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Abstract—Hybrid Vehicle fuel economy performance is highly
sensitive to the energy management strategy used to regulate
power flow among the various energy sources and sinks. Optimal
non-causal solutions are easy to determine if the drive cycle
is known a priori. It is very challenging to design causal
controllers that yield good fuel economy for a range of possible
driver behavior. Additional challenges come in the form of
constraints on powertrain activity, such as shifting and starting
the engine, which are commonly called “drivability” metrics
and can adversely affect fuel economy. In this paper, drivability
restrictions are included in a Shortest Path Stochastic Dynamic
Programming (SP-SDP) formulation of the real-time energy
management problem for a prototype vehicle, where the drive
cycle is modeled as a stationary, finite-state Markov chain. When
the SP-SDP controllers are evaluated with a high-fidelity vehicle
simulator over standard government drive cycles, and compared
to a baseline industrial controller, they are shown to improve
fuel economy more than 11% for equivalent levels of drivability.
In addition, the explicit tradeoff between fuel economy and
drivability is quantified for the SP-SDP controllers.

I. INTRODUCTION

Hybrid vehicles have become increasingly popular in the
automotive marketplace in the past decade. The most common
type is the electric hybrid, which consists of an internal
combustion engine (ICE), a battery, and at least one electric
machine (EM). Hybrids are built in several configurations
including series, parallel, and the series-parallel configuration
considered here. Hybrid vehicles are characterized by multiple
energy sources; the strategy to control the energy flow among
these multiple sources is termed “energy management” and is
crucial for good fuel economy. An excellent overview of this
area is available in [4].

The energy management problem has been studied exten-
sively in academic circles. Various control design methods are
used, including rule-based [5], [6], [7], [8], neural networks
[9], game theory [10], and fuzzy logic [11]. There are many
proposed methods available for both the non-causal (cycle
known in advance) and causal (cycle unknown in advance)
cases [12], [13], [14], as well as those with partial future
information [15], [16]. The most commonly used optimization
strategies are the Equivalent Consumption Minimization Strat-
egy (ECMS) [17], [18], [19], [20], [21], [22] and Stochastic
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or Deterministic Dynamic Programming [23], [24], [25], [26].
The majority of existing work focuses on controllers that
seek to minimize fuel consumption, while ignoring other
attributes that affect the smoothness and responsiveness of
vehicle acceleration, which are commonly referred to as
“drivability.” In practice, fuel-optimal controllers can lead to
excessive gear shifting and engine starting/stopping [27], [28],
[29], [30], and hence poor drivability. Previous research has
addressed drivability in a suboptimal manner by incorporating
penalties on engine starts in an ECMS formulation [18]. The
reference [31] addressed engine starts indirectly by including
a hysteresis term “to avoid a too frequent switch on - switch
off of the [internal combustion] engine, which would cause an
additional energy use and wearout.”

In this paper, drivability restrictions are directly incor-
porated in a causal, optimal controller design method for
the energy management system of a Hybrid Electric Vehicle
(HEV). The focus is on drivability with respect to engine start-
stop and gear shifts; a host of other drivability issues, such
as low-frequency longitudinal vibration and other attributes
which are typically mitigated by hardware design or low-level
control actions, are not considered. The main optimization
tool is Shortest Path Stochastic Dynamic Programming (SP-
SDP), which, as explained in [32], [33], [34], [26], is a specific
formulation of Stochastic Dynamic Programming (SDP) that
allows infinite horizon optimization problems to be addressed
without the use of discounting (a discount factor in the cost
function assures convergence by weighting future costs expo-
nentially less than current costs). In the energy management
problem, the power requested by the driver as a function of
time is modeled as a stationary, finite-state Markov chain [23].
The state space of the Markov chain is constructed to include
a terminal state corresponding to key-off [26]. The terminal
state is designed to be absorbing (that is, it is reached in finite
time with probability one, and there is zero probability of
transitioning out of it). If zero cost is incurred in the absorbing
terminal state, then the expected value of the cost function is
finite, even without the discount factor often used in hybrid
vehicle applications of SDP [33], [34].

The controllers generated through SP-SDP are causal state
feedbacks and hence are directly implementable in a real-time
control architecture. The controllers are provably optimal if the
driving behavior matches the assumed Markov chain model.
In this paper, the Markov chains representing driver behavior
are modeled on standard government test cycles, as in [23],
[26]. It is also possible to build the Markov chains on the basis
of real-world driving data, as reported in [35].

In addition to generating a class of optimal controllers,
the SP-SDP method allows direct study of the tradeoffs
between different performance goals, here, drivability and
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fuel economy. The ability to easily generate Pareto tradeoff
curves is perhaps just as interesting as a specific fuel economy
benefit. The designer can generate both the maximum attain-
able performance curve and causal controllers that generate
the computed performance. Drivability is emphasized in this
paper, but one could also study the fuel economy tradeoff
with other attributes such as emissions, battery wear, or engine
noise characteristics.

One place where SP-SDP can have a major impact is
in controller design for new vehicles. Significant effort is
required to develop a controller for a new drivetrain, especially
with a completely new architecture. The SP-SDP method can
automatically generate a provably optimal controller for a
given vehicle architecture and component sizing much faster
than a person could do it manually.

The work reported here is a collaborative effort between the
University of Michigan and Ford Motor Company. The vehicle
studied is a modified Volvo S-80 prototype and does not match
any vehicle currently on the market. As a benchmark, Ford
provided a controller developed for this prototype vehicle.
This industrial controller was described in [2] and is termed
hereafter the “baseline” controller. In addition, a high-fidelity
vehicle simulation model calibrated for the prototype vehicle
was provided; this is the same simulation model used by
Ford to develop HEV control algorithms and to evaluate fuel
economy and drivability for production vehicles [36].

The remainder of the paper is organized as follows. Sec-
tion II presents the vehicle architecture and two dynamic
models; one is a simplified vehicle model for controller design
and the second is the high-fidelity model mentioned above.
The drivability metrics used in the optimization problem are
presented in Section III. The particular form of infinite-horizon
stochastic optimal control used here, SP-SDP, is presented in
Section IV, and a key result that greatly enhances off-line
computational speed is presented in Section V. The procedure
for sweeping out the Pareto tradeoff surface is presented
in Section VI; this involves computing a large family of
controllers based on the simplified control-oriented model
and evaluating each controller’s performance with the high-
fidelity model, which will more closely approximate the actual
performance on the prototype vehicle. The main results of
the work are presented in Sections VII and VIII. Concluding
remarks are given in Section IX. The Appendix provides
additional information on enhancing off-line computational
speed for SP-SDP and points out a relation between SP-SDP
and ECMS.

II. VEHICLE

A. Vehicle Architecture

The vehicle studied in this paper is a prototype series-
parallel electric hybrid and is shown schematically in Fig. 1.
A 2.4 L diesel engine is coupled to the front axle through a
dual clutch 6-speed transmission. An electric machine, EM1,
is directly coupled to the engine crankshaft and can generate
power regardless of clutch state. A second electric machine,
EM2, is directly coupled to the rear axle through a fixed
gear ratio without a clutch and always rotates at a speed
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Fig. 1: Vehicle Configuration

proportional to vehicle speed. Energy is stored in a 6 Ah
(1.9 kWh) battery pack with a recommended State of Charge
(SOC) range of 0.35-0.65. The system parameters are listed
in Table I.

