21)

with

I(s) =

„

N(qd(s)) + mld(s)
∂zg(qd(s))

∂q
+ mhp

∂xg(qd(s))

∂q

«

dqd(s)

ds
.

(22)

Equations (20,21) can be combined to express the derivative
of the angular momentum with respect tos.

Just as in [33, Prop. 1], it can be shown that uniqueness of
solutions of (20,21) implies that if the robot completes a step,
that is, if there exists a solution beginning withs(0) = 0,
ṡ(0) > 0 and ending withs(tf ) = 1, ṡ(tf ) > 0, then for
t ∈ [0, tf ], ṡ(t) > 0. Using this fact, (20,21) can be combined
to obtain

dσP

ds
= m

dld(s)
ds

∂zg(qd(s))
∂q

dqd(s)
ds

σP

I(s)

+mg(xg(q
d(s) − ld(s)) I(s)

σP
.

(23)

Applying the change of variable,ζ(s) = 1
2σ

2
P , this equation

becomes

dζ

ds
= 2κ(s)ζ +mgI(s)(xg(q

d(s) − ld(s)), (24)

with κ(s) = m
I(s)2

dld(s)
ds

∂zg(qd(s))
∂q

dqd(s)
ds

. The above equation
is a linear s-varying ODE and has the explicit solution

ζ(s) = δ2(s)ζ(0) − Φ(s), (25)

where

δ(s) = exp

„

s
R

0

κ(τ)dτ

«

Φ(s) = −mg
s
R

0

exp

„

2
s
R

τ

κ(τ1)dτ1

«

I(τ)(xg(qd(τ)) − ld(τ))dτ.

B. Minimal angular momentum to achieve a step

The functionsδ(s) and Φ(s) are calculated directly from
qd(s) and ld(s). A complete step can be accomplished only
if ṡ is always positive. When the robot follows the reference
trajectory (19), the control law (18) does not cross a singularity
as long as

(N0(q
d(s)) + ld(s)Nl(q

d(s)))
dqd(s)

ds
= I(s) 6= 0. (26)

Under this assumption, the conditioṅs 6= 0 is equivalent to
σP 6= 0 or ζ 6= 0.

Theorem 1 Assuming (26), a step can be achieved if, and
only if, the initial value ofζ for this step is such that

ζ(0) > Zm = max
0≤s≤1

(

Φ(s)

δ2(s)

)

. (27)

C. Evolution of angular momentum during the impact phase

At the impact, due to (11), the evolution ofṡ is such that
ṡ+= ṡ−

α
. Therefore,

σ+
P = δIσ

−
P , (28)

with δI = I(0)
I(1)α , whereI is given in (22).

D. Conditions for existence and uniqueness of a periodic
solution

The combination of (25) and (28) defines the evolution ofζ

(or, equivalently,σP ) from one step to the next. The evolution
of the robot during one step is completely defined by the value
of ζ for a single value ofs. Thus, we study the evolution of
ζ just before the impactζ− = ζ(1) from one step to the next,
via the Poincaŕe map

ρ(ζ−) = (δIδ(1))2 ζ− − Φ(1). (29)

A periodic admissible reference motion is defined by a peri-
odic evolution of the angular momentum, which is equivalent
to a fixed point of the Poincaré mapρ, namely,ζ∗ = ρ(ζ∗).

From (29), taking into account thatζ(s) > 0, it follows that
• if (δIδ(1))2 = 1 andΦ(1) = 0, then any initial valueζ

produces a periodic reference motion; moreover,
• the Poincaŕe map has a unique fixed point

ζ∗ = −Φ(1)
1−(δIδ(1))2 , (30)

if, and only if, Φ(1) and 1 − (δIδ(1))2 have opposite
signs.

Applying Theorem 1 and using (29),ζ∗ in (30) defines a
periodic reference motion if, and only if, the periodic angular
momentum is sufficient to produce the step, that is,(δ1)

2
ζ∗ >

Zm.

