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Abstract— Consider a biped evolving in the sagittal plane. reference motion has an important effect on the stability of
The unexpected rotation of the supporting foot can be avoided the gait (in the sense of the convergence toward a periodic

by controlling the zero moment point or ZMP. The objective ntion) and its robustness (in the sense of the reactioneof th
of this study is to propose and analyze a control strategy for bot in th f turbati
simultaneously regulating the position of the ZMP and the joints robot in the presence of perturbations).

of the robot. If the tracking requirements were posed in the time ~ The existence and stability of a periodic orbit depend on
domain, the problem would be underactuated in the sense that the much more than just the position of the ZMP: It is quite
number of inputs would be less than the number of outputs. To possible to have gaits where the ZMP is within the convex
get around this issue, the proposed controller is based on a path- hull of the foot support region and where the robot remains

following control strategy previously developed for dealing with . o . . L
the underactuation present in planar robots without actuated upright, but yet the gait is not periodic, or it is periodiajtb

ankles. In particular, the control law is defined in such a way that IS not asymptotically stable [7].

only the kinematic evolution of the robot’s state is regulated, but A stability analysis of a flat-footed walking gait for a five-
not its temporal evolution. The asymptotic temporal evolution of  |ink biped with an actuated ankle was carried out numescall
the robot is completely defined through a one degree of freedom in [12], [13], using the Poincér return map. The unilateral

subsystem of the closed-loop model. Since the ZMP is controlled, traints d to foot tact full ted
bipedal walking that includes a prescribed rotation of the foot constraints due 1o foot contact were careiully presented.

about the toe can also be considered. Simple analytical conditions Motivated by energy efficiency, a feedback controller was
are deduced which guarantee the existence of a periodic motion developed in [24] that allows a fully actuated bipedal robot
and the convergence towards this motion. walking on a flat surface to realize a passive walking gait,
that is, a gait corresponding to walking down a slope without
I. INTRODUCTION gctuation. Stabili_ty of the resulting_ walking mgtion hasshe

o o ) rigorously established, though realistic constraintstenZMP
The majority of robot control policies are built around thg e not imposed.

notion of controlling the Zero Moment Point (ZMP) [28], o control strategy is based on a path-following control

[11], [17], [20], [18], [26]. The center of pressure or CoFyyateqy previously developed for dealing with the underac

is a standard notion in mechanics that was renamed the ZVB i present in planar robots without actuated anklés [4
by Vukobratovic and co-workers [31], [30]. As long as thes) 110, [33]. Our controller is related to the work in [7[E]

ZMP remains inside the convex hull of the foot support region 4 [32, Chap. 10], which extended the work of Westervelt
CoP = ZMP and the supporting foot does not rotate. IRy 5 (33] on underactuated bipedal walking to the case of
particular, most of the control strategies are decompasiedsi 5 fully actuated robot where the walking gait allowed foot

low-level controller and a high-level controller, wher@tow- aiion I that work, the stance ankle torque was used to
level controller ensures the tracking of the reference omdibr regulate either the position of the stance ankle or the rate o

each joint, and the high-level controller modifies the refiee .o ergence to a periodic walking gait. In the present study
motion in order to ensure that the ZMP remains strictly withiy, position of the ZMP will instead be prescribed, which
the convex hull of the foot support region. _is important for robustly avoiding unexpected rotationstuf

, In experimental stu.dles, how to mod|fy the reference motigq i, the presence of perturbations or for taking into acto

is not always explained [11]. Kagami et al. [14] showeagjreq rotation of the supporting foot toward the end of the
how to retouch a carelessly drawn reference into a phygicalinge support phase. This new approach has the advantage of
consistent motlon_wnh dynamical constr_aunts includingtth building a link between the classical approach to the contro
about ZMP taken into account. Also, Sugihara and Nakamu&gfu"y actuated bipeds based on the ZMP and the study of

[25] proposed the way to re-track the originally consistenf,qeractuated bipedal robots (either passive bipeds atsob
reference when a robot motion is perturbed. It guarantess t{}ii, 4 point foot contact) based on Poineatability analysis.

ZMP moves in the vicinity of the reference in order to stat@ili |; is shown that when the ZMP position is controlled, the
the whole body motion. Obviously, the modification of the,pot can be viewed as an underactuated mechanism and that
The work of C.Chevallereau and D. Djoudi was supported by Agignts  the '|ntroductlon of a foot-rotation phase in this context is

for the PHEMA project. The work of J.W. Grizzle was supporgch National ~ Straightforward.
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reference motion corresponds to adjusting the acceleratio l | feet] femur | fibia | torso ]

the robot along a given pdthin the joint space. Assuming I;rgg i':,;; O'Zf g:g g:g 0'612;:’
a perfect robot model, and without external perturbations, inertia inkg m2 | 0.012 | 0.048 | 0.069 | 1.869
the closed-loop temporal evolution of the robot is compjete

defined and can be analyzed through the study of a one degree TABLE |

of freedom subsystem. The Poingaeturn map can be used BIPED PARAMETERS FOR SIMULATION

to study the existence and stability of periodic motionsarmnd
the proposed control law. Analytical conditions are oldin
and subsequently illustrated through simulations.

The modification of the reference motion can be relat
to the work presented in [25], since the ZMP evolution i
prescribed. However two main differences appear in our wo
The modification of the joint motion to obtain the desired ZM
evolution is provided by a temporal modification only, thmfo
path is preserved. Since our references for the joint and
ZMP position are not functions of time, the control does n
attempt to re-synchronize its motion with time.

grso and two identical legs, and each leg is composed of two
nks and a foot. The ankles, the knees and the hips are one-
egree-of-freedom rotational frictionless joints. Thelkivey
Fgait consists of single support phases where the stancasfoot
flat on the ground separated by impacts, that is, instanteneo
t(ﬂ%uble support phases where leg exchange takes place. The
qtectorq = [q1,42,93,q4,95,q6) of configuration variables
see Figure 1) describes the shape and orientation of tleel bip

Since the control method allows a desired evolution of fli"ind Single support. The torquTes are grouped into a torque
ZMP to be prescribed, a desired rotation of the supportiﬁ/&mor’F =[I'1, 2,3, I, s, Te]
foot about the toe during walking can be taken into account.
During this sub-phase, the ZMP is placed at the forward
limit of the foot and the kinematic evolution of the internal
joints is prescribed, but the temporal (dynamic) evolutidn
the joints is determined by the controller to be compatible
with the model, which, in this case, is really underactuated
the technique of [5] is used to address the underactuation.
Conditions for the existence of a periodic motion and for the
stability of a periodic gait that includes a prescribed tiota
of the foot about the toe are also given.