TABLE I: Vehicle Parameters

Engine Displacement 2.4 L
Max Engine Power 120 kW
Electric Machine Power EM1 (Front) 15 kW
Electric Machine Power EM2 (Rear) 35 kW
Battery Capacity 1.9 kWh (6 Ah)
Battery Power Limit 34 kW
Battery SOC Range 0.35-0.65
Vehicle Mass 1895 kg

B. Vehicle Models

The work presented in this paper uses two separate dynamic
models to represent the same prototype hybrid vehicle. The
first model is quite simple: It has a sample time of 1s, uses
lookup tables, and has very few states. It is used for controller
design via dynamic programming, and is called the “control-
oriented” model. The second model, provided by Ford Motor
Company, is a complex, MATLAB/Simulink-based model with
a large number of parameters and states [36]. Each subsystem
in the vehicle is represented by an appropriate block with its
own dynamics and low-level controllers. This model, which
accurately represents the transient response of the engine,
transmission and driveline, is referred to as the “high-fidelity”
model in the remainder of the paper.

This combination of models allows the controller to be
designed on the basis of a simple model for computational
tractability, while providing performance assessment on the
basis of a model that much more closely reflects the compli-
cated dynamics of the prototype vehicle.

C. Control-Oriented Model

When using Shortest-Path Stochastic Dynamic Program-
ming, the off-line computation cost is very sensitive to the
number of system states. For this reason, the model used to
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develop the controller must be as simple as possible. The
vehicle model used here contains the minimum functionality
required to model the vehicle behavior of interest on a second-
by-second basis. Dynamics much faster than the sample time
of 1s are ignored. Long-term transients that only weakly
affect performance are also ignored; coolant temperature is
one example.

The vehicle hardware allows three main operating condi-
tions:

1) Parallel Mode-The engine is on and the clutch is
engaged.

2) Series Mode-The engine is on and the clutch is disen-
gaged. The only torque to the wheels is through EM2.

3) Electric Mode-The engine is off and the clutch is
disengaged; again the only torque to the wheels is
through EM2.

The model does not restrict the direction of power flow. The
electric machines can be either motors or generators in all
modes.

The dynamics of the internal combustion engine are ig-
nored; it is assumed that the engine torque exactly matches
valid commands and the fuel consumption is a function only
of speed, ωICE , and torque, TICE . The fuel consumption ṁf

is derived from a lookup table based on dynamometer testing,

ṁf = F (ωICE , TICE).

The dual clutch transmission has discrete gears and no
torque converter. The transmission is modeled with a constant
mechanical efficiency ηtrans. Gear shifts are allowed every
time step and transmission dynamics are assumed negligible.
While the physical configuration of the transmission allows
arbitrary shifting, the low-level transmission controller en-
forces sequential up/down shifting and the model respects this
assumption. This technique is advantageous in hardware be-
cause shifts execute by smoothly transitioning between the two
clutches and continually transmitting torque. One transmission
shaft holds the even gears and the other the odd gears. An
arbitrary gear may be selected when the clutch is disengaged.
When the clutch is engaged, the vehicle is in parallel mode
and the engine speed is assumed directly proportional to wheel
speed based on the current gear ratio Rg ,

ωICE = Rgωwheel.

The electric machine EM1 is directly coupled to the
crankshaft, and thus rotates at the engine speed ωICE ,

ωEM1 = ωICE .

In parallel mode, when providing power to the wheels, the
torques TICE and TEM1 are proportional to wheel torque
based on the current gear ratio Rg and ηtrans; during re-
generative braking, for example, when absorbing power from
the wheels1, the torques are proportional based on Rg and
1/ηtrans. Similarly, the rear electric machine torque TEM2

is proportional to the machine’s gear ratio REM2 and rear
differential efficiency ηdiff when providing power, and is

1Note that the model accounts for power loss in both directions.

proportional to REM2 and 1/ηdiff when absorbing power.
The total wheel torque Twheel from both axles is thus the sum
of the ICE and EM1 torques to the wheel and the rear electric
machine EM2 torque to the wheel, namely

Rgτtrans(TICE + TEM1) +REM2τdiff (TEM2) = Twheel,
(1)

where

τtrans(T ) =

{
ηtransT if T ≥ 0
T
η trans

otherwise,

and similarly for τdiff .
The clutch can be disengaged at any time, and power is

delivered to the road through the rear electric machine EM2.
This condition is treated as the neutral gear 0, which combines
with the 6 standard gears for a total of 7 gear states. If the
engine is on with the clutch disengaged, the vehicle is in series
mode. The engine-EM1 combination acts as a generator and
can operate at an arbitrary torque and speed. If the engine is
off while the clutch is disengaged, the vehicle is in electric
mode. The clutch is never engaged with the engine off, so
this mode is undefined and not used.

The battery system is similarly reduced to table lookup
form. The electrical dynamics due to the motor, battery, and
power electronics are assumed sufficiently fast to be ignored.
The energy losses and efficiencies in these components can
be grouped together such that the change in battery SOC is
a function κ̄ of electric machine speeds ωEM1 and ωEM2,
torques TEM1 and TEM2, and battery SOC at the current time
step,

SOCk+1 = κ̄(SOCk, ωEM1k
, ωEM2k

, TEM1k
, TEM2k

). (2)

In this simplest configuration, assuming a known vehicle
speed, the only state variable required for the vehicle model
is the battery SOC. Changes in battery performance due to
temperature, age, and wear are ignored. Additional states are
required to represent the stochastic drive cycle and to track
drivability metrics.

During operation, the desired wheel torque is defined by the
driver. If we assume the vehicle must meet the torque demand
perfectly, then the sum of the ICE and EM contributions to
wheel torque (1) must equal the demanded torque Tdemand,

Twheel = Tdemand.

This adds a constraint to the control optimization, reducing the
4 control inputs to a 3 degree-of-freedom problem. In parallel
mode, the control inputs are Engine Torque, EM1 Torque, and
Gear. In series mode, the electric machine command becomes
EM1 Speed.

Optimization using the control-oriented model assumes a
perfect driver during the design process; specifically, the
desired road power is calculated as the exact power required
to drive the cycle at that time. A PID controller based on
velocity feedback is used to represent a causal driver during
simulation of the high-fidelity model. Now, given vehicle
speed, demanded road power and this choice of control inputs,
the dynamics become an explicit function κk of the state
Battery SOC and the three control choices shown in Fig. 2,
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Fig. 2: Battery SOC Dynamics model. Parallel mode inputs
are Engine Torque, Electric Machine-1 Torque, and Gear.
The vehicle velocity and required torque are provided by the
stochastic driver model. In Series Mode, the Electric Machine-
1 command is speed rather than torque.

SOCk+1 = κk(SOCk, TICEk
, TEM1k

, Geark). (3)

In series mode, TEM1 is replaced with ωEM1. The engine fuel
consumption can be calculated from the control inputs.
Operational Assumptions:

This control-oriented model uses several assumptions about
the allowed vehicle behavior.