Theorem 2 Assuming(26), a unique periodic reference mo-
tion exists if, and only if −Φ(1)

1−(δIδ(1))2 > Zm

(δI)2
. The periodic

motion is defined by equation (30).
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E. Convergence Towards the Periodic Reference Motion

Equation (29) is equivalent to

ρ(ζ−) − ζ∗ = (δIδ(1))2(ζ− − ζ∗). (31)

Consequently, solutions of equations (20) and (21) converge
to the periodic motion if, and only if,(δIδ(1))2 < 1.

Theorem 3 Assuming(26), solutions of the zero dynamics
given by equations(20) and (21) converge to the periodic
reference motion if, and only if,(δIδ(1))2 < 1.

Combining Theorems 1, 2 and 3, the following corollary is
deduced.

Corollary: Assuming(26), the reference periodic motion
is orbitally exponentially stable if, and only if, the reference
joint path is such that−Φ(1) > max( 1−(δIδ(1))2

δ2
I

Zm, 0) and

(δIδ(1))2 < 1.

V. SIMULATION RESULTS

A. Response to a perturbation with a perfect model

The control law is evaluated here for the periodic path
depicted in the stick diagram of Figure 3. The joint pathqd(s)
is defined with a degree four polynomial ins. The evolution
of the ZMP position is chosen to be a linear function ofs. The
reference pathld(s), qd(s) can be the result of an optimization
process since the periodic motion, if it exists, can be explicitly
deduced via (30). A methodology allowing to do this is given
in [32].

In the simulation presented here, the desired evolution for
ld andqd(s) are :

{

qd(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4

ld(s) = −0.02 + 0.1s
(32)

The vectorsai are determined so as to join an initial
configuration qd(0), an intermediate configurationqd(0.5),
a final configurationqd(1), an initial velocity qd(0)

ds
and a

final velocity qd(1)
ds

. The final configuration for the stepqd
r (1)

corresponds to the initial oneqd(0) with an exchange of the
leg. These key values which are used to describe the reference
path are given in Table II.

qd(0)
qd(0)

ds
qd(0.5) qd(1)

qd(1)
ds

0.0360 0.9570 0.2014 0.4057 0.6309
0.5432 0.2160 0.2239 0.1000 0.2928
2.3705 0.6371 2.8350 3.1855 0.4259
3.1855 0.3981 2.7072 2.3705 0.0063
0.1000 0.5476 0.6938 0.5452 -1.1129
2.7359 -1.0496 2.5981 3.1056 1.1944

TABLE II

THE REFERENCE FOR THE JOINT ARE BASED ON THESE KEY VECTORS.

The evolution ofδ(s) andΦ(s) are given in Figure 4. Their
final values,Φ(1) = −205, and δ(1)2 = 0.9954 are useful
for constructing the Poincaré map. The behavior ofζ during
the impact is defined byδ2I , which is equal to0.6422. The
minimal value ofζ for which a step can be achieved isZm

δI
=

−0.6 −0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 3. The stick diagram of the nominal periodic trajectory.The configura-
tion of the robot is drawn fors = 0, 0.1, 0.2 . . . , 0.9, 1. Thus a sequence of
snapshots of the robot is given. The desired motions of the robot are such that
the configuration of the robot coincides at some instant to each snapshot, but
it is not imposed that these instants are equally distributedwithin the period
of one step.
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0
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0.995

1

1.005

1.01

1.015

1.02
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Φ

(s
)

δ
2
(s

)

ss

Fig. 4. The evolution ofζ during the single support phase is characterized
by the functionsΦ(s) andδ2(s). The position of the ZMP is being controlled
to increase linearly, from back to front. Because the vertical component of
the velocity of the center of mass is directed upward at the beginning of the
step and then downward,δ(s) increases at the beginning of the step and then
decreases. Because the center of mass is behind the ZMP at the beginning of
the step and then in front of the ZMP,Φ(s) increases at the beginning of the
step and then decreases.

