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Abstract— Consider a biped evolving in the sagittal plane.
The unexpected rotation of the supporting foot can be avoided
by controlling the zero moment point or ZMP. The objective
of this study is to propose and analyze a control strategy for
simultaneously regulating the position of the ZMP and the joints
of the robot. If the tracking requirements were posed in the
time domain, the problem would be underactuated in the sense
that the number of inputs would be less than the number of
outputs. To get around this issue, the proposed controller is
based on a path-following control strategy previously developed
for dealing with the underactuation present in planar robots
with unactuated ankles. In particular, the control law is defined
in such a way that only the kinematic evolution of the robot’s
state is regulated, but not its temporal evolution. The asymptotic
temporal evolution of the robot is completely defined through
a one degree of freedom subsystem of the closed-loop model.
Simple analytical conditions, which guarantee the existence of a
periodic motion and the convergence towards this motion, are
deduced.

I. INTRODUCTION

The majority of robot control policies are built around the
notion of controlling the ZMP point [9], [10]. The center of
pressure or CoP is a standard notion in mechanics that was
renamed the zero moment point or ZMP by Vukobratovic and
co-workers [12], [11]. As long as the ZMP point remains
inside the convex hull of the foot support region, CoP =
ZMP and the supporting foot does not rotate. In particular,
most of the control strategies are decomposed into a low-
level controller and a high-level controller, where the low-
level controller ensures the tracking of the reference motion for
each joint, and the high-level controller modifies the reference
motion in order to ensure that the ZMP point remains within
the convex hull of the foot support region.

The existence and stability of a periodic orbit depend on
much more than just the position of the ZMP point: It is
quite possible to have gaits where the ZMP point is within the
convex hull of the foot support region and where the robot re-
mains upright, but yet the gait is not periodic, or it is periodic,
but is not asymptotically stable. In many experimental studies,
how to modify the reference motion is not explained [9], and
it seems that this point has not been studied theoretically.
Obviously, the modification of the reference motion has an
important effect on the stability of the gait (in the sense of
the convergence toward a periodic motion) and its robustness
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(in the sense of the reaction of the robot in the presence of
perturbations).

Our control strategy is based on a path-following control
strategy previously developed for dealing with the underactu-
ation present in planar robots without actuated ankles [8], [3],
[14], [4]. Our controller is related to the work in [5], which
extended the work of Westervelt et al. [14] on underactuated
bipedal walking to the case of a fully-actuated robot, where
the stance ankle torque was used to regulate either the position
of the stance ankle or the rate of convergence to a periodic
walking gait. In the present study, the position of the ZMP
will instead be prescribed, which is important for robustly
avoiding unexpected rotations of the foot in the presence of
perturbations.

The control law is defined in such a way that only the
geometric evolution of the robot’s joints and of the ZMP
position is controlled, but not their temporal evolution. This
strategy can be seen as an on-line modification of the joint
reference motion with respect to time in order to ensure that
the position of the ZMP will be satisfactory. The modifi-
cation of the reference motion corresponds to adjusting the
acceleration of the robot along a given path 1 in the joint
space. Assuming a perfect robot model, and without external
perturbations, the closed-loop temporal evolution of the robot
is completely defined and can be analyzed through the study of
a one degree of freedom subsystem. The Poincaré return map
can be used to study the existence and stability of periodic
motions under the proposed control law. Analytical conditions
are obtained and subsequently illustrated through simulations.

Section II presents the dynamic model of the biped. A planar
biped is considered. Section III is devoted to the formulation
of the control strategy and to the existence of a periodic
motion. In Section IV, a complete analytical study is proposed.
Some simulation results are presented in Section V. Section
VI concludes the paper.

II. THE BIPED MODEL

A. The biped

The biped under study walks in the sagittal plane identified
with a vertical x− z-plane. The robot is comprised of a torso
and two identical legs, and each leg is composed of two
links with mass and a foot. The ankles, the knees and the
hips are one-degree-of-freedom rotational frictionless joints.
The walking gait consists of single support phases where the
stance foot is flat on the ground separated by impacts, that

1The time evolution along the path is not specified a priori. For related
work in nonlinear control, see [1] and references therein.



is, instantaneous double support phases where leg exchange
takes place. The vector q = [q1, q2, q3, q4, q5, q6]T of con-
figuration variables (see Fig. 1) describes the shape of the
biped during single support. The stance ankle torque, which
is used to obtain a desired evolution of the ZMP, is denoted
Γa = Γ1. The torques are grouped into a torque vector
Γ = [Γ1,Γ2,Γ3,Γ4,Γ5,Γ6]T .
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Fig. 1. The studied biped: generalized coordinates

In the simulation, we use the biped parameters given in [3]
for all links except the feet. The mass of each foot is 1kg and
the center of mass is on the normal of the sole passing through
the ankle, 3cm below the ankle. The dimensions of the feet
are hp = 0.08m, lg = 0.06m and ld = 0.2m.