1) Regenerative braking is used as much as possible up to
the actuator limits; friction brakes provide any remaining
torque.

2) The clutch in the transmission allows the diesel engine
to be decoupled from the wheels, permitting all-electric
or series operation.

3) There is no ability to slip the clutch for vehicle launch.
4) There are no traction control restrictions on the amount

of torque that can be applied to the wheels.

D. High-Fidelity Vehicle Simulation Model

The high-fidelity model contains the baseline controller
algorithm. To generate simulation results using this controller,
an automated driver follows the target cycle using the baseline
controller. To use the high-fidelity model with the control al-
gorithm developed here, the SP-SDP controller is implemented
in Simulink by interfacing appropriate feedback and command
signals: Battery State of Charge, Vehicle Speed, Engine State,
Gear Command, etc. The high-fidelity model can then be
driven by the SP-SDP controller along a given drive cycle
using a causal driver model.

E. Baseline Industrial Controller

The baseline prototype energy management controller stud-
ied here is quite complex. Its key features are contained in
three modules, as depicted in Fig. 3. Driver power demand
is determined from pedal position. One module determines
the battery power flow and adds it to the driver demand to
determine the Total Power. A second module determines the

Desired 
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Fig. 3: High Level Baseline Controller Architecture.

engine state based on the Total Power using a state machine
with hysteresis. A third rule-based module then determines
individual actuator commands (e.g., power from the engine
and the two electric machines) based on the Total Power and
the desired engine state. The gear is selected independently by
the transmission controller.

The primary tuning parameters are five scalar functions, two
in the Battery Power module and three functions of vehicle
speed in the Engine State Machine module. One advantage of
the baseline architecture is that engine behavior and battery
charge maintenance features are largely confined to their
respective blocks, simplifying the tuning process considerably.

III. DRIVABILITY CONSTRAINTS

A. Overview

Drivability is a term that covers many aspects of vehicle
performance including acceleration, engine noise, braking, au-
tomated shifting activity, and shift quality [37], [38]. Meeting a
customer’s expectations of drivability often involves a tradeoff
with fuel economy. As an example, optimal fuel economy
for gasoline engines typically dictates upshifting at the lowest
possible speed, but this leaves the driver with little acceleration
ability after the upshift. Consequently, upshifts are scheduled
to occur at a speed that is higher than the value that is best
for fuel economy.

Industry experts were consulted to assist in quantifying
aspects of drivability that are strongly coupled to the energy-
management controller. It was recommended that attention be
focused on the frequency and timing of gear-shift events and
engine-start/stop events. The mean time between events and
the number of short-duration events were recommended as
metrics, where a short-duration event means that dwell time in
a particular state is less than a specified acceptable value. For
the transmission, a particularly annoying short-duration event
is “hunting,” that is, rapid shifting between the same two gears.
Figure 4 shows 7 possible metrics based on mean and short-
duration drivability metrics for the engine and transmission.
For later use, these metrics are referred to as the “complex”
drivability metrics.

B. Simplified Drivability Metrics

In order to incorporate these complex drivability metrics
into the model, and then into the optimization problem, states
would have to be added to keep track of the duration between
shifts and between engine starts and stops, as well as the
mean number of these events over a given time interval.
While this is theoretically possible, the well-known “curse
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Gear Hunting EventsEngine Off Dwell Time <X seconds

Gear Dwell Time < X secondsEngine On Dwell Time < X secondsShort Duration Events

Mean Engine Off Time

Mean Time in GearMean Engine On TimeMean Dwell Times

Transmission BehaviorEngine Behavior

Gear EventsEngine EventsSimplified Metrics

Fig. 4: Drivability Metric Reduction. The seven complex
engine and transmission metrics are divided into two cat-
egories, mean dwell times and short-duration dwell times.
These metrics are then reduced to the two simplified metrics.

of dimensionality” would render the associated stochastic
optimization problem computationally intractable. Even if the
optimization problem could be solved, the designer would be
faced with the difficult job of assigning relative weights to
each of the metrics when performing a tradeoff analysis.

We chose therefore to simplify these complex metrics into
two measures of drivability that can be more easily used. The
first drivability metric is termed gear events, and is defined to
be the total number of shift events on a given trip. The second
drivability metric is termed engine events, and is defined to be
the total number of engine start and stop events on a trip. By
definition, engine starts and stops are each counted as an event.
Each shift with the clutch engaged is counted as a gear event,
whereas engaging or disengaging the clutch is not counted as
a gear event, regardless of the gear before or after the event.

Figure 5 shows that the complex and simple metrics are
strongly correlated; specifically, the figure shows that reducing
the total number of engine on-off events over a drive cycle
reduces the occurrence of events where the engine is on for
less than 3, 5, 10 or 30 seconds. The data are shown along
with a straight-line least-squares fit. The other complex metrics
listed in Fig. 4 show similar correlations, being approximately
monotone functions of the simple metrics. The data in Fig.
5 were obtained by simulating the SP-SDP controllers of the
ensuing sections on the high-fidelity model. The results are
presented here in order to motivate the use of the simplified
metrics in the rest of the paper.

C. Inclusion of Drivability Constraints in the Cost Function

The first step in the design of a controller with acceptable
drivability properties is to pose a cost function that permits
a compromise between fuel economy and drivability. This is
achieved by the use of penalties. Specifically, the cost function
over a particular drive cycle (suppressing the summing index)
is

J =

T∑
0

ṁf + α

T∑
0

IGE(x, u) + β

T∑
0

IEE(x, u),

where I(x, u) are indicator functions and thus equal one when
a state and control combination produces a gear event (GE)
or engine event (EE) as defined in Section III-B, and are zero
otherwise. T is the total trip time, from key-on to key-off. The
drivability behavior is not incorporated as a direct constraint,
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Fig. 5: Engine on durations less than some number of seconds
compared to the simplified engine events metric. Data are
shown for cutoffs of 3, 5, 10, and 30 seconds.

so the search for the weighting factors α and β involves
some trial and error because the mapping from penalty to
outcome is not known a priori. Note that setting α and β to
zero corresponds to solving for optimal fuel economy without
regard to drivability.

Controllers based only on fuel economy and drivability
completely drain the battery as they seek to minimize fuel. An
additional cost is added to ensure that the vehicle is charge
sustaining over the cycle. This SOC-based cost only occurs at
the terminal state, xT (that is, at the end of the trip at key-off),
and is represented as a function φSOC(xT ). The performance
index for a particular drive cycle is then

J =

T∑
0

ṁf+α

T∑
0

IGE(x, u)+β

T∑
0

IEE(x, u)+φSOC(xT ).

(4)

IV. SHORTEST PATH STOCHASTIC DYNAMIC
PROGRAMMING

A. Problem Formulation
As the cycle is not known exactly in advance, this opti-

mization is conducted in the stochastic sense by minimizing
the expected sum of a running cost function c(xk, uk, wk),
where xk is the state, uk is a particular control choice in the
set of allowable controls U(xk), and wk is a random variable
arising from the unknown drive cycle. The expectation over the
random process w is denoted Ew. The optimization problem
is

minEw
∞∑
k=0

c(xk, uk, wk) (5)

subject to the system dynamics,
xk+1 = f(xk, uk, wk) (6)

with uk ∈ U(xk), where

U(xk) = {uk | g1(xk, uk) ≤ 0, g2(xk, uk) = 0 }.
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Actuator limits, torque delivery requirements, and other system
requirements are incorporated in the constraints g1 and g2,
which are enforced at each time step, in contrast to drivability
goals, which involve performance over the whole cycle.