The approach developed in [7], [6] and [32, Chap. 10]
considers also a walking gait with foot rotation. The work
in [3] further elaborates on the Poinéastability analysis of
walking gaits that include foot-rotation; in particulanetissue
of the state dimension varying from one phase to another
is emphasized. For walking gaits that include foot rotation
various ad hoc control solutions have been proposed in the
literature [15], [16], [22], [27], [34], but none of them can
guarantee stability in the presence of the underactuakiah t

occurs during toe roll.
. 9 . . Fig. 1. The studied biped and a choice of generalized coatetin
The first part of the paper considers only flat-footed walking

Section Il presents the dynamic model of the biped. A planar . . : . .

: ) . . ) X In the simulation, we use the biped parameters given in T
biped is considered. Section Il is devoted to the formalatf : .

; : able I. The dimensions of the feet afg = 0.08m, I, =

the control strategy. In Section IV, a complete analytitatly 0.06m andls — 0.2m
of stability is proposed. Some simulation results are prese d = Be
in Section V; a response to a perturbation with a known model
of the robot is considered as well as a response with Bn Dynamic model
uncertain model of the biped. Section VI proposes an extansi
of the control law considering a gait that includes a prdésati
rotation of the supporting foot; a simulation illustratése t
theoretical results. Section VIl concludes the paper.

The walking gait is composed of successive phases of single
support and instantaneous double support. A passive impact
exists at the end of the single support phase. The legs swap
their roles from one step to the next, and thus, because the
robot is symmetric, the study of a single step is sufficient to
Il. THE BIPED MODEL deduce the complete behavior of the robot over a sequence of
A. The biped steps on alternating legs. Only the dynamic model for suppor

The biped under study walks in the sagittal plane identificd €9 is presented here.

with a vertical z — z-plane. The robot is comprised of a 1) The single support phase modefhe dynamic model
can be written as follows:

1The time evolution along the path is not specified a priori. Fdated
work in nonlinear control, see [1] and references therein. M(q)§+ h(q,q) =T, Q)



whereM (q) is a(6 x 6) matrix and the vectoh(q, ¢) contains C. The impact model

the centrifugal, Coriolis and gravity forces. When the swing leg (i.e., leg) touches the ground with
2) Global equilibrium in translation: The reaction forceg f|at foot at the end of the single support phase, an impact
during the single support phaseduring single support, the akes place. The velocity of fo@becomes zero just after the
position of the center of mass of the biped can be expresseq@gact. We study a gait with instantaneous double support so
a function of the angular coordinates and is denoted i), that, just after the impact, the former stance lefifts off the
z¢(¢). When legi is on the ground, a ground reaction forcgyround. The robot's configurationis assumed to be constant
R, exists. The global equilibrium in translation of the roboguring the instant of double support, while there are junps i
makes it possible to calculate this force. Thus we have  the velocities. The velocity vectors just before and juseraf
P 0 impact, are denoted— andq™, respectively, where means
m { ég } + mg [ 1 ] = R;. (2) after the impact and before the impact. The impact model
g can be written as [5]
Equation (2) can also be written as

i =E(Lg)d), 9)
O0z4(q) T 621’9(@ < . . . . .
m=—p,4q+ Tfl gz 4 = Bn 3) whereA(q) is a6 x 6 matrix, andE is the permutation matrix
ma%yq + quangz(q)q +mg = R, describing leg exchange. For the ensuing single supposgpha
the joints are relabelled in order to limit the analysis tirgke
where azggg(q) and a2g;§q) are 6 x 6) matrices. dynamic model for single support.
3) Global equilibrium in rotation: the ZMP positionThe

robot is submitted to the reaction force exerted by the giloun [Il. THE CONTROL STRATEGY

gt the_ZMP, and_the force. of gravity. Since the stance_aﬁkle The desired walking gait is assumed to be composed only
is stationary during the single support phase, the eqitifibr of single support phases where the stance foot is flat on the
of the foot around the axis of the ankle can be written (Sfound and stationary (i.e., it neither rotates nor slipghile
Figure 1): a flat-footed gait is not a necessary condition for walking as
o4 =mygrg — IR — hpRa1, (4) we will see in Section VI, we focus our attention in this part
on fully actuated phases. Direct control of the positionhef t
whereo 4 is the angular momentum of the biped abautBy ~ zMmP will prevent unwanted foot rotation, and thus a desired
definition, the angular momentum is linear with respect ® ttypmp position, i<, is prescribed [9]. As shown in the previous

joint velocities and can be written section, the position of the ZMP is directly connected to the
— N(o\d 5 acceleration of the robot’s motion. It is therefore impbksio
o4 = N(q)q. ) prescribe independently a desired evolution of the joirtg;),