B. Dynamic model

The walking gait is composed of successive phases of single
support and instantaneous double support. A passive impact
exists at the end of the single support phase. The legs swap
their roles from one step to the next, and thus, because the
robot is symmetric, the study of a single step is sufficient to
deduce the complete behavior of the robot over a sequence of
steps on alternating legs. Only the dynamic model for support
on leg-1 and the algebraic impact model are derived.

1) The single support phase model: The dynamic model
can be written as follows:

M(q)q̈ + h(q, q̇) = Γ, (1)

where M(q) is a (6 × 6) matrix and vector h(q, q̇) contains
the centrifugal, Coriolis and gravity forces.

2) Global equilibrium in translation : The reaction force
during the single support phase: During single support, the
position of the center of mass of the biped can be expressed
as a function of the angular coordinates vector q noted xg(q),
zg(q). When leg-1 is on the ground, a ground reaction force
R1 exists. The global equilibrium in translation of the robot
makes it possible to calculate this force. Thus we have :

m

[
ẍg

z̈g

]
+mg

[
0
1

]
= R1 (2)

Equation (2) can also be written:

m
∂xg(q)

∂q q̈ +mq̇T ∂2xg(q)
∂q2 q̇ = Rx1

m
∂zg(q)

∂q q̈ +mq̇T ∂2zg(q)
∂q2 q̇ +mg = Rz1,

(3)

where ∂2xg(q)
∂q2 and ∂2zg(q)

∂q2 are (6 × 6) matrices.
3) Global equilibrium in rotation : the ZMP position: The

robot is submitted to the reaction force exerted by the ground
in the ZMP point, and the gravity force. The equilibrium of
the foot around the ankle can be written (see figure 1):

ςA = mgxg − lRz1 − hpRx1. (4)

where ςA is the resultant moment of the dynamic wrench of
the robot about the stance ankle A. Since the stance ankle A
is fixed during the single support phase, we have ςA = σ̇A

where σA is the angular momentum of the biped about A.
Using equations (2), equation (4) becomes:

σ̇A = mgxg − lRz1 − hpRx1. (5)

By definition the angular momentum is linear with respect to
the joint velocities and can be written:

σA = N(q)q̇ (6)

The location of the ZMP point is then defined directly by the
robot dynamics through the previous equation. Indeed, using
equations (3) and (6), we have:

(N0(q) + lNl(q))q̈ + h0(q, q̇) + lhl(q, q̇) = 0, (7)

where

N0 = N(q) + mhp
∂xg(q)

∂q

Nl = m
∂zg(q)

∂q

h0 = q̇T ∂N(q)
∂q

q̇ − mgxg(q) + mhpq̇T ∂2xg(q)

∂q2 q̇

hl = mq̇T ∂2zg(q)

∂q2 q̇ + mg

Equation (5), can also be rewritten, using (2), in the form

d(σA + l(mżg) + hp(mẋg))
dt

−ml̇żg −mg(xg − l) = 0. (8)

By definition, the term σA + l(mżg)+hp(mẋg) is the angular
momentum about the ZMP point with x-coordinate l, which is
denoted here by σP . This equation, corresponding to angular
momentum balance, can be also written as

σ̇P = ml̇żg +mg(xg − l). (9)

C. The impact model

When the swing leg (i.e., leg-2) touches the ground with
a flat foot at the end of the single support phase, an impact
takes place. The resulting ground reaction is described by a
Dirac delta-function with intensity IR2

. The velocity of foot-
2 becomes zero just after the impact. We study a gait with
instantaneous double support so that during the impact, the
stance leg-1 lifts off the ground. The robot’s configuration q
is assumed to be constant during the instant of double support,
while there are jumps in the velocities. The velocity vectors
just before and just after impact, are denoted q̇− and q̇+,
respectively, where + means after the impact and − before
the impact. The impact model can be written as [4]:

q̇+ = E(�(q)q̇−), (10)

where �(q) is a 6×6 matrix, and E is the permutation matrix
describing leg exchange.
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Fig. 2. The dotted lines are two motions (q1(t), q2(t)) corresponding to the
same path represented by the solid line. A path is a line in the joint space,
this line can be graduated as a function of a new variable denoted s, and then
can be expressed by (q1(s), q2(s)). This function s is defined such that the
initial configuration correspond to s = 0, the final configuration corresponds
to s = 1. Any monotonic function s(t) defines a motion corresponding to
the path q(s). For example s = t/T defines a motion of duration T .