To implement the optimization goal (5), the running cost
function is prescribed to represent (4),

c(x, u, w) = ṁf (x, u)+αIGE(x, u)+βIEE(x, u)+φSOC(x,w).
(7)

The SOC-based cost φSOC(x,w) applies only at the end
of the trip, when the key-off event occurs. As explained in
Section IV-D, the transition to key-off is captured by the
stochastic drive-cycle model in the random process w. The
cost φSOC(x,w) at the key-off event replaces the terminal-
time cost φSOC(xT ) in (4).

B. Bellman Equation

To determine the optimal control strategy for this vehi-
cle, the SP-SDP algorithm is used [25], [26], [33], [34].
This method directly generates a causal, time-invariant, state-
feedback controller. Characteristics of future driving behavior
are specified via a finite-state Markov chain rather than exact
future knowledge. Given the system model (6), the optimal
cost V ∗(x) over an infinite horizon is a function of the state
x and satisfies

V ∗(x) = min
u∈U(x)

Ew[c(x, u, w) + V ∗(f(x, u, w))], (8)

where c(x, u, w) is the instantaneous cost as a function of state
and control; (7) is a typical example. This equation represents
a compromise between minimizing the current cost c(x, u, w)
and the expected future cost V (f(x, u, w)). The control u
is selected based on the expectation over w, rather than a
deterministic cost, because the future can only be estimated
based on the probability distribution of w. Note that the cost
V (x) is a function of the state only. This cost is finite for all
x if every point in the state space has a positive probability
of eventually transitioning to an absorbing state that incurs
zero cost from that time onward. Here, the absorbing state is
key-off, the end of the drive cycle.

The optimal control u∗ is any control that achieves the
minimum cost V ∗(x)

u∗(x) = argmin
u∈U(x)

Ew[c(x, u, w) + V ∗(f(x, u, w))]. (9)

Remark: At each time step k, random variable wk in (8) and
(9) may be conditioned on the state and control input,

P (wk|xk, uk). (10)

C. Stochastic Drive-Cycle Model

The drive cycle is modeled as a Markov chain. The drive
cycle is assigned two states: current velocity vk and current
acceleration ak, which are included in the full system state xk.
The random variable wk in (8) is the acceleration at the next
time step. Specifying the drive cycle is equivalent to assigning
a probability distribution to w, that is, specifying

P (ak+1|vk, ak) (11)

for pairs vk, ak. Following [25], the transition probabilities
(11) are estimated from known drive cycles that represent
typical behavior, referred to as “design cycles.” The variables
vk, ak, and ak+1 are discretized to form a grid. For each
discrete state [vk,ak] there are a variety of outcomes ak+1.
The probability of each outcome ak+1 is estimated based
on its frequency of occurrence during the design cycle, and
is clearly a function of the state as in (10); see [25], [26]
for more detail. Specific design cycles include the standard
cycles used to establish “window sticker” fuel economy such
as the Federal Test Procedure (FTP). As mentioned previously,
design cycles might also include measured driving behavior
over “real world” vehicle use.

Bringing this all together, the full system state vector x
contains five components: one state for the vehicle (Battery
SOC), two states for the stochastic driver (vk, ak), and two
states to study drivability (Gear and Engine State). This
formulation is termed the “SP-SDP-Drivability” controller. A
summary of system states is shown in Table II.

TABLE II: Vehicle and Driver Model States, SP-SDP Driv-
ability Controller

State Units
Battery Charge (SOC) unitless

Vehicle Speed m/s
Vehicle Acceleration m/s2

Gear Integer 0-6
Engine State On or Off

The inputs to the model are engine torque, gear number, and
the powers or torques of the two electric machines. Looking
ahead, Section V shows how an off-line optimization step can
be used to replace the two electric machines by a single input
representing total electric machine power, thereby reducing
the inputs for the optimization problem to engine torque, gear
number, and total electric machine power. The power balance
to meet driver demand given in (1) then allows the elimination
of one more input. The final control input u that will be used in
the optimization problem consists therefore of Engine Torque
and Gear.
Remarks: (a) The form of the Bellman equation (8) associated
with any dynamic programming problem allows an analytical
comparison with ECMS and is discussed in Section D of
the Appendix. (b) As demands on controller functionality
grow, so also must the complexity of the design model. For
example, to study fuel economy using deterministic dynamic
programming, the only state required is the battery state of
charge; the control inputs are Engine Torque and Gear. Two
more states are required to study the stochastic version, and the
simplified drivability model used here requires two additional
states.

D. Terminal State

As mentioned in Section IV-B, the dynamics of the system
must contain an absorbing state. For this case, the absorbing
state represents key-off, when the driver has finished the trip,
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shut down the vehicle, and removed the key. Once the key-
off event occurs, there are no further costs incurred, the trip
is over, and the vehicle cannot be restarted. The probability
of transitioning to this state is zero unless the vehicle is
completely stopped (vk, ak = 0). The probability of a trip
ending once the vehicle is stopped is calculated based on
the design cycles. This probability is less than one because a
stopped vehicle could represent a traffic light or other typical
driving event that does not correspond to the end of a trip.

For fuel economy certification, the battery final SOC must
be close to the initial SOC. To include this in the SP-SDP
formulation, a cost is imposed when the vehicle transitions
into the key-off state and the SOC is less than the initial SOC.
This penalty accrues only once, so the absorbing state has zero
cost from then onwards. Here we add a quadratic penalty in
SOC if the final SOC is less than the initial SOC. No penalty
is assigned if the final SOC is higher than the initial SOC.

The effects of this key-off penalty are clearly visible in
the value function V (x). For the fuel-only case, the value
function depends on the current acceleration, velocity, and
SOC. Fig. 6 shows V (x) as a function of SOC for one
particular acceleration and several velocities, with target final
SOC equal to 0.5. Notice that at low velocities, the value
function has a pronounced quadratic shape for SOC under
0.5, but it flattens out at higher speeds. The SOC penalty only
occurs at key-off, which can only occur at zero speed. Thus
the SOC key-off penalty strongly affects the value function at
low speeds, when there is a higher probability of key-off in
the near future. At higher speeds, there is little chance of key-
off anytime soon, so the SOC penalty only weakly affects the
value function. Moreover, there will be a deceleration phase
before reaching zero speed and thus an opportunity to recharge
the battery.

E. Implementable Constraints

Stochastic Dynamic Programming is inherently computa-
tionally intensive and can quickly become intractable. The
computational burden is exponential in the number of system
states; thus the cost function (7) should depend on a minimal
number of states.

For optimization, at each time step a penalty is assigned
if either a shift or engine event occurs. The two additional
states required to implement this cost function are the current
gear and the engine state. Thus, including drivability in the
optimization imposes roughly a factor of ten increase in
computation over the fuel-only case.