232. The periodic motion is given by (30). The fixed point
occurs atζ∗ = 569. The slope of the Poincaré return map
ρ is (δ(1)δI)

2 = 0.6393, and because it is less than1, the
corresponding periodic walking motion is exponentially stable.
The stability arises from the effect of the impact becauseδ(1)2

is close to 1.
A simulation was done for ten steps, assuming no modeling

error. The state of the robot was initialized on the periodicorbit
and horizontal force (350 N) was applied for0.2s < t < 0.24s
at the center of mass; see Figure 5. Convergence toward a
periodic motion was obtained for each of the five joints of
the robot. As an illustration, the evolution of the angle of
the torso is depicted in Figure 5-a. The same convergence is
also evident in the evolution of the position of the ZMP with
respect to time in Figure 5-b; for each step, its evolution is
linear from−0.02m to 0.08m except when the perturbation
exists. Figure 5-c presents the evolution ofṡ with respect to
time; it clearly converges toward a periodic motion.

B. Response to a perturbation with imprecise model data

In practice, the robot’s parameters are not perfectly known.
We assume that we have some errors on the masses and on
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Fig. 5. The convergence towards a periodic motion is observedin simulation
with the proposed control law.

the inertias of the links. We simulate the following cases of
error:

• The mass errors are+10% for the feet,+30% for the
thighs, +30% for the shanks and+40% for the torso.
The error on the inertia of the torso is+30%. This choice
of errors is arbitrary. We have chosen that the real robot
is heavier than the model used in the control law; this
point is commented upon in the sequel.

• Since the reference path is designed with an incorrect
model, the velocity after the impact does not correspond
to the expected value.

• Because the positionl of the ZMP is calculated via the
dynamic model,l(s) will not be exactly equal told(s).

Initializing the state of the robot on the theoretical periodic
motion, the behavior obtained for a large number of steps is
presented in Figure 6. Some tracking errors exist, particularly
at the beginning of each step, due to the effect of the
impact, thus the path followed is not exactly the expected
one (but the tracking errors are periodic). The convergence
toward a periodic motion is shown for the torso evolution
via its phase plane in Figure 6-a. This convergence is also
illustrated via the evolution oḟs with respect to s in Figure 6-c,
which clearly converges toward a stable periodic motion. The
periodic motion is close to the expected one but not exactly
the same, because it is the result of the motion of the ZMP
and of the real dynamic model. Since the real robot is heavier
than the employed model of the robot, we have greater ground
reaction forces; consequently the real evolutionl of the ZMP
in Figure 6-b varies between extreme values that are smallerin
absolute value than the desired values. The difference between
l(s) and ld(s) is higher for larger values oḟs. In the case
examined here, there is no problem because constraints on the
equilibrium of the supporting foot are always satisfied. On the
other hand, if the real robot were lighter than the modeled
one, the ZMP could be at one of the extreme ends of the
foot, thereby violating the constraints of equilibrium of the
supporting foot. Hence, a safety margin is necessary when the
minimum and the maximum values for the ZMP evolution are
defined. The best way is to definelmin and lmax with some
margins with respect to the actual size of the foot (see Figure
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Fig. 6. The convergence toward a periodic motion is observed in simulation
with the proposed control law, with modeling error. a) The torso evolution
is drawn in its phase plane (the absolute torso velocity withrespect to the
absolute torso orientation); it tends toward a limit cycle. (b) The horizontal
position of the ZMP with respect tos, l(s), tends toward a periodic evolution
different from Figure 5(b): the ZMP excursion is smaller thanthe expected
one. (c)ṡ(s) tends toward a periodic evolution different from Figure 5(c): the
new cycle is faster than the nominal one.

1).

C. Effect of the ZMP evolution

lmin lmax ζ∗ Zm

δ2
I

(δ(1)δI)2 ṡc(1) T [s]

-0.05 0.05 943.02 149.69 0.613 3.86 0.401
-0.04 0.06 823.92 175.44 0.621 3.62 0.437
-0.03 0.07 699.48 202.78 0.630 3.36 0.488
-0.02 0.08 569.18 231.61 0.639 3.04 0.569
-0.01 0.09 432.40 261.85 0.648 2.66 0.733

0 0.10 288.45 293.42 No periodic motion
0.01 0.11 136.53 326.23 No periodic motion

TABLE III

THE EFFECT OF THEZMP EVOLUTION

The evolution of the ZMP throughout the step affects the
existence and stability of the periodic motion obtained with
the proposed control law. To illustrate this point, we consider
various linear evolutions of the position of the ZMP with
different average values, (ld(1)+ld(0)