III. THE CONTROL STRATEGY

The desired walking gait is assumed to be composed only
of single support phases where the stance foot is flat on the
ground and stationary (i.e., it does not slip). While a flat-footed
gait is not a necessary condition for walking, and as shown in
[5], rotation about the toe can be easily included in the analysis
of the control strategy, we focus our attention on fully-actuated
phases. Direct control of the position of the ZMP point will
prevent unwanted foot rotation, and thus a desired evolution,
ld, is prescribed [7]. As shown in the previous section, the
position of the ZMP is directly connected to the acceleration
of the robot’s motion. It is therefore impossible to prescribe
independently a desired evolution of the joints, qd(t), and of
the position of the ZMP, ld(t). With respect to such a task, the
biped can be seen as an underactuated system. Thus as in [4],
the objective of the control law presented in this section is not
to track a (time-based) reference motion for q and l, but only
the associated path in joint space. A reference motion differs
from a path by the fact that a motion is a temporal evolution
along a path. A joint path is the projection of a joint motion
in the joint space. The difference between a motion and a path
is illustrated in Fig. 2 for a two-joints robot.

Only tracking of the desired path is sought, and a time-
scaling control law as in [6] is used. A reference joint and
ZMP paths qd(s) and ld(s) are assumed to be known as a
function of a scalar path parameter s, which plays the role
of a normalized virtual time. The desired gait of the robot
corresponds to specification of s as an increasing function of
time, s(t).

A. Requirements for a Feasible Reference Path

The reference path qd(s), ld(s) is designed in order to be
compatible with a periodic solution of the biped model. The
legs swap their roles from one step to the next, so the reference
path can be defined for one step only. For the first step, the
scalar path parameter s increases strictly monotonically with
respect to time from 0 to 1 and impact takes place at s = 1.
The evolution of s along the step k is denoted sk(t).

The single support phase corresponds to 0 < s < 1. Due
to the leg exchange at impact, the vectors qd(0) and qd(1),
describing respectively the initial and final desired positions
of the biped, must be such that qd(1) = E(qd(0)).

The initial and final velocity of the biped are connected by
the impact model and leg exchange (10). The reference path is
designed so that if the reference path is exactly tracked before
the impact (but the robot state is not necessary on the periodic
motion), then the reference path will be exactly tracked after
the impact. Just before the k + 1-st impact, on the reference
path, the vector of joint velocities is q̇− = dqd(1)

ds ṡk(1). The
reference path is designed such that, after the impact, the
reference path is also perfectly tracked: q̇+ = dqd(0)

ds ṡk+1(0).
Since the impact model (10) connects the velociticies before
and after impact we must have

dqd(0)
ds

ṡk+1(0) = E�(qd(1))
dqd(1)
ds

ṡk(1). (11)

When qd(1) and dqd(1)
ds are known, there is an infinite

number of possible choices for dqd(0)
ds . The set of solutions

can be parametrized by a scalar α as

dqd(0)
ds

= E�(qd(1))
dqd(1)
ds

α, (12)

yielding ṡk+1(0) = ṡk(1)
α .

B. Definition of the control law

The control law is selected to ensure that the joint co-
ordinates follow the joint reference path, qd(s), and that
the position of the ZMP is ld(s). The torque acts on the
second derivative of q and directly on l. It follows from the
definition of the joint reference path that the desired velocity
and acceleration of the joint variables are:

q̇d(t) = dqd(s(t))
ds ṡ

q̈d(t) = dqd(s(t))
ds s̈+ d2qd(s(t))

ds2 ṡ2
(13)

The function s(t) needs to be a strictly increasing function
of t, but since the control objective is only to track a reference
path, the evolution s(t) is otherwise free and the second
derivative s̈ can be treated as a “supplementary control input”.
This allows the control law to be designed for a system with
equal number of inputs and outputs: The control inputs are the
six torques Γj , j = 1, . . . , 6, plus s̈, and the chosen outputs
are the six components of q(t)− qd(s(t)) and l(t)− ld(s(t)).