In contrast, suppose the metric of interest were based on a
moving window in time. The number of required grid points
scales with the number of time steps used to specify the
metric. For the 1 second update time studied here, penalizing
engine events of 5 seconds duration or less (rather than the
simple on/off used here) would require 5 grid points for
the time history, increasing the size of the state-space by a
corresponding factor of 5 over the on/off case.

V. COMPUTATION REDUCTION

A. Theory

Proposition: (Minimization Decomposition)
Consider a Bellman equation of the form

V ∗(x) = min
û∈Û(x),ū∈Ū(x,û)

Ew[c(x, û, ū, w) + V ∗(f(x, û, w))],

(12)
and define

ĉ(x, û) = min
ū∈Ū(x,û)

Ew[c(x, û, ū, w)]. (13)

Then V ∗(x) satisfies (12) if, and only if, it satisfies

V ∗(x) = min
û∈Û(x)

Ew[ĉ(x, û) + V ∗(f(x, û, w))].� (14)

The proof and more detail are available in the Appendix.
This result allows a significant reduction in computational
complexity for problems that have the specific structure (12).
The reduced Bellman equation (14) may be solved using only
the reduced control space Û(x). This structure appears quite
often in energy management problems (see Appendix).

The above decomposition has been exploited in previous
work without explicit theoretical justification [16], [39]. A
typical example is the power-split HEV configuration which
uses engine power and speed as inputs without an engine
speed state [39]. The fuel-minimizing engine speed (ū) for
each engine power (û) is precomputed and stored as a table
(see Appendix).

The following subsection details the physical explanation of
the structure (12) for the vehicle considered in this work and
how the decomposition is implemented.

B. Super Electric Machine

In comparison to previous work in [1], the addition of
a second electric machine makes the computation of a SP-
SDP solution more complex by forcing the algorithm to
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consider an additional dimension in the control space. If the
additional control variable is discretized with say N = 10
points, the size of the minimization operation in (8) over pairs
(x, u) increases by a factor of ten. Exploiting the structure
represented by (12) and using Minimization Decomposition
reduces the computational cost to that of a vehicle with a
single electric machine, i.e., a 90% reduction. The addition of
the second electric machine is then approximately free in terms
of computing an off-line solution to the SP-SDP problem.

Intuitively, Minimization Decomposition lumps the two
electric machines into a single “Super Electric Machine.”
This device is a black box that takes a desired wheel-torque
command as an input and uses the vehicle velocity, engine
torque, and gear to achieve the desired torque with minimal
electric power, as shown in Fig. 7. The required minimization
is static, and in an off-line setting such as SP-SDP, can be done
once and reused. Once the static optimization is performed,
the Super Electric Machine appears as a single power source
for the SP-SDP optimization. Internally, however, the Super
Electric Machine optimizes between the two (or possibly
more) electric machines and issues appropriate commands.

A more technical justification follows. The torque balance
(1) allows a tradeoff between the two electric machine torques.
The system dynamics are only affected by the net change in
SOC

û : δSOC (15)

and not by the split of the electric machine torques, which can
be defined by one command

ū : T̄EM2. (16)

For a given T̄EM2, velocity, and gear, T̄EM1 is exactly
determined by δSOC. Since the power-split optimization is
static (i.e., independent of the dynamic states of the model,
including SOC), it takes the form (12) and can be computed
a priori using (13) without loss of optimality. This reduces
the dimension of the control space by one. The fundamental
assumption that allows this to work is that the electric machine
behaviors depend only on the current values of the EM torque
commands, current gear, and velocity, and in particular, do not
depend on their past values. For any control command under
consideration, the knowledge of current gear, velocity, T̄EM2,
δSOC, and the required wheel torque uniquely determines
all the terms in the torque balance (1). An optimal ū can
then be selected as in (13). The required engine torque is
determined from the torque balance, accounting for for the
direction-dependent efficiency losses in the transmission.

The physical control inputs to the system are engine torque,
gear, EM1 torque and EM2 torque. The constraint to match
driver demand torque removes one degree-of-freedom. By
replacing the two electric machine commands with a single
electric wheel torque command, the SP-SDP algorithm has
only 2 control inputs.

VI. SIMULATION PROCEDURE

SP-SDP-based controllers are compared to a baseline in-
dustrial controller. SP-SDP controllers are designed using the
control-oriented model and evaluated using the high-fidelity

Gear
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Torque Command
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EM-S
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Internal Function:

Optimize
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Torque Command

+
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Total Wheel Torque

Fig. 7: Schematic diagram of a conceptual “Super Electric
Machine” that optimizes the mix between the two electric
machines. This allows one degree of freedom of the control
optimization to be carried out off-line while maintaining the
optimality of the solution.
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Fig. 8: Federal Test Procedure (FTP) and New European Drive
Cycle (NEDC).

vehicle simulation model of Section II-D. This demonstrates
some robustness by using two models of the same vehicle,
differing in the level of detail in their dynamics. Strictly
speaking, the optimality guarantees are no longer valid be-
cause the test model is different from the design model. For
practical purposes, a strictly optimal model-based controller
is unattainable in hardware because a model will always have
some mismatch with a real vehicle. Demonstrating excellent
performance on the (exact) design model is only marginally
useful as it presents no model uncertainty. By designing the
controller on a simple model and testing on a (not perfectly
matched) complex model, we more closely approximate the
process of designing on the basis of a model and testing on
hardware.
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Both SP-SDP and the baseline controllers are simulated on
two government test cycles, the US Federal Test Procedure and
the New European Drive Cycle (NEDC), which are shown in
Fig. 8. Procedurally, this is conducted as follows:

1) A family of SP-SDP controllers is designed according
to the methods of Section IV. A family is generated by
fixing the model driving statistics and sweeping the 2
drivability penalties α and β in (7).

2) Each controller in the family is simulated on the high-
fidelity model using a causal driver, thus accounting
for all the dynamics and real vehicle characteristics
neglected in the optimization.

3) The fuel economy and drivability metrics are recorded.
Fuel economy is computed in units of MPG (Miles
driven Per Gallon of fuel consumed), and hence larger
numbers mean better fuel economy.

In the end, each family contains a few hundred individual
controllers which have each been simulated on the cycle in
question. Each simulation yields a data point with associated
fuel economy and drivability metrics. Each controller in the
family has different drivability and fuel economy characteris-
tics because of the varying drivability penalties.

Because the simulations on the high-fidelity model use a
causal driver model, the final SOC is not guaranteed to exactly
match the starting SOC. This could yield false fuel economy
results, so all fuel economy estimates are corrected based on
the final SOC of the drive cycle. This is done by estimating
the additional fuel required to charge the battery to its initial
SOC, or the potential fuel savings shown by a final SOC that
is higher than the starting level. This correction is applied
according to

∆mf = CBatt∆SOC
BSFCmin

ηRegenmax

(17)

where ∆mf is the adjustment to the fuel used, CBatt is
the battery capacity, ∆SOC is the difference between the
starting and ending SOC, BSFCmin is the best Brake Specific
Fuel Consumption for the engine, and ηRegenmax is the best
charging efficiency of the electric system. This correction is a
reasonable approximation but not exact; the exact correction
depends on the controller and the particular cycle. For the
FTP cycle, the mean fuel economy correction for the SOC
deviations presented in Fig. 9e is 1.6%, with a 1.3% standard
deviation. Hence, using this simple correction does not change
the conclusions of the presented results in any substantial way.