2 ), while holding constant
the net change in the position of the ZMP,ld(1)− ld(0) = 10
cm. Table III presents the main properties of the periodic
motion and of the control law with respect to the variation
of the average value of the ZMP position during one step.
Placing the average position of the ZMP closer to the toe
leads to larger values of(δ(1)δI)

2 and smaller values ofζ∗

and average walking speed. When the center of mass is in
front of the ZMP, the moment arm due to gravity speeds up
the motion. When the center of mass is behind the ZMP, the
moment arm due to gravity slows down the motion. When the
average position of the ZMP is moved forward, the portion of
the step where gravity speeds up the motion decreases, and
thus the average walking speed decreases.

In the last two rows of Table III, the value ofζ∗ is less
than the minimum value necessary to complete a step (i.e.,
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Fig. 7. The motion of the robot is not stable as it does not converge to
a periodic motion, but the position of the ZMP remains strictlywithin the
convex hull of the stance foot.

s = 1s = srs = 0

Fig. 8. A walking cycle that includes foot rotation. The single support phase
can be decomposed into a flat foot sub-phase and a foot rotationsub-phase.
The cycle is completed by an impact phase.

it does not satisfy (27)), and consequently a walking motion
cannot be produced. If the control law is used for this case,
the behavior shown in Figure 7 is obtained. Perfect tracking
of the joint path is observed and the position of theZMP

satisfies at each time instance the condition of non-rotation
of the feet (see Figure 7 lower left part), though the motion
of the robot is unstable; the robot does not fall down, but it
comes to a stop.

VI. WALKING WITH FOOT ROTATION

The objective in this section is to study how the proposed
control law and the associated stability conditions can be
extended to the case of a gait that includes a foot rotation sub-
phase [21]. This sub-phase is a normal part of human walking,
but humanoid robots generally do not include this sub-phase
because it renders the control problem more difficult. The
considered gait is described in Figure 8. The double support
phase is reduced to an impact phase. This choice has been
made since with our model based on rigid bodies, we cannot
obtain a non-instantaneous double support phase after the
impact if the velocity of the swing leg at impact is nonzero.

The initiation of rotation about the toe is decided by a
control action. The reference paths for the joint variables
are expressed as functions ofs as before. A complete single

4
q3

q

2
q

5
q

6
q

q
1

q
0

x

y

z

CGzg

xg

A

P

Fig. 9. Generalized coordinates for the foot rotation sub-phase. The rotation
about the toe is described by variableq0

support phase is achieved fors = 0 to s = 1. The transition
from the flat-foot sub-phase to the foot-rotation sub-phase
occurs for a given value ofs denotedsr, such that0 < sr < 1.

The Foot Rotation Indicator (FRI) [19] differs from the ZMP
by the fact that it can quantify the rotation of the foot. Hence,
it could be attractive to control the FRI instead of the ZMP,
and to prescribe the foot rotation via the FRI. However, it
is difficult to connect the kinematic evolution of the foot to
the FRI, which is the reason that we consider the two phases
separately.

A. Control during the rotation sub-phase

From the control point of view, the main difference is that
during the flat-foot sub-phase, the evolution of the ZMP can
be chosen, whereas during the foot rotation sub-phase, the
position of the ZMP is at the contact point between the toe and
the ground. The difference is therefore essentially a modeling
issue because a supplementary variable, denoted here asq0,
must be added to describe the configuration of the robot
during the rotation sub-phase; see Figure 9. The augmented
configuration vector is denotedqr = [q0, q

T ]T .
During the foot rotation sub-phase, the dynamic model

becomes

Mr(qr)q̈r + hr(qr, q̇r) =

[

0
Γ

]

, (33)

whereMr(qr) is a (7 × 7) matrix and the vectorhr(qr, q̇r)
contains the centrifugal, Coriolis and gravity forces. Thefirst
row of (33) corresponds to the passive rotation about the toe,
which can also be expressed as

σ̇P = mg(xg − ld), (34)

or by (6) with l = ld (see Figure 1). The first row of the
dynamic model (33) also yields the required accelerations̈

so that q̈r satisfies the dynamic model. To have the desired
closed-loop behavior for the joints,̈s must be such that

Mr1(qr)(
dqd

r (s)

ds
s̈+ vr) + hr1(qr, q̇r) = 0, (35)

where the index1 denotes the first row. Thus

s̈ = −
Mr1(qr)vr + hr1(qr, q̇r)

Mr1(qr)
dqd

r (s)
ds

. (36)



9

The last 6 rows of the dynamic model yield the torques
required to track a desired path, as in the second equation
of (18).