The control law is based on computed torque, which is
quite commonly used in robotics, with a small modification
to ensure finite-time convergence to the desired paths. The
finite-time feedback function proposed in [2], [8] is used. The
joint tracking errors are defined with respect to trajectories
satisfying (13)

eq(t) = qd(s(t)) − q(t)
ėq(t) = dqd(s(t))

ds ṡ− q̇(t).
(14)

The desired behavior of the configuration variables in closed
loop is

q̈ = q̈d + ψ(q, q̇, s, ṡ, ) (15)



where ψ(q, q̇, s, ṡ, ) from [2], [8] is the term that imposes(
q(t) − qd(s(t))

) → 0 in finite time; in fact, it can be chosen
to be less than the time duration of a step. Taking into account
the expression for the reference motion, equation (15) can be
rewritten as:

q̈ =
dqd(s)
ds

s̈+ v(s, ṡ, q, q̇), (16)

with v(s, ṡ, q, q̇) = d2qd(s)
ds2 ṡ2 + ψ. For the position of the

ZMP, the desired closed-loop behavior is:

l(t) = ld(s(t))

Combining expression (16) with the dynamic model (1) of
the robot and the relation (7) for the ZMP determines the
feedback controller. Thus the control law must be such that

M(q)(dqd(s)
ds s̈+ v) + h(q, q̇) = Γ

(N0(q) + ld(s)Nl(q))(
dqd(s)

ds s̈+ v)
+h0(q, q̇) + ld(s)hl(q, q̇) = 0.

(17)

It follows that, in order to obtain the desired closed-loop
behavior, it is necessary and sufficient to choose

s̈ =
−(N0(q)+ld(s)Nl(q))v−h0(q,q̇)−ld(s)hl(q,q̇)

(N0(q)+ld(s)Nl(q))
dqd(s)

ds

Γ = M(q)(
dqd(s)

ds
s̈ + v) + h(q, q̇).

(18)

As long as (N0(q)+ ld(s)Nl(q))
dqd(s)

ds �= 0, the control law
(18) is well defined, and, by (15), ensures that, q(t) converges
to qd(s(t)) in finite time, and that l(t) = ld(s(t)).

IV. STABILITY STUDY

Since the occurrence of an impact depends only on the
configuration of the robot and not its velocity, and due to the
characteristics of the joint reference path (section III-A), each
step begins with s = 0 and finishes with s = 1. Since the
control law is designed to converge before the end of the first
step, after that, perfect tracking is obtained and therefore

q(t) = qd(s(t))
q̇(t) = dqd(s)

ds ṡ(t)
q̈(t) = dqd(s)

ds s̈(t) + d2qd(s)
ds2 ṡ(t)2

l(t) = ld(s(t)).

(19)

These equations define the zero dynamics manifold corre-
sponding to the proposed control law. On the zero dynamics
manifold, the evolution of ṡ during one step can be determined
by integration of the dynamic equation corresponding to the
global equilibrium in rotation (9).

A. Evolution of the angular momentum for one step

On the zero dynamics, equation (9) becomes :

σ̇P = m
dld(s)

ds

∂zg(qd(s))

∂q

dqd(s)

ds
ṡ2 + mg(xg(qd(s)) − ld(s)) (20)

and
σP (s, ṡ) = I(s)ṡ (21)

with

I(s) =

(
N(qd(s)) + mld(s)

∂zg(qd(s))

∂q
+ mhp

∂xg(qd(s))

∂q

)
dqd(s)

ds
.

(22)

Equations (20,21) can be combined to express the derivative
of the angular momentum with respect to s.

Just as in [14, Prop. 1], it can be shown that uniqueness of
solutions of (20,21) implies that if the robot completes a step,
that is, if there exists a solution beginning with s(0) = 0,
ṡ(0) > 0 and ending with s(tf ) = 1, ṡ(tf ) > 0, then for
t ∈ [0, tf ], ṡ(t) > 0. Using this fact, equations (20,21) can be
combined to express:

dσP

ds = mdld(s)
ds

∂zg(qd(s))
∂q

dqd(s)
ds

σP

I(s)

+mg(xg(qd(s) − ld(s)) I(s)
σP

.
(23)

Applying the change of variable, ζ(s) = 1
2σ

2
P , this equation

becomes:

dζ

ds
= 2κ(s)ζ +mgI(s)(xg(qd(s) − ld(s)). (24)

with κ(s) = m
I(s)2

dld(s)
ds

∂zg(qd(s))
∂q

dqd(s)
ds . The above equation

is a linear s-varying ODE and has the explicit solution:

ζ(s) = δ2(s)ζ(0) − Φ(s), (25)

where

δ(s) = exp

(
s∫
0

κ(τ)dτ

)

Φ(s) = −2mg
s∫
0

exp

(
2

s∫
τ

κ(τ1)dτ1

)
I(τ)(xg(qd(τ)) − ld(τ))dτ .