Fuel economy numbers in this paper always include the
SOC correction. The fuel economy of the baseline controller
running the FTP cycle is used as the nominal value for
normalization. Therefore the normalized fuel economy of the
baseline controller on FTP is one.

VII. RESULTS: PERFORMANCE TRENDS

A. Fuel Economy Results

The three metrics of interest in this paper are the numbers
of gear and engine events, and the total fuel consumption
corrected for SOC. The family of controllers generated as

described in Section VI yields the results shown in Fig. 9
for the FTP cycle and the NEDC.

Figs. 9a and 9b show 3-D scatter plots of fuel economy
versus gear and engine events for the two cycles. Each point
represents a single controller driven on the cycle in question.
The total numbers of gear events and engine events are
shown on the horizontal axes, while fuel economy is shown
on the vertical axis as normalized MPG2. The combination
of these points form a surface in 3-D space depicting the
tradeoff surface of various operating conditions. Figure 9a
shows a family of controllers designed using FTP statistics
running the FTP cycle. Fuel economy data presented in this
paper are normalized to the fuel economy of the baseline
controller on FTP, shown as a large solid square. Hence, a
fuel economy greater than one means more miles would be
traveled using the same fuel as consumed by the baseline
controller, or equivalently, less fuel would be consumed for
the same distance traveled. A polynomial surface is fit to the
raw data and used to generate isoclines of constant number of
gear events, shown as solid and dashed lines.

Fig. 9c is a 2-D view of Fig. 9a looking along the gear events
axis. Each line in the plot represents a constant number of gear
events, while the horizontal and vertical axes show the number
of engine events and normalized fuel economy respectively.
This particular vehicle is relatively insensitive to the number of
gear events, so most of the results concentrate on the tradeoff
between engine activity and fuel economy. The final SOC for
these simulations is shown in Fig. 9e. All simulations start at
0.5 SOC.

Similarly, a family of controllers is designed and simulated
on the NEDC. Fuel economy results are again shown in 3-D
and 2-D in Figs. 9b and 9d, while the final SOC is shown
in Fig. 9f. Again, fuel economy is normalized to the baseline
controller performance on FTP, so the baseline controller is
slightly less fuel efficient on NEDC (0.99) than FTP (1.00).

B. Discussion

The frontiers of the 2-D and 3-D point clouds in Fig. 9
clearly demonstrate the tradeoff between fuel economy and
drivability. The plot of final SOC for the FTP cycle (Fig. 9e)
shows a distinct downward trend for large numbers of engine
events. The target final SOC is 0.5, which the controllers come
very close to achieving when engine events are unrestricted
(low penalties). The final SOC penalty φSOC(x,w) in (7) used
in the control design process is only applied if the final SOC is
below this target. For final SOCs above the target, the only cost
is the fuel spent charging the battery. With smaller numbers
of engine events, the controller has less freedom to turn the
engine on and charge the battery. In effect, the controllers
become more conservative and maintain higher SOCs to avoid
either additional engine starts or a final SOC that is too low.

An interesting phenomenon occurs when the engine events
penalty is very high. In this case, to avoid engine shut-down,
the only option is to disengage the clutch and enter series

2Recall that more miles per gallon means better fuel economy, while the
inverse would hold if units of liters per 100 kilometers were used.
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(20 GE) lines.
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triangles (25 GE) black squares (75 GE).

0 5 10 15 20 25 30
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Engine Events

N
or

m
al

iz
ed

 M
P

G

 

 

SP−SDP
Baseline− 19 Gear Events
5 Gear Event Fit
5 Gear Event Data
20 Gear Event Fit
20 Gear Event Data

20 Gear Events

5 Gear Events

(d) NEDC: 2-D view along the gear events axis of Fig. 9b. The
data used to fit the constant gear event isoclines are shown as blue
triangles (5 GE) black squares (20 GE).

0 20 40 60 80 100 120
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Engine Events

S
O

C

 

 

SP−SDP
Baseline

(e) FTP: Final SOC for the cycle.

0 5 10 15 20 25 30
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Engine Events

S
O

C

 

 

SP−SDP
Baseline

(f) NEDC: Final SOC for the cycle.

Fig. 9: Performance of SP-SDP controllers on FTP and NEDC. A separate family of controllers is designed for FTP and NEDC
using each cycle’s statistics. The family is designed by sweeping the parameters α and β in the cost function (7). Figs. 9a and
9b show the data as a 3-D scatterplot of fuel economy vs. drivablity events. Fuel economy is presented in miles per gallon,
so higher is better, and normalized so that the baseline controller has a fuel economy of 1.0 on FTP. SP-SDP controllers are
shown as small dots (red). The baseline controller is shown as a large solid square (green). Figs. 9c and 9d show the view
along the gear events axes of Figs. 9a and 9b respectively. The raw data points, isoclines, and baseline controller are still
visible. Figs. 9e and 9f show the final SOC for these controllers. All controllers start with SOC=0.5.
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mode. With this artifice, it is possible to have a cycle with no
other engine events than the initial start and final stop.

The results show some unexpected trends. Figs. 9c and 9d
show a slight decrease in fuel economy for large numbers of
engine events. In some cases on FTP, decreasing the number
of gear events actually increases fuel economy (9c). There are
two issues here: The optimization is with respect to expected
value and not a single sample path as in the plot, and the plot
depicts controller performance on the high-fidelity model and
not the control-oriented design model. To determine which
of these two explanations is the correct one, simulations of
controller performance for the FTP cycle were conducted on
the simplified vehicle model (i.e., the control design model)
in order to eliminate the issue of model mismatch. These
simulations show the same trends discussed above, implying
that model mismatch is not causing these phenomena. Large
numbers of cycles were then simulated [35] to check the
performance in the expected sense rather than for a single
cycle. This second set of simulations show fuel economy is
monotonic in both gear and engine events as one would expect.

The SP-SDP results show significant (11%) performance
improvements over the baseline controller for the metrics
considered here. Production controllers incorporate many ad-
ditional attributes, such as noise, harshness, durability, safety,
accessory loading, diagnostics, etc. These attributes may de-
crease the performance margin when fully incorporated. One
obvious example is emissions, which was not considered in
either the baseline or SP-SDP controllers. For previous work
on NOx emissions, see [40], [23], [41].

VIII. RESULTS: DETAILED PERFORMANCE

A. Results

Several controllers are studied in greater detail on the FTP
cycle, which generally yields more interesting behavior than
the NEDC. The performance of the baseline controller is
compared to 3 SP-SDP controllers in Table III, all running
the FTP cycle. The SP-SDP controllers are designed using
FTP statistics and are selected from those shown in Figs. 9a,
9c, and 9e. SP-SDP #1 is the controller with the best corrected
fuel economy without regard to drivability. The peak of the
fuel economy surface (Fig. 9a) is very close to the baseline
controller operating point in terms of drivability. SP-SDP #2
has the closest drivability metrics to the baseline controller,
and is closely related to SP-SDP #1. SP-SDP #3 is selected by
finding a controller with similar fuel economy to the baseline
controller and about half the number of drivability events.
Essentially, we are presenting two possible design choices:
improved fuel economy with similar drivability (SP-SDP#2),
or similar fuel economy with reduced drivetrain activity (SP-
SDP#3). The designer may also select some compromise
between the two.