B. Stability study

The evolution of the angular momentumσP during one step
is studied in order to determine the stability of the gait.

As mentioned in Section IV, during the flat-foot sub-phase,
the angular momentum evolution is described by (20) and the
variableζ(s) evolves as in (25). At the transition between the
flat-foot sub-phase and foot-rotation sub-phase, the ZMP posi-
tion changes, and thus the angular momentum about the ZMP
changes. We denote byσP (s−r ), the angular momentum at the
end of the flat-foot sub-phase, and byσP (s+r ), the angular
momentum at the beginning of the foot-rotation sub-phase.
The configuration and velocity of the robot are continuous at
this transition.

At the end of the flat foot sub-phase, we have

ζ(s−r ) = δ2(sr)ζ(0) − Φ(sr). (37)

Using the transfer of angular momentum equation, the change
in momentum can be written as

σP (s+r ) = σP (s−r ) +mżg(sr)(ld − ld(sr)). (38)

On the zero dynamics (19), the velocityżg can be expressed
as a function ofσP (s−r ) using (21)

żg(sr) =

∂zg(qd(sr))
∂q

dqd(sr)
ds

I(s−r )
σP (s−r ). (39)

Therefore,
σP (s+r ) = δSr

σP (s−r ), (40)

with

δSr
= 1 +m

∂zg(qd(sr))
∂q

dqd(sr)
ds

(ld − ld(sr))

I(s−r )
. (41)

For the variableζ, at the beginning of the foot-rotation sub-
phase we have

ζ(s+r ) = δ2Sr
δ2(sr)ζ(0) − δ2Sr

Φ(sr). (42)

During the foot-rotation sub-phase, the ZMP position isld,
which has been selected to be constant. Consequently, on the
zero dynamics, the angular momentum evolves according to
(34). Using the same principle as in Section IV, if there exists
a solution beginning withs = sr, ṡ(sr) > 0 and ending with
s(tf ) = 1, ṡ(tf ) > 0, we have

dσP

ds
= mg(xg(q

d(s) − ld(s))
I(s)

σP

. (43)

Applying the change of variable,ζ(s) = 1
2σ

2
P , this equation

becomes
dζ

ds
= mgI(s)(xg(q

d(s) − ld(s)), (44)

and hence, forsr ≤ s ≤ 1,

ζ(s) = ζ(s+r ) − Φt(s), (45)

where

Φt(s) = −mg

s
∫

sr

I(τ)(xg(q
d(τ)) − ld(τ))dτ . (46)

This expression can be combined with (42), yielding

ζ(s) = δ2Sr
δ2(sr)ζ(0) − δ2Sr

Φ(sr) − Φt(s). (47)

Finally, since the expressions forζ are similar during the flat-
foot and foot-rotation sub-phases, they can be representedby
a single expression, for0 ≤ s ≤ 1, namely

ζ(s) = δ2r(s)ζ(0) − Φr(s), (48)

with

δr(s) =

{

δ(s) for 0 ≤ s ≤ s−r
δSr

δ(sr) for s+r ≤ s ≤ 1

Φr(s) =

{

Φ(s) for 0 ≤ s ≤ s−r
δSr

Φ(sr) + Φt(s) for s+r ≤ s ≤ 1.

(49)

Remark on Stability Analysis: Because the behavior ofζ
along a single support phase has been expressed in exactly
the same form as in the first study concerning fully actuated
walking, and because the impact equations are similar due
to the previous supporting leg leaving the ground, Theorems
1, 2 and 3 and the Corollary can also be restated for this
more complex gait, and analogous conditions for existence and
stability are obtained by replacingδ(s) andΦ(s) by δr(s) and
Φr(s), respectively.