The location of the ZMP is then defined directly by th(%’md the position of the ZMP!(t). With respect to such atask,
. . . the biped can be seen as an underactuated system. Thus, as in
robot dynamics through the previous equation. Indeed,gusi S ) . :
(3), (4) and (5), we have [}5], the objective of the control law presented in this s@cti
' ' is not to track a (time-based) reference motiong@nd!, but
(No(q) + IN:(q))d + holq, 4) + thi(g, 4) = 0, (6) only the associated path in joint space. A reference motion
differs from a path by the fact that a motion is a temporal

where evolution along a path. A joint path is the projection of anjoi
oy () motion in the joint space. The difference between a motion
No = N(q)+mhp=5 and a path is illustrated in Figure 2 for a two-link robot.
N = mazagié(” , Only tracking of the desired path is sought and a time-
ho = qTEBD G — mgay(q) +mhydT S5 scaling control law as in [8] is used. Reference paths for the
b = mgT 82;52(q)q'+mg. joints and ZMP¢4(s) andi‘(s), respectively, are assumed to

be known as a function of a scalar path parametewhich
Equation (4) can also be rewritten, using (2), in the form plays the role of a normalized virtual time. A desired gait of
the robot corresponds to specification ©ofas an increasing

d(oa + Umzy) + hyp(miy)) miz, —mg(z, —1) = 0. (7) function of time, s(t).

dt

By definition, the termv 4 +1(mz,) +hy,(mi,) is the angular A - Requirements for a Feasible Reference Path
momentum about the ZMP witkx-coordinate!, which is

d d(g) i i i
denoted here by p. This equation, corresponding to angular The r_eferer_lce patb_ (5?’1 (5) IS de3|gned_|n order to be
momentum balance, can be also writteR as compatible with a periodic solution of the biped model. The

legs swap their roles from one step to the next, so the referen
6p = ml'zg +mg(zy —1). (8) path can be defined fqr one step qnly. For the ﬁrst step, the
scalar path parameterincreases strictly monotonically with

2The equilibrium in rotation of the robot gives directly tréguation, the respect to _t|me fron to 1 aljld impact takes place at= 1.
term miz, comes from the fact that the ZMP is not stationary. The evolution ofs for stepk is denotedsy,(¢).



The functions(t) needs to be a strictly increasing function
of ¢, but because the control objective is only to track a

1 reference path, the evolution &ft¢) is otherwise free and
val T the second derivativé can be treated as a “supplementary
o6 control input”. This allows the control law to be designed
- for a system with equal number of inputs and outputs: The
control inputs are the six torquéy,j = 1,...,6, pluss, and

the chosen outputs are the six componentg(of — ¢¢(s(t))
andi(t) — 14(s(t)).

The control law is based on computed torque, which is
guite commonly used in robotics, with a small modification
to ensure finite-time convergence to the desired paths. The
Fig. 2. The dotted lines are two motiorig: (£),qa(t)) corresponding finite-time feedback function proposed in [2], [10] is used.

to the same path represented by the solid line. A path is a finehe 1NE joint tracking errors are defined with respect to trajees
joint space, this line can be parametrized as a function ofva variable satisfying (12)
denoteds, and then can be expressed @y (s), g2(s)). This functions is

defined such that the initial configuration corresponds te 0 and the final eq(t) = qd( (t) — Q(t) 13
configuration corresponds to= 1. Any monotonic functions(t) defines a ¢ (t) _ dq? ( (t))s . (t) (13)
motion corresponding to the padlis). For examples = ¢/T defines a motion q q

of duration". If the desired path is such that for example is monotonic,  The desired behavior of the configuration variables in aose
the path can also be written as(q1 ), and the control law proposed here caqoop is
be computed in this context [32, Chap. 11].

G=q"+v(a,d:5,5), (14)

, where ¢(q, ¢, s, $) from [2], [10] is the term that imposes
The single support phase correspondg)te s < 1.dDue (g(t) — ¢%(s(t))) — 0 in finite time; in fact, the settling time
to the leg exchange at impact, the vectof§0) and ¢’(1), ¢an’pe chosen'to be less than the time duration of a step.

describing respectively the initial and final desired poBE g 5 vector of five components;., k = 1,...,5 with
of the biped, must be such thet(1) = E(¢¢(0)). T
The initial and final velocity of the biped are connected by Y = —Slgﬂ(ﬁeql)|€€qz| — sign(¢n)|¢ul”, (15)
the impact model and leg exchange (9). The reference pattwisere ¢, = eq + 5sign(eéy,)|eé,, |27, and the parameters
designed so that if the reference path is exactly trackeoréefy « , <« 1 and 6 > 0 are used to adjust the settling time
the impact (but the robot state is not necessarily on thegieri of the controller. Taking into account the expression fa th
motion), then the reference path will be exactly trackeeraftreference motion, (14) can be rewritten as
the impact. Just before thle+ 1-st impact, on the reference do
.. i e q(1) B q%(s)
path, the vector of joint velocities i < 5k(1). The = Tds
reference path is designed such that, afterdthe impact, the Pai(s) 2
reference path is also perfectly trackgtl = %5, . (). With v(s,$,q,¢) = =575 +4. For the position of the

ds
Since the impact model (9) connects the velocities befoce aMP: the desired closed- Ioop behavior is

after impact, we must have I(t) = 1%(s(t)).
dq®(0) . B d dg (1) Combining expression (16) with the dynamic model (1) of
ds Sk41(0) = BA(¢"(1) ds sk(1) (10) the robot and the relation (6) for the ZMP determines the
Wheng(1) and dq (1) are known, there are an infinite numbefeedback controlle; Thus, the control law must be such that
of possible ch0|ces fond— The set of solutions can be M(g) (05 +0) + h(g.q) = T
arametrized by a scalar as 8) . 17
P ) ) (No(g) + 1%(s) Ni(g)) (2525 1 v) )
44°O0) _ paggran®e®,, (11) +ho(q, ) +1(s)hu(a,4) = 0.
ds. ds It follows that, in order to obtain the desired closed-loop
yielding $541(0) = Sk(il). behavior, it is necessary and sufficient to choose
i — —Wol@+¥(s)Ny(9)v—ho(g.4)~1*(s)hi (4.0)
B. Definition of the control law (No(a)+1(s) Ny (q)) 249G as)
The control law is selected to ensure that the joint co- r - M(q)(dqzé(.S)g_;'_v)_’_h(q’q').

ordinates follow the joint reference pathd(s), and that 4

the position of the ZMP ig?(s). The torque acts on the As long as(No(q) + 1%(s)Ni(q)) 2L = 0, the control

second derivative of and directly oni. It follows from the law (18) is well defined, and, by (14), ensures thaft)

definition of the joint reference path that the desired vigjoc converges ta;(s(¢)) in finite time, and that(t) = 14(s(t)).

and acceleration of the joint variables are Without initial errors, a perfect tracking @f'(s(¢)) andi?(s)
g dq (5(15)) is obtained. . _ .
() = 5= ) (12) At this point, the behavior of(t) is unknown. Properties
git) = dq” ( (t))s + 4 ( s(t) g2, of its temporal evolution are developed next.