B. Minimal angular momentum to achieve a step

The functions δ(s) and Φ(s) are calculated directly from
qd(s) and ld(s). A complete step can be accomplished only
if ṡ is always positive. With the assumption that the reference
trajectory is such that (N0(qd(s)) + ld(s)Nl(qd(s)))dqd(s)

ds =
I(s) �= 0. The condition ṡ �= 0 is equivalent to σP �= 0 or
ζ �= 0.

Theorem 1 A step can be achieved if and only if the initial
value of ζ for this step is such that

ζ(0) > Zm = max
0≤s≤1

(
Φ(s)
δ2(s)

)
. (26)

C. Evolution of angular momentum during the impact phase

At the impact, due to equation (12), the evolution of ṡ is
such that ṡ+= ṡ−

α . Thus

σ+
P = δIσ

−
P . (27)

with δI = I(0)
I(1)α , where I is given in equation (22).



D. Conditions of existence and uniqueness of periodic motion

The combination of equations (25) and (27) defines the
evolution of ζ (or, equivalently, σP ) from one step to the
next. The evolution of the robot during one step is completely
defined by the value of ζ for one value s. Thus, we study the
evolution of ζ just before the impact ζ− = ζ(1) from one step
to the next, via the Poincaré map

ρ(ζ−) = (δIδ(1))2(ζ−) − Φ(1). (28)

A periodic admissible reference motion is defined by a peri-
odic evolution of the angular momentum, which is equivalent
to a fixed point of the Poincaré map ρ: ζ∗ = ρ(ζ∗).

¿From equation (28), taking into account that ζ(s) > 0, it
follows that:

• if (δIδ(1))2 = 1 and Φ(1) = 0, then any initial value ζ
produces a periodic reference motion.

• the poincaré map has a unique fixed point

ζ∗ = −Φ(1)
1−(δIδ(1))2 , (29)

if, and only if, Φ(1) and 1 − (δIδ(1))2 have different
signs.

Applying Theorem 1 and using (28), ζ∗ in (29) defines a
periodic reference motion if, and only if, the periodic angular
momentum is sufficient to produce the step: (δ1)

2
ζ∗ > Zm.

Theorem 2 A unique periodic reference motion exists if, and
only if −Φ(1)

1−(δIδ(1))2 >
Zm

(δI)2
. The periodic motion is defined by

equation (29).

E. Convergence Towards the Cyclic Reference Motion

Equation (28) is equivalent to

ρ(ζ−) − ζ∗ = (δIδ(1))2(ζ− − ζ∗). (30)

Consequently, solutions of equations (20,21) converge to the
periodic motion if, and only if, (δIδ(1))2 < 1.

Theorem 3 Solutions of the zero dynamics given by equations
(20,21) converge to the periodic reference motion if and only
if (δIδ(1))2 < 1.

Combining theorems 1, 2 and 3, the following corollary can
be deduced.

Corollary: The reference periodic motion is orbitally expo-
nentially stable if, and only if, the reference joints path is such
that:−Φ(1) > max(1−(δIδ(1))2

δ2
I

Zm, 0) and (δIδ(1))2 < 1.

V. SIMULATION RESULTS

The control law is evaluated here for the periodic path
depicted in the stick-diagram of Fig. 3. The joint path qd(s)
is defined with a degree four polynomial in s. The evolution
of the ZMP position is chosen to be a linear function of s. As
s varies from 0 to 1, ld will vary from −0.02m to 0.08m.

The reference trajectory ld(s), qd(s) can be the result of an
optimisation process since the cyclic motion, if it exists, can
be explicitly deduced via (29). A methodology allowing to do
this is given in [13].
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Fig. 3. The stick diagram of the desired trajectory. The configuration of the
robot is drawn for s = 0, 0.1, 0.2 . . . , 0.9, 1. Thus a sequence of pictures
of the robot is given. The desired motions of the robot are such that the
configuration of the robot coincides at some instant to each picture, but it is
not imposed that these instants are equally distributed within the period of
one step.
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Fig. 4. The evolution of ζ during the single support phase is characterized
by the functions Φ(s) and δ2(s). The position of the ZMP point is being
controlled to increase linearly, from back to front. Because the vertical
component of the velocity of the center of mass is directed upward at the
beginning of the step and then downward, δ(s) increases at the beginning of
the step and then decreases. Because the center of mass is behind the ZMP
point at the beginning of the step and then in front of the ZMP point, Φ(s)
increases at the beginning of the step and then decreases.