C. Simulation results

The control law is evaluated here for the periodic path
depicted in the stick diagram of Figure 10. The joint path
qd(s) is defined with a degree four polynomial ins for the
flat-foot sub-phase, and a degree three polynomial ins for
the foot-rotation sub-phase. These joint references have been
adjusted by hand, starting from the references presented in
Figure 3. Some optimal motions that include the foot-rotation
sub-phase can also be defined using the methodology given
in [29] but this work is not within the scope of the present
paper. In [29], it is also shown that from the energy efficiency
point of view, the introduction of a foot-rotation sub-phase is
efficient for fast walking.

In the simulation presented here, the transition between the
two sub-phases was selected to occur ats = sr = 0.7, the
desired evolution forld andqd(s) are :

{

qd(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4

ld(s) = −0.03 + 0.1s
0 ≤ s ≤ 0.7

{

qd
r (s) = b0 + b1s+ b2s

2 + b3s
3

ld(s) = ld = 0.2
0.7 < s ≤ 1

(50)
The vectorsai are determined so as to join an initial

configurationqd(0), an intermediate configurationqd(0.35), a
final configurationqd(0.7), an initial velocity directiondqd(0)

ds

and a final velocity directiondqd(0.7)
ds

for the first sub-phase.
The vectorsbi are calculated to join an initial configuration
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qd
r (0.7), a final configurationqd

r (1), an initial velocity dqd
r (0.7)
ds

and a final velocity dqd
r (1)
ds

for the first sub-phase. In the
first sub-phase, no reference is defined for the jointq0, thus
the notationq and qr are used to define the configuration
coordinates. To have continuity in the reference in position
and velocity directionqd(0.7), dqd(0.7)

ds
and qd

r (0.7), dqd
r (0.7)
ds

describe the same state of the robot. The final configuration
of the step,qd

r (1), corresponds to the initial oneqd(0) with
an exchange of the legs. These key values to describe the
reference trajectory are given in the Table IV.

qd(0)
dqd(0)

ds
qd(0.35) qd

r (0.7)
dqd

r (0.7)

ds
qd
r (1)

dqd
r (0.7)

ds
3.1416 0 2.9671 0

-0.0438 2.3798 0.1815 0.2509 0.3562 0.5014 1.1565
0.3707 2.1298 0.3546 0.1039 -0.3722 0.1957 0.6523
2.4653 0.0955 2.6858 3.0086 0.7642 3.1855 0.4003
3.1855 0.3248 2.9151 2.4862 -0.8358 2.4653 0.3981
0.1957 0.2862 0.5306 0.7626 -0.1376 0.3707 0.3084
2.8148 -1.7654 2.5548 2.7543 1.0093 3.1854 -1.2468

TABLE IV

THE REFERENCES FOR THE JOINTS ARE BASED ON THESE KEY VECTORS.

The rotation occurs due to a control action corresponding
to a discontinuity on the torque. The torques are such that an
acceleration ofq0 appears and that the ZMP is at the contact
point between the toe and the ground.
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Fig. 10. The stick diagram of the desired trajectory. The configuration of
the robot is drawn fors = 0, 0.1, 0.2 . . . , 0.9, 1. For 0 ≤ s ≤ 0.7−, the
supporting foot is flat on the ground. For0.7+ ≤ s ≤ 1, the supporting foot
rotates.

The evolution ofδr(s) and Φr(s) are depicted in Figure
11. Their final values,Φr(1) = −124 and δr(1)2 = 0.9585,
are useful for constructing the Poincaré map. The behavior
of ζ during the impact is defined byδ2I , which is equal to
0.6440. The minimum value ofζ for which a step can be
achieved isZm

δI
= 198. The periodic motion is given by (30).

The fixed point isζ∗ = 324. The slope of the Poincaré return
mapρ is (δ(1)δI)

2 = 0.6161, and because it is less than1, the
corresponding periodic walking motion is exponentially stable.
The stability arises from the effect of the impact because
δr(1)2 is close to 1.