IV. STABILITY STUDY where

Since the control law is designed to converge before the s(s) = exp <f K(T)dT)
end of the first step, after that, perfect tracking is obtaine 0

and therefore B(s) = *mgofsexp (an(n)dﬁ) I(7)(2g(g% (7)) = 14(7))dr.
t d(s(t
28 B (iqg(S()izt) B. Minimal angular momentum to achieve a step
o 2 (19) - .
i) = dqd(gs)é(t) 4 d g(ifs)s'(t)Q The functionsd(s) and ®(s) are calculated directly from

) = (st q%(s) andl%(s). A complete step can be accomplished only
’ if $ is always positive. When the robot follows the reference

These equations define the zero dynamics manifold cortesjectory (19), the control law (18) does not cross a siaigtyl

sponding to the proposed control law. On the zero dynamias long as

manifold, the evolution of during one step can be determined dq(s)

by integration of the dynamic equation corresponding to the (No(g%(s)) + 1%(s)Ni(g%(s))) =1(s) #0. (26)

glopal equilibrium in rotation (8)'. nder this assumption, the conditiagn# 0 is equivalent to
Since the occurrence of an impact depends only on the

ap # 0 or ¢ #0.

configuration of the robot and not its velocity, and due to the”
characteristics of the joint reference path (Section jJ-#ach Theorem 1 Assuming (26), a step can be achieved if, and

step begins. yvith; = 0 and finishes V\{ith9 =_1. _ only if, the initial value of¢ for this step is such that
The stability of the control law is defined in the sense

of the convergence towards a periodic motion. A periodic ¢(0) > Z,, = max (Q;(S)), (27)
motion of the biped corresponds to a periodic evolution of 0<s<1\ 6%(s)

the angular momentum. Thus we study the evolution of the £,y tion of angular momentum during the impact phase
angular momentum from one step to the next one and deduce

a condition allowing the existence of an attractive pedodi \t the impact, due to (11), the evolution éfis such that
solution. 5t=2__ Therefore,

of =d10p, (28)

A. Evolution of the angular momentum for one step with 07 = Il((l(;)a wherel! is given in (22).
On the zero dynamics, (8) becomes

_ , d4(s) 924 (q%(s)) da’(s)

D. Conditions for existence and uniqueness of a periodic
3 + mg(ag(q’(s) —1%(s)) (20) Solution

ds 9 ds The combination of (25) and (28) defines the evolutior of
and (or, equivalentlyg p) from one step to the next. The evolution
op(s,s) =1(s)s, (21)  of the robot during one step is completely defined by the value

of ¢ for a single value ofk. Thus, we study the evolution of
o ) , , ¢ just before the impaaf~ = (1) from one step to the next,
I(s) = (N(qd(S)) +mid(s) 22 @) L OTe(a (5>>) 43°(s)  vyia the Poinca map

with

0q 9q ds
. . ea p(C7) = (016(1))* ¢~ = @(1), (29)
Equations (20,21) can be combined to express the derivative o o i )
of the angular momentum with respect4o A periodic admissible reference motion is defined by a peri-

Just as in [33, Prop. 1], it can be shown that uniquenessQﬂ“C gvolution of the angL.JIar, momentum, which is equivalent
solutions of (20,21) implies that if the robot completesepst 10 & fixed point of the Poincarmapp, namely,* = p(¢*).
that is, if there exists a solution beginning wigfo) = 0,  From (29), taking into account thats) > 0, it follows that
5(0) > 0 and ending withs(t;) = 1, §(t;) > 0, then for o if (076(1))% = 1_an.d ®(1) =0, then_ any initial value;
t € [0,t],$(t) > 0. Using this fact, (20,21) can be combined produc_es a periodic refere_nce motion; moreover,
to obtain « the Poinca® map has a unique fixed point

dop  _ ) 025(a"()) da’(s) o " = ety (30)

ds ds dq ds I(s) (23)
+mg(ag(g(s) — 19(s)) L2

Applying the change of variabl€,(s) = %a?,, this equation

if, and only if, ®(1) and 1 — (6;6(1))? have opposite
signs.
Applying Theorem 1 and using (293, in (30) defines a

becomes periodic reference motion if, and only if, the periodiQC alagu
== 26(s)C +mgl(s)(zq(q*(s) — 19(s)), (24) gomentum is sufficient to produce the step, thatds)” ¢* >
. _m dl%(s) 9z4(q%(s)) dq?(s) :
with r(s) = 715z T3~ =5, ‘%~ The above equation rhagrem 2 Assuming(26), a unique periodic reference mo-

is a linear s-varying ODE and has the explicit solution

tion exists if, and only iflf&‘f’égf))Q > (52}")5' The periodic
C(s) = 6%(5)¢(0) — B(s), (25) motion is defined by equation (30).