Time histories of the baseline and SP-SDP #1 controllers
are presented for the first 500 seconds of the FTP cycle in
Fig. 10. The engine torque/speed operating points for these
two controllers on the full FTP cycle are shown in Fig. 11.

Summary metrics are shown for the baseline and SP-SDP
controllers in Table IV. The Forward Wheel Energy is the
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Fig. 10: Time traces of selected simulation parameters. The
baseline controller is shown as a solid (red) line, and one
particular SP-SDP controller that yields the best overall fuel
economy is shown as a dashed (black) line; this is SP-SDP #1
in Table III.

integral of all motoring (output) wheel power, the Engine
Output Energy is the total energy delivered at the engine
output shaft, Engine Brake Specific Fuel Consumption (BSFC)
(g/kWh) is the total fuel consumed divided by the total engine
output energy, and Friction Braking Energy is the energy
dissipated by the friction brakes.

For the electrical propulsion system, the Electro-Mechanical
Charge Energy is the total mechanical energy absorbed by
the electric machines, and the Electro-Mechanical Discharge
Energy is the forward mechanical energy provided by the
electric machines. The Electro-Mechanical Losses are the
difference between the two minus the change in battery energy
(due to final SOC) and represent all losses in the electrical
system including accessory loads. The Round-Trip Electrical
Efficiency is the Discharge Energy plus any net change in SOC
divided by the Charge Energy.

B. Discussion

Figs. 10 and 11 and Table IV lend some insight into the
performance differences between the SP-SDP and baseline
controller. Table IV shows the SP-SDP controller is more
efficient in its use of the diesel engine. The engine primarily
operates near a high efficiency point or completely off, and
yields a lower average BSFC as shown in Fig. 11. The
high-torque operating points are also visible in Fig. 10. The
electric machines are used more extensively by the SP-SDP
controller, which allows more efficient ICE utilization and
more efficient overall electrical propulsion. Friction braking
is also minimized by the SP-SDP controller.

IX. CONCLUSIONS

An energy management controller for a prototype parallel-
series hybrid electric vehicle has been developed using Short-
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TABLE III: Selected SP-SDP controller performance

Controller Description Fuel Economy (Corrected) Engine Events Gear Events Final SOC Fuel Economy (Uncorr.)
Baseline Controller 1.000 88 93 0.505 0.997

SP-SDP #1-Best Fuel Economy 1.119 88 106 0.504 1.117
SP-SDP #2-Similar Drivetrain Activity 1.114 88 93 0.506 1.110

SP-SDP #3-Similar Fuel Economy 1.010 34 36 0.561 0.977

TABLE IV: Selected SP-SDP controller performance

Baseline Controller SP-SDP #1 SP-SDP #2 SP-SDP #3
Forward (Motoring) Wheel Energy (kJ) 8731 8580 8578 8579

Engine Output Energy (kJ) 11939 11917 11990 12856
Friction Braking Energy (kJ) 254.7 5.5 5.5 5.9

Electro-Mechanical Charge Energy (kJ) 5525 7059 7196 9616
Electro-Mechanical Discharge Energy (kJ) 2514 3831 3926 5302

Electro-Mechanical Losses (kJ) 2978 3199 3233 4042
Round-Trip Electrical Efficiency (%) 46.1 54.7 55.1 58.0

Engine BSFC (g/kWh) 264.8 237.0 236.9 251.6
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Fig. 11: Engine Torque-Speed operating points on the FTP
cycle. The solid black line represents an operational restriction,
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(red). The SP-SDP controller is SP-SDP #1 in Table III and
also shown in Fig. 10. The isoclines show constant brake
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est Path Stochastic Dynamic Programming to optimally per-
form the inherent tradeoff between fuel efficiency and driv-
ability. The SP-SDP-based controllers minimize the expected
value of a cost function, using a statistical description of
expected driving behavior. Here, the cost was a weighted sum
of consumed fuel and drivability penalties based on shift events
and engine on-off events. By varying the weights, the Pareto
tradeoff surface of fuel economy versus drivability for the SP-
SDP-based controllers was evaluated on a high-fidelity vehicle
simulation model.

The performance of the SP-SDP-based controllers was
compared against an industrial baseline controller. For the

same level of drivability, the SP-SDP-based controllers were
11% more fuel efficient than the baseline controller on the FTP
cycle and the New European Drive Cycle. The SP-SDP-based
controllers were designed for the driving statistics of each of
the two cycles.

In general, dynamic programming is well known to suffer
from the “curse of dimensionality,” referring to the exponential
explosion of problem size with the number of state and control
variables. The system model addressed here had three power
sources, namely, an internal combustion engine and two elec-
tric machines. A two-step off-line optimization strategy was
presented that preserved optimality while presenting the SP-
SDP algorithm with an equivalent system model that contained
a single “super” electric machine. Ultimately, this allowed the
SD-SDP algorithm to be run on a desktop PC. A similar
two-step optimization strategy is applicable to other vehicle
configurations that have multiple actuator degrees of freedom.

While the excellent fuel economy of the SP-SDP controllers
is very interesting, we feel a more important observation is
that the SP-SDP design method produces causal controllers
that respect constraints and perform well on (and off [35])
standard test cycles. SP-SDP-based controllers can be directly
implemented in a realistic control environment with little
manual tuning, as demonstrated on an industrial vehicle model
which includes detailed subsystem models, dynamics, delays,
and limits.

APPENDIX

A. Proof of Minimization Decomposition
Equation (12) may be written as

V ∗(x) = min
û∈Û(x)

min
ū∈Ū(x,û)

Ew[c(x, û, ū, w) + V ∗(f(x, û, w))],

(18)
and by the linearity of expectation

V ∗(x)

= min
û∈Û(x)

min
ū∈Ū(x,û)

(Ew[c(x, û, ū, w)]+Ew[V ∗(f(x, û, w))]).

(19)
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The expectation of the value function is independent of ū
yielding

V ∗(x)

= min
û∈Û(x)

( min
ū∈Ū(x,û)

Ew[c(x, û, ū, w)]+Ew[V ∗(f(x, û, w))]).

(20)

Using the definition (13), (20) becomes (12). �

B. Related Comments on Minimization Decomposition

To implement the controller developed using Minimization
Decomposition, ū must still be determined. It may be precom-
puted and stored when calculating (13),

ū∗(x, û) = argmin
ū∈Ū(x,û)

c(x, û, ū), (21)

and

ĉ(x, û) = c(x, û, ū∗(x, û)) = min
ū∈Ū(x,û)

c(x, û, ū). (22)

This process reduces the space of control actions by Ū .
The computation scales linearly with the number of possible
control actions, and can be significantly reduced depending on
the problem structure and the size of ū.