The forward walking speed of the robot will be slower when
the gait includes rotation about the toe than when this sub-
phase does not exist. During the rotation sub-phase, the ZMP
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Fig. 11. The evolution ofζ during the single support phase is characterized
by the functionsΦr(s) andδ2

r (s). During the flat-foot sub-phase, an evolution
close to that of Figure 4 is observed. At the transition between the sub-phases,
a jump occurs due to the termδ2

sr
; however, for this illustration,δ2

sr
is close

to 1 and thus this jump is difficult to see forφr(s). Since at the transition the
position of the ZMP changes from0.07m to 0.2m, the center of mass that
was in front of the ZMP becomes behind the ZMP, and thusΦr increases
slightly just after the transition.δr(s) is constant during the foot rotation
sub-phase.

is at the forward edge of the foot, the decrease ofΦr is less
than if the ZMP was inside the sole of the feet (see Figure
11), and the resulting value ofζ∗ corresponding to the periodic
motion decreases.
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Fig. 12. The convergence towards a periodic motion is observed in simulation
with the proposed control law.

A simulation was done for ten steps, assuming no modeling
error and initializing the state of the robot on the periodicorbit.
A horizontal force of 100 N is applied at the center of mass
for 0.2s < t < 0.24s; see Figure 12. Convergence toward
a periodic motion was obtained for each of the six joints of
the robot. As an illustration, the evolution of the angle of the
torso is depicted in Figure 12-a. The same convergence is
also evident in the evolution of the position of the ZMP with
respect to time in Figure 12-b; for each step, its evolution is
linear from−0.03m to 0.04m during the flat-foot sub-phase
and then there is a discontinuity to achieveld = 0.2m. Figure
12-c presents the evolution ofṡ with respect to time; it clearly
converges toward a periodic motion.

D. Interesting next steps

The simulation results have shown the effectiveness of the
control law. The evaluation of this approach on a prototype
would be of great interest. This has not yet been attempted
because a planar biped with feet is not available for such
experiments. The proposed control law required a computed
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torque control that may be difficult to implement on a real
robot. A PD controller can be derived from this control
approach instead of the computed torque control. The most
important point is to define the reference motion not as a
predefined function of time, but as a function of desired kine-
matic evolution of the position of the ZMP. If the integration
of the variable s̈, needed to define the reference path, is
difficult in practice, a physical monotonic variable based on the
measurable state of the robot, for example the angle of a virtual
stance leg, can be used instead ofs. Additional information
about these practical implementation issues are are given in
[32].

The extension to a 3D biped would also be interesting. Two
directions could be chosen to do this extension.

Suppose the robot is fully actuated. The main interest of the
proposed strategy is to show that a temporal modification of
the joint reference motion allows us to correct the positionof
the ZMP. In the case of a 3D motion, the position of the ZMP
has to be controlled in two directions (frontal and sagittal), and
the temporal modification gives only one degree of freedom. It
is not possible with this degree of freedom to track a prescribed
motion of the ZMP in these two directions, but it could be
possible to maintain the ZMP inside a prescribed sub-surface
of the complete sole. In the case of planar motion, how to
keep the ZMP in a prescribed area is described in [9]. The
introduction of rotation phase about the toe for 3D motion is
similar to the 2D case because only one free degree of rotation
appears.

The control strategy of this paper has been built upon a
control approach developed for point-contact planar robots [5].
A control strategy for a point-contact 3D robot is now under
development [23].

VII. C ONCLUSION

For a planar biped, a control strategy was proposed based
on tracking a reference path in the joint space instead of
a reference function of time. This allows the simultaneous
control of the path positions of the joints and the ZMP. The
biped adapts its time evolution according to the effect of
gravity. A stability study of the robot’s time evolution has
been given for a fully actuated gait and a gait that includes
a foot rotation sub-phase (i.e., an underactuated sub-phase).
Walking with more human-like characteristics can be handled
by our control law. Easily testable analytical conditions have
been presented for the existence and uniqueness of a periodic
motion and for the orbital exponential stability of a periodic
motion. Since the stability conditions are based on inequalities,
a natural robustness with respect to modeling errors and
external perturbation exists.
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