E. Convergence Towards the Periodic Reference Motion Laf
Equation (29) is equivalent to
p(¢™) = ¢" = (6r6(1))* (¢~ = ¢7). (31)

Consequently, solutions of equations (20) and (21) comverg
to the periodic motion if, and only if(5;6(1))? < 1.

i §FEFIEESL

£ Mﬁ»ﬁé*{;g * %
Theorem 3 Assuming(26), solutions of the zero dynamics N\
given by equationg20) and (21) converge to the periodic oar S e e e

reference motion if, and only if5;6(1))% < 1. o

Combining Theorems 1, 2 and 3, the following corollary is | ATt S
deduced_ 0 fD‘vE fO‘A ,0‘2 0 ‘ 0‘2 HHDA
. Corpllary. Assum!ng(26), the. reference p.erIOdIC motion Fig. 3. The stick diagram of the nominal periodic trajectdrige configura-
is orbitally exponentially stable if, and only if, the reéeice ion of the robot is drawn fos = 0,0.1,0.2...,0.9, 1. Thus a sequence of

joint path is such that-®(1) > max(wzrm 0) and snapshots of the robot is given. The desired motions of thetrate such that
o7 the configuration of the robot coincides at some instant t& saapshot, but

(515(1))2 <1 it is not imposed that these instants are equally distributighin the period
of one step.
V. SIMULATION RESULTS

A. Response to a perturbation with a perfect model 100 Loz

The control law is evaluated here for the periodic path = g”“
depicted in the stick diagram of Figure 3. The joint patiis) 0 -
is defined with a degree four polynomial i The evolution 200 .
of the ZMP position is chosen to be a linear functiorsofhe R T T T T i
reference patlr'(s), ¢%(s) can be the result of an optimization s s

process smce the per|0d|c motion, if it e,XIStS’ can b,e e)tt;h ig. 4. The evolution of, during the single support phase is characterized
deduced via (30). A methodology allowing to do this is givepy the functionsb(s) ands?(s). The position of the ZMP is being controlled

in [32]. to increase linearly, from back to front. Because the vart@omponent of
In the simulation presented here, the desired evolution qu velocity of the center of mass is directed upward at thénbégy of the
! step and then downward(s) increases at the beginning of the step and then

lq andgq(s) are : decreases. Because the center of mass is behind the ZMP adimming of
the step and then in front of the ZM®,(s) increases at the beginning of the
step and then decreases.

{ q?(s) = ag + a1s + azs® + azs® + asst (32)

19(s) = —0.02 4 0.1s

The veptorsdai are dgtermlneq SO as _to join ?n |n|t|al232_ The periodic motion is given by (30). The fixed point
configuration ¢*(0), an intermediate configuration®(0.5),

i : o o = 44(0) occurs at(* = 569. The slope of the Poincarreturn map
a final conflgblranonq (1), an initial velocity “-~ and a pis (5(1)8;)2 = 0.6393, and because it is less thdn the
final velocity qT(:)_ The final configuration for the stegf(1) corresponding periodic walking motion is exponentialigtse.
corresponds to the initial ong(0) with an exchange of the The stability arises from the effect of the impact becai(d¢>
leg. These key values which are used to describe the referejzcclose to 1.

path are given in Table II. A simulation was done for ten steps, assuming no modeling
: § error. The state of the robot was initialized on the periaahit
¢?(0) | CO | gd5) | ¢t1) | D and horizontal force (350 N) was applied fo2s < t < 0.24s
8-?222 8-2%8 8-32;3 8-‘1‘8% 8-2322 at the center of mass; see Figure 5. Convergence toward a
23705 | 06371 | 2.8350 | 31855 | 0.4259 periodic motion was obtained for each of the five joints of
3.1855| 0.3981 | 2.7072 | 2.3705| 0.0063 the robot. As an illustration, the evolution of the angle of
g-%ggg %%‘:179% g-ggg? g-%gg '11-119153 the torso is depicted in Figure 5-a. The same convergence is
. ' ' ' ' also evident in the evolution of the position of the ZMP with
TABLE Il respect to time in Figure 5-b; for each step, its evolution is

linear from —0.02m to 0.08m except when the perturbation
exists. Figure 5-c presents the evolutionsofvith respect to
time; it clearly converges toward a periodic motion.

The evolution ofé(s) and®(s) are given in Figure 4. Their
final values,®(1) = —205, and §(1)? = 0.9954 are useful
for constructing the Poincarmap. The behavior of during
the impact is defined by?, which is equal t00.6422. The In practice, the robot's parameters are not perfectly known
minimal value of¢ for which a step can be achieved%;r = We assume that we have some errors on the masses and on

THE REFERENCE FOR THE JOINT ARE BASED ON THESE KEY VECTORS

B. Response to a perturbation with imprecise model data



Effect of the perturbation

G —q2—q3

L L L
0.275 0.28 0.285 0.29
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0.26 0.27 0.28 0.29 03 0.31 0.32 0.33 0.34 0.35

ZMP position | (m)
§ (m™1)

ZMP position | (m)
5 (m™h)

20

time (s)° time (s)° time (s)*° time (s)*°

Fig. 5. The convergence towards a periodic motion is obsedrveoulation Fig. 6. The convergence toward a periodic motion is obsemresinulation
with the proposed control law. with the proposed control law, with modeling error. a) Thestoevolution
is drawn in its phase plane (the absolute torso velocity wétpect to the
absolute torso orientation); it tends toward a limit cycle) The horizontal
position of the ZMP with respect te, I(s), tends toward a periodic evolution
the inertias of the links. We simulate the following cases afiferent from Figure 5(b): the ZMP excursion is smaller thhe expected
error: one. (c)s(s) tends toward a periodic evolution different from Figure)5¢be

new cycle is faster than the nominal one.
« The mass errors are10% for the feet,+30% for the
thighs, +30% for the shanks andr40% for the torso.
The error on the inertia of the torso-{s30%. This choice 1).
of errors is arbitrary. We have chosen that the real robot
is heavier than the model used in the control law; this
point is commented upon in the sequel. C.
« Since the reference path is designed with an incorrect
model, the velocity after the impact does not correspond| lmin | lmaz - 5 (6(1)3r)? | 3c(1) | Tls]
to the expected value. -0.05 | 0.05 | 943.02| 14969 | 0613 3.86 | 0.401