Minimization Decomposition may also be used when solv-
ing for non-stationary value functions by appropriately replac-
ing V (x) with a time-dependent Vk(x), for either deterministic
or stochastic cases [16].

Remark: (Functional Form to use Minimization Decom-
position) Suppose a system has dynamics f(x, û, ū, w) that
are independent of some control component ū and can be
reformulated into a function f̂ , such that

f̂(x, û, w) = f(x, û, ū, w) (23)

with probability 1 (w.p. 1). Then the Bellman equation satisfies
(12) and the Minimization Decomposition may be used.

While the property (23) seems quite restrictive, it occurs
surprisingly often in the energy management problem. It is
likely to occur if the number of control inputs M exceeds the
dimension of the state space N , leaving a null control direction
as used in [38].

Remark: (State Decomposition) In this energy management
problem (as in most formulations) the dynamics may clearly
be broken down into two parts

f(x, u, w) =

[
fu(x, u)
fw(x,w)

]
(24)

where the deterministic states are the known vehicle dynamics
and the stochastic driver dynamics are independent of the
control input.

This allows the control inputs to be studied without the
effect of w, simplifying the verification of condition (23).
Whenever the number of actuators exceeds the dimension of
fu, (23) is likely to hold.

The main point is this: if the number of control inputs
exceeds the number of states, the required computation can
often be drastically reduced. Even with discrete states (e.g.
gear number) the same techniques may often be used.

C. Power-Split Example

Consider for example the “Power-Split” architecture of the
Toyota Prius and Ford Escape, with a cost function that
penalizes fuel use and SOC deviations from nominal to attain
charge sustenance. If one assumes that the dynamics of engine
speed changes are negligible at the timescales for energy
management, the only vehicle state is SOC, as velocity and
acceleration are assigned by the driver (stochastically when
using SP-SDP). Assuming the vehicle matches driver demand
torque, the system is defined by two inputs. By using specific
definitions of the system variables, the optimization reduces to
two one-degree-of-freedom problems. A common method is to
treat the two control inputs as engine speed and engine power.
Suppose instead we choose engine speed ωICE and electrical
power Pelec, a slightly different definition. This allows a
major decoupling of the system dynamics. The evolution of
SOC is now only dependent on Pelec = û and completely
independent of ωICE = ū. The engine speed that results in
minimum fuel use for a given Pelec can be calculated off-line
because it is independent of SOC. This results in engine fuel
consumption as a 1-D function of power ĉ(x, û) = ĉ(x, Pelec),
rather than the standard 2-D functions of power and speed
c(x, û, ū) = ĉ(x, Pelec, ωICE).

D. Comparison of SP-SDP to ECMS for Fuel-only Optimiza-
tion

One of the most well known optimization methods for
energy management in HEVs is the “Equivalent Consumption
Minimization Strategy” (ECMS) [19], [42]. This method op-
timizes for fuel economy only, which is equivalent to taking
the running cost in (8) as fuel flow rate, that is, c = ṁf .
ECMS is popular among academics because it requires little
computation and seems easy to implement. At each time step,
the controller minimizes a function that trades off battery
usage vs. fuel,

u∗k(x) = argmin
u∈U

[ṁf (x, u) + λk∆SOC(x, u)]. (25)

The design parameter is the weighting factor λk, which
represents the relative value of battery charge in terms of fuel.
In actual practice, a real difficulty arises because, unless λk
is carefully chosen, the vehicle will not be charge sustaining.
The required values for λk are highly cycle dependent and
typically require on-line estimation.

It is now shown for the fuel only case that (8) and (9)
of the SP-SDP algorithm yield a form very similar to (25)
for the computation of the optimal control, with the added
benefit that the SP-SDP algorithm automatically adjusts the
weighting function. First, note that the state can be taken
as x = [SOC, x̄]′, where x̄ consists of vehicle velocity and
acceleration. x̄ is independent of the control input u because
vehicle acceleration is defined by the stochastic driver. The
model (6) can thus be expressed in the form[

SOCk+1

x̄k+1

]
=

[
SOCk + ∆SOC(SOCk, x̄k, uk)
f̄(x̄k, wk)

]
.

(26)
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Next, let V ∗ be the optimal cost to go function in the
Bellman equation (8), and define

Q(σ, x̄) = Ew[V ∗(

[
σ

f̄(x̄, w)

]
)]

for an arbitrary SOC σ. Substituting the SOC dynamics (26)
for σ, the Bellman equation (8) becomes

V ∗(SOC, x̄) = min
u∈U

[ṁf (SOC, x̄, u)+

Q(SOC + ∆SOC(SOC, x̄, u), x̄)] . (27)

The running cost c = ṁf in (8) is not a function of the
random variable w and can be removed from the expectation.
From this, the expression for the optimal control becomes

u∗(SOC, x̄) = argmin
u∈U

[ṁf (SOC, x̄, u)+

Q(SOC + ∆SOC(SOC, x̄, u), x̄)] . (28)

Doing a first-order Taylor expansion of Q then yields

u∗(SOC, x̄) ≈ argmin
u∈U

[ṁf (SOC, x̄, u)+

Q(SOC, x̄) +
∂Q(SOC, x̄)

∂SOC
∆SOC(SOC, x̄, u)

]
. (29)

Recognizing that Q(SOC, x̄), being independent of u, does
not affect the minimization, and substituting x = [SOC, x̄]′

into (29), then yields

u∗(x) ≈ argmin
u∈U

[
ṁf (x, u) +

∂Q(x)

∂SOC
∆SOC(x, u)

]
. (30)

It follows that ∂Q(x)
∂SOC is equivalent to the weighting factor λ

in (25). The SP-SDP algorithm has the same structure as the
ECMS method, but the weighting factor is a function of the
state variables, and is automatically updated on-line. There is
a variant of ECMS method called Adaptive ECMS (A-ECMS)
in which the weighting factor is also allowed to change over
time based on the current driving conditions [19]. A-ECMS
is even more similar to the SP-SDP algorithm in that both
methods have a weighting factor that is updated on-line as a
function of the state.

This relationship is illustrated by again studying the value
function V (x) as a function of SOC for fixed acceleration
and velocity shown in Fig. 6. The local slope of V (x) in the
figure is closely related to the weighting factor in (30), which,
once again, is analogous to λ in (25). Fundamentally, all fuel-
minimizing control algorithms must estimate the value of bat-
tery charge in terms of fuel and thus have some equivalent to
the weighting factor. It may appear linearly and explicitly as in
ECMS, or nonlinearly and implicitly as in SP-SDP. All known
information is incorporated in the weighting factor: current
state, plant dynamics, and expected future driver demands.
Once this weighting factor is determined, the control problem
is a simple static optimization.

A basic difference of the algorithms lies in how they
estimate the value of battery charge in terms of fuel: ECMS
uses a value assigned by the designer; A-ECMS estimates a
value based on battery charge and recent history; Deterministic

Dynamic Programming uses exact future knowledge; and SP-
SDP uses estimates of cycle statistics. A benefit of dynamic
programming methods, such as SP-SDP, is that they can
optimally accommodate more complicated objectives, such as
the fuel and drivability metrics studied here.
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