The evolution of δ(s) and Φ(s) are given in Fig. 4. Their
final values, Φ(1) = −205, and δ(1)2 = 0.9954 are useful for
constructing the Poincaré map. The behavior of ζ during the
impact is defined by δ2I , which is equal to 0.6422. The minimal
value of ζ for which a step can be achieved is Zm

δI
= 232. The

periodic motion is given by equation (29). The fixed point
occurs at ζ∗ = 569. The slope of the Poincaré return map
ρ is (δ(1)δI)2 = 0.6393, and because it is less than 1, the
corresponding periodic walking motion is exponentially stable.
The stability arises from the effect of the impact because δ(1)2

is close to 1.
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Fig. 5. The convergence towards a periodic motion is observed in simulation
with the proposed control law.

A simulation was done for ten steps, assuming no modeling



error and initializing the state of the robot on the periodic orbit,
a horizontal force (350 N) is applied for 0.2s < t < 0.24s at
the center of mass; see Fig. 5. Convergence toward a periodic
motion was obtained for each of the five joints of the robot.
As an illustration, the evolution of the angle of the torso is
depicted in Fig. 5-a. The same convergence is also evident in
the evolution of the position of the ZMP point with respect
to time in Fig. 5-b; for each step, its evolution is linear from
−0.02m to 0.08m except when the perturbation exists. Fig.
5-c presents the evolution of ṡ with respect to time; it clearly
converges toward a periodic motion. This control approach is
also robust with respect to modeling error [13].

A. Effect of the ZMP evolution

lmin lmax ζ∗ Zm

δ2
I

(δ(1)δI )2 ṡc(1) T [s]

-0.05 0.05 943.02 149.69 0.613 3.86 0.401
-0.04 0.06 823.92 175.44 0.621 3.62 0.437
-0.03 0.07 699.48 202.78 0.630 3.36 0.488
-0.02 0.08 569.18 231.61 0.639 3.04 0.569
-0.01 0.09 432.40 261.85 0.648 2.66 0.733

0 0.10 288.45 293.42 No Cyclic motion

TABLE I

THE EFFECT OF THE ZMP EVOLUTION

The evolution of the ZMP point throughout the step affects
the existence and stability of the periodic motion obtained with
the proposed control law. To illustrate this point, we consider
various linear evolutions of the position of the ZMP point with
different average values, ( ld(1)+ld(0)

2 ) while holding constant
the net change in the position of the ZMP point, ld(1)−ld(0) =
10 cm. Table I presents the main properties of the periodic
motion and of the control law with respect to the variation
of the average value of the ZMP position during one step.
Placing the average position of the ZMP closer to the toe
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Fig. 6. The motion of the robot is not stable, it does not converge to a
periodic motion, but the position of the ZMP remains inside of the sole of
the stance feet.

leads to larger values of (δ(1)δI)2 and smaller values of ζ∗

and average walking speed. When the center of mass is in front
of the ZMP point, the moment arm due to gravity speeds up
the motion. When the center of mass is behind the ZMP point,
the moment arm due to gravity slows down the motion. When
the average position of the ZMP is moved forward, the portion

of the step where gravity speeds up the motion decreases, and
thus the average walking speed decreases.

In the last row of table I, the value of ζ∗ is less than the
minimum value necessary to complete a step (i.e., it does
not satisfy equation (26)), and consequently a walking motion
cannot be produced. If the control law is used for this case,
the behavior shown in Fig. 6 is obtained. A perfect tracking of
the joint path is observed, the position of the ZMP satisfies
at each time the condition of non rotation of the feet (fig 6
left lower part) but the motion of the robot is not stable. The
robot does not fall down but it comes to a stop.

VI. CONCLUSION

For a planar biped, a control strategy was proposed based
on tracking a reference path in the joint space instead of a
reference function of time. This allows the simultaneous con-
trol of the path positions of the joints and the ZMP. The biped
adapts its time evolution according to the effect of gravity. A
stability study of the robot’s time evolution has been presented.
Easily testable analytical conditions have been presented for
the existence and uniqueness of a periodic motion for the
orbital exponential stability of a periodic motion.
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