« Because the positiohof the ZMP is calculated via the | -0-04 | 006 | 823.92] 175441 0621 | 3.62 | 0437
-0.03 | 0.07 | 699.48 | 202.78| 0.630 | 3.36 | 0.488

Effect of the ZMP evolution

dynamic model/(s) will not be exactly equal td¢(s). 002 | 008 | 56918 | 231.61| 0.639 304 | 0569
Initializing the state of the robot on the theoretical peito 0601 8:28 ‘Z‘ggjg ;géﬁig O-ﬁI‘LSPeriO dzifzotioorf%
motion, the behavior obtained for a large number of steps iS 001 | 011 | 136.53 | 326.23 No periodic motion
presented in Figure 6. Some tracking errors exist, pagityul
at the beginning of each step, due to the effect of the TABLE Il
impact, thus the path followed is not exactly the expected THE EFFECT OF THEZMP EVOLUTION

one (but the tracking errors are periodic). The convergence

toward a periodic motion is shown for the torso evolution

via its phase plane in Figure 6-a. This convergence is alsolhe evolution of the ZMP throughout the step affects the
illustrated via the evolution of with respect to s in Figure 6-c, €Xistence and stability of the periodic motion obtainedhwit
which clearly converges toward a stable periodic motiore Tthe proposed control law. To illustrate this point, we cdesi
periodic motion is close to the expected one but not exacigrious linear evolutions of the position of the ZMP with
the same, because it is the result of the motion of the ZMf¥ferent average valueswx while holding constant
and of the real dynamic model. Since the real robot is heavit¥e net change in the position of the ZMP(1) —¢(0) = 10

than the employed model of the robot, we have greater groutid. Table 1l presents the main properties of the periodic
reaction forces; consequently the real evolutiasf the ZMP motion and of the control law with respect to the variation
in Figure 6-b varies between extreme values that are snialleof the average value of the ZMP position during one step.
absolute value than the desired values. The differencedastwPlacing the average position of the ZMP closer to the toe
I(s) and [%(s) is higher for larger values of. In the case leads to larger values di5(1)d;)? and smaller values of*
examined here, there is no problem because constraintsonahd average walking speed. When the center of mass is in
equilibrium of the supporting foot are always satisfied. ®a t front of the ZMP, the moment arm due to gravity speeds up
other hand, if the real robot were lighter than the modeldéde motion. When the center of mass is behind the ZMP, the
one, the ZMP could be at one of the extreme ends of theoment arm due to gravity slows down the motion. When the
foot, thereby violating the constraints of equilibrium dfet average position of the ZMP is moved forward, the portion of
supporting foot. Hence, a safety margin is necessary when the step where gravity speeds up the motion decreases, and
minimum and the maximum values for the ZMP evolution ardus the average walking speed decreases.

defined. The best way is to defitg;, andl,,,, with some In the last two rows of Table Ill, the value @f* is less
margins with respect to the actual size of the foot (see Eiguhan the minimum value necessary to complete a step (i.e.,
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Fig. 9. Generalized coordinates for the foot rotation shhge. The rotation

Fig. 7. The motion of the robot is not stable as it does not ca@/é¢o
9 about the toe is described by varialgle

a periodic motion, but the position of the ZMP remains strigtlighin the
convex hull of the stance foot.

s=0s=srs=1 support phase is achieved fer= 0 to s = 1. The transition
l l | from the flat-foot sub-phase to the foot-rotation sub-phase
i occurs for a given value of denoteds,., such that) < s, < 1.
The Foot Rotation Indicator (FRI) [19] differs from the ZMP
“ by the fact that it can quantify the rotation of the foot. Henc
QP it could be attractive to control the FRI instead of the ZMP,
TN and to prescribe the foot rotation via the FRI. However, it

is difficult to connect the kinematic evolution of the foot to
the FRI, which is the reason that we consider the two phases
separately.

—

A. Control during the rotation sub-phase

Fig. 8. A walking cycle that includes foot rotation. The dingupport phase oM the control point of view, the main difference is that
can be decomposed into a flat foot sub-phase and a foot rotiophase. during the flat-foot sub-phase, the evolution of the ZMP can
The cycle is completed by an impact phase. be chosen, whereas during the foot rotation sub-phase, the
position of the ZMP is at the contact point between the toe and
the ground. The difference is therefore essentially a nioglel
98sue because a supplementary variable, denoted heyg as
ust be added to describe the configuration of the robot

o . . .%ring the rotation sub-phase; see Figure 9. The augmented
of the joint path is observed and the position of tH&/ P configuration vector is denoteg — [go, ¢ .

satisfies at each time instance the condition of non-ratatio During the foot rotation sub-phase, the dynamic model
of the feet (see Figure 7 lower left part), though the moti scomes

it does not satisfy (27)), and consequently a walking moti

of the robot is unstable; the robot does not fall down, but it - ) 0
where M, (¢,) is a (7 x 7) matrix and the vectoh, (g, ¢,)
VI. WALKING WITH FOOT ROTATION contains the centrifugal, Coriolis and gravity forces. Tinst

The objective in this section is to study how the proposedw of (33) corresponds to the passive rotation about the toe
control law and the associated stability conditions can lghich can also be expressed as
extended to the case of a gait that includes a foot rotatiba su
phase [21]. This sub-phase is a normal part of human walking,
but humanoid robots generally do not include this sub-phase by (6) with [ = [, (see Figure 1). The first row of the
because it renders the control problem more difficult. Th#ynamic model (33) also yields the required acceleration
considered gait is described in Figure 8. The double suppsed thatg, satisfies the dynamic model. To have the desired
phase is reduced to an impact phase. This choice has beksed-loop behavior for the joint§, must be such that
made since with our model based on rigid bodies, we cannot dg?(s)
obtain a non-instantaneous double support phase after the M,1(g)( Zl S+ v.) + he1(gr, gr) =0, (35)
impact if the velocity of the swing leg at impact is nonzero. . y '

The initiation of rotation about the toe is decided by g/here the index. denotes the first row. Thus
control action. The reference paths for the joint variables = _ M (gr)or +h’r’1(QT7QT)' (36)

are expressed as functions ©fs before. A complete single B Mrl(qr)%

op =mg(zg —la), (34)




The last6 rows of the dynamic model yield the torquesvhere
required to track a desired path, as in the second equation s

of (18). By(s) = —mg / (1) (1g(q%()) — la(r))dr.  (46)

B. Stability study

The evolution of the angular momentum during one step 9 )
is studied in order to determine the stability of the gait. ((s) = 05,07(5:)C(0) = 05, B(sr) — Pe(s)- (47)

As mentioned in Section 1V, during the flat-foot sub-phasgna)ly, since the expressions forare similar during the flat-

the angular momentum evolution is described by (20) and th&t and foot-rotation sub-phases, they can be represdmyted
variable((s) evolves as in (25). At the transition between thg single expression, fdr < s < 1, namely

flat-foot sub-phase and foot-rotation sub-phase, the ZM#? po

tion changes, and thus the angular momentum about the ZMP (s) = 02(s)¢(0) — @,(s), (48)
changes. We denote (s, ), the angular momentum at the ith
end of the flat-foot sub-phase, and by (s;'), the angular w

This expression can be combined with (42), yielding

momentum at the beginning of the foot-rotation sub-phase. ; (s) = { 6(s) for 0<s<s.
The configuration and velocity of the robot are continuous at ds,0(s;) for st <s<1 49)
this transition. B (s) — P(s) for 0<s< s
At the end of the flat foot sub-phase, we have r(s) = 5s.®(s,) + Byls) for st <s<1
((s,) = 6%(5,)C(0) — D(sy). (37) Remark on Stability Analysis: Because the behavior af

Using the transfer of angular momentum equation, the chant gng a S'Pgle sup_potrI: p?as;e thzs been ex_pre?sid |ntex?cély
in momentum can be written as e same form as in the first study concerning fully actuate

walking, and because the impact equations are similar due
op(s]) = op(s;) +mzy(s.)(la —1%(s,)). (38) to the previous supporting leg leaving the ground, Theorems
] ] 1, 2 and 3 and the Corollary can also be restated for this
On the zero dynamics (19), the velocity can be expressed mqre complex gait, and analogous conditions for existende a

as a function obp(s,) using (21) stability are obtained by replacinifs) and®(s) by 4, (s) and
azg((gi(s,‘)) dq(;(‘%) ®,.(s), respectively.
falon) = — T op(sr), (39)
" C. Simulation results
Therefore, n B The control law is evaluated here for the periodic path
ap(s;) = ds,0p(s; ), (40) depicted in the stick diagram of Figure 10. The joint path
with q%(s) is defined with a degree four polynomial infor the
Dz (% (0)) dg(on) flat-foot sub-phase, and a degree three polynomiad iior
B ST A (la — 14(sr)) the foot-rotation sub-phase. These joint references haea b
ds, =1+m . (41)

I(s7) adjusted by hand, starting from the references presented in
Figure 3. Some optimal motions that include the foot-rotati
sub-phase can also be defined using the methodology given
in [29] but this work is not within the scope of the present
C(sH) = 62 62(s,)C(0) — 6% D(s,). (42) Paper. In [29], it is_ also shqwn that from the energy effic_jenc

" ! point of view, the introduction of a foot-rotation sub-pkds
During the foot-rotation sub-phase, the ZMP positionds efficient for fast walking.
which has been selected to be constant. Consequently, on thi the simulation presented here, the transition between th
zero dynamics, the angular momentum evolves accordingti®o sub-phases was selected to occus at s, = 0.7, the
(34). Using the same principle as in Section 1V, if there &xisdesired evolution foi? and¢?(s) are :
a solution beginning withs = s,., $(s,) > 0 and ending with

For the variablel, at the beginning of the foot-rotation sub
phase we have

s(ty) =1, (ty) > 0, we have q(s) = ag + ays + azs® + azs® + ass? 0<s<0T
990 _ gy (a?(s) — la(s)) 2 @y | L= 0084010 -
ds WP\ Ls) LS op {(Ig(s):bo+b1s+b282+bgs3 07 <s<1
l =1l3=02 ’ -
Applying the change of variable;(s) = 10%, this equation (s) =la (50)
becomes dc The vectorsa; are determined so as to join an initial
i mgl(s)(zy(g?(s) — la(s)), (44) configurationg?(0), an intermediate configuratiayf(0.35), a

final configurationg®(0.7), an initial velocity direction? (%)

and a final velocity directiorfw for the first sub-phase.
C(s) = C(s) — ®4(s), (45) The vectorsb; are calculated to join an initial configuration

and hence, fos, < s <1,
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d 150 1.02

¢(0.7), a final configurationy?(1), an initial velocity 44-\%-7) - o
d

and a final velocitydqg—i) for the first sub-phase. In the = w , o

first sub-phase, no reference is defined for the jointthus o = s

the notationg and ¢, are used to define the configuration ZZ ' 097

coordinates. To have continuity in the reference in pasitio %

d 71500 0.2 0.4 0.6 0.8 1 0950 0.2 0.4 0.6 0.8 1
dq,.(0.7) s - 4 s

and velocity directiony2(0.7), 20 and ¢¢(0.7), 2

describe the same state of the robot. The final configuration _ _ _ _ _
Fig. 11. The evolution of during the single support phase is characterized

of the step,¢¢(1), corresponds to the initial ong'(0) W't_h by the functionsb,.(s) andé2(s). During the flat-foot sub-phase, an evolution
an exchange of the legs. These key values to describe thse to that of Figure 4 is observed. At the transition betwhe sub-phases,
reference trajectory are given in the Table IV. a jump occurs due to the terﬁ&r; however, for this iIIustrationégr is close
to 1 and thus this jump is difficult to see fgr.(s). Since at the transition the
position of the ZMP changes frof07m to 0.2m, the center of mass that

dqd(0.7) dg?(0.7)

q4(0) % q%(0.35) | ¢2(0.7) q¢(1) was in front of the ZMP becomes behind the ZMP, and tluysincreases

3.1416 do 29671 % slightly just after the transitiond, (s) is constant during the foot rotation
-0.0438 | 2.3798 | 0.1815 0.2509 | 0.3562 | 0.5014 | 1.1565 |sub-phase.

0.3707 | 2.1298 0.3546 0.1039 -0.3722 | 0.1957 0.6523
2.4653 | 0.0955 2.6858 3.0086 0.7642 3.1855 0.4003
3.1855 | 0.3248 | 2.9151 2.4862 | -0.8358 | 2.4653| 0.3981 |. .
01957 | 02862 | 05306 | 0.7626 | -0.1376 | 0.3707 | 03084 |iS at the forward edge of the foot, the decreasebpfis less

2.8148 | -1.7654 | 2.5548 | 2.7543 | 1.0093 | 3.1854 | -1.2468 |than if the ZMP was inside the sole of the feet (see Figure

11), and the resulting value gf corresponding to the periodic

TABLE IV motion decreases.
THE REFERENCES FOR THE JOINTS ARE BASED ON THESE KEY VECTORS

& 02 T T T
| Effect of the perturbation
G 0.1
The rotation occurs due to a control action corresponding ‘s J|
to a discontinuity on the torque. The torques are such that an
. . 0.1
acceleration ofy, appears and that the ZMP is at the contact
point between the toe and the ground. M omams om o am om0
E
- 0.2
c 2
:g 0.15 L‘\
é 0.1 él,s
% 005 - .
N 0
05
-0.05

% time (§) % time (§)

Fig. 12. The convergence towards a periodic motion is obgdrn/simulation
with the proposed control law.

A simulation was done for ten steps, assuming no modeling
error and initializing the state of the robot on the periaatioit.
_ o _ _ o A horizontal force of 100 N is applied at the center of mass
2 o o T 5, S Yl TN for 0 < 1 < 0215, see Figure 12. Comvergence toward
supporting foot is flat on the ground. For7+ < s < 1, the supporting foot @ Periodic motion was obtained for each of the six joints of
rotates. the robot. As an illustration, the evolution of the angle foé t

) ) o torso is depicted in Figure 12-a. The same convergence is

The evolution of4,(s) and ®.(s) are depicted in Figure 554 evident in the evolution of the position of the ZMP with
11. Their final values®, (1) = —124 and or(1)? = 0.9585,  respect to time in Figure 12-b; for each step, its evolut®n i
are useful for constructing the Poinéamap. The behavior |inear from —0.03m to 0.04m during the flat-foot sub-phase
of ¢ during the impact is defined by?, which is equal to 5,4 then there is a discontinuity to achiéfe= 0.2m. Figure

0.6440. TheZ minimum value of¢ for which a step can be 15 ¢ hresents the evolution éfwith respect to time; it clearly
achieved is5= = 198. The periodic motion is given by (30). converges toward a periodic motion.

The fixed poiInt is¢* = 324. The slope of the Poincamreturn

mapp is (6(1)87)% = 0.6161, and because it is less thanthe .

corresponding periodic walking motion is exponentialgtge. D- Interesting next steps

The stability arises from the effect of the impact because The simulation results have shown the effectiveness of the

5,(1)% is close to 1. control law. The evaluation of this approach on a prototype
The forward walking speed of the robot will be slower whemwould be of great interest. This has not yet been attempted

the gait includes rotation about the toe than when this suflecause a planar biped with feet is not available for such

phase does not exist. During the rotation sub-phase, the ZM¥gperiments. The proposed control law required a computed




torque control that may be difficult to implement on a real[4]
robot. A PD controller can be derived from this control
approach instead of the computed torque control. The mo
important point is to define the reference motion not as a
predefined function of time, but as a function of desired kine
matic evolution of the position of the ZMP. If the integratio
of the variables, needed to define the reference path, iy
difficult in practice, a physical monotonic variable basedloe
measurable state of the robot, for example the angle of aaVirt ]
stance leg, can be used insteadsofAdditional information
about these practical implementation issues are are given i
[32]. 9]

The extension to a 3D biped would also be interesting. Two
directions could be chosen to do this extension.

Suppose the robot is fully actuated. The main interest of tfi®)
proposed strategy is to show that a temporal modification of
the joint reference motion allows us to correct the positibn 4
the ZMP. In the case of a 3D motion, the position of the ZMP
has to be controlled in two directions (frontal and sagittahd
the temporal modification gives only one degree of freedom. 2!
is not possible with this degree of freedom to track a préescri
motion of the ZMP in these two directions, but it could bél3]
possible to maintain the ZMP inside a prescribed sub-serfac
of the complete sole. In the case of planar motion, how fgy
keep the ZMP in a prescribed area is described in [9]. The
introduction of rotation phase about the toe for 3D motion is
similar to the 2D case because only one free degree of rntat'tQS]
appears.

The control strategy of this paper has been built upon a
control approach developed for point-contact planar Hgjt
A control strategy for a point-contact 3D robot is now under
development [23].

[17]
VIl. CONCLUSION

For a planar biped, a control strategy was proposed bage®]
on tracking a reference path in the joint space instead of
) ; . ) 19]
a reference function of time. This allows the smultaneods
control of the path positions of the joints and the ZMP. The
biped adapts its time evolution according to the effect &40l
gravity. A stability study of the robot’s time evolution has
been given for a fully actuated gait and a gait that includgsy
a foot rotation sub-phase (i.e., an underactuated subephas
Walking with more human-like characteristics can be hamdl?zz]
by our control law. Easily testable analytical conditiore/é
been presented for the existence and uniqueness of a eriqzt
motion and for the orbital exponential stability of a pei®d
motion. Since the stability conditions are based on inetjes|
a natural robustness with respect to modeling errors apd]
external perturbation exists.
[25]
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