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Abstract—Hybrid vehicle fuel economy and drive quality
are coupled through the “Energy Management” controller that
regulates power flow among the various energy sources and sinks.
Most analytical studies have evaluated closed-loop performance
on government test cycles, and there are few results that
compare optimal control algorithms to the controllers employed
in industry. This second of a two-part paper studies controllers
designed using Shortest Path Stochastic Dynamic Programming
(SPSDP), a stochastic optimal control design method which can
respect constraints on drivetrain activity while minimizing fuel
consumption. Part 1 described the problem formulation, models,
and simulation results on government test cycles for a prototype
vehicle. In Part 2, controllers are evaluated for robustness
through simulation on large numbers of real-world drive cycles
and compared to a baseline industrial controller developed by
Ford. On real-world driving data, the SPSDP-based controllers
yield 10% better fuel economy than the baseline controller, for
the same engine and gear activity. SPSDP controllers are further
evaluated for robustness to the drive cycle statistics used in their
design. Simplified drivability metrics introduced in Part 1 are
validated. Looking ahead, production implementations of the
SPSDP method will likely require finer control over drivetrain
behavior. Several options for achieving this are discussed, along
with their relative benefits for performance versus computational
tractability.

I. INTRODUCTION

Designing an effective Energy Management controller for
hybrid vehicles is a challenging, rich problem. The method
used here is Shortest Path Stochastic Dynamic Programming
(SPSDP), which generates optimal, causal controllers that can
control complex vehicle behavior and respect constraints while
minimizing fuel consumption. This second part of a two-part
paper builds on the theoretical framework, methods, and test
cycle simulations in Part 1 [1].

In this paper, we address practical considerations required
to actually use SPSDP [1] in industrial development or pro-
duction. Controllers are compared to a baseline industrial
controller on real-world and government test cycles to evaluate
performance, robustness, sensitivity, fuel economy vs. drivabil-
ity tradeoffs, and real-world vs. test cycle performance. The
drivability metrics of Part 1 [1] are validated, and techniques
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are discussed for incorporating additional vehicle behavior into
SPSDP controllers.

SPSDP has the potential to be used directly in production
vehicles with minimal manual tuning. To test controller perfor-
mance and robustness under realistic conditions, about 500,000
simulations are conducted using large numbers of real-world
drive cycles. With these data, controller performance can be
evaluated and optimized with respect to various classes of
driver behavior [2], [3], [4], [5], [6] in addition to government
certification cycles [7], [8], [1]. These simulations are analyzed
to determine not just mean performance, but standard devia-
tions and worst-case performance. This real-world robustness
testing addresses a common customer complaint that the fuel
economy shown on the “window sticker” does not match the
vehicle performance obtained in practice [9], [10], [11], [12],
[13]. To provide a realistic benchmark, SPSDP energy man-
agement controllers are compared to an industrially-designed
“baseline” controller.

As part of this real-world evaluation, controllers are con-
structed using statistics from multiple sets of design cycles,
including both real-world and government test cycles. They
are then evaluated on multiple sets of simulation cycles of
various types. This allows evaluation of controller robustness
to different drive cycles and the effects of the statistics
assumed in the controller design.

A major enabling result in the present work was the de-
velopment of the drivability metrics for powertrain activity
presented in [1]; this process is discussed in detail here. The
simplified drivability metrics are shown to be well correlated
with more detailed metrics on both government test and real-
world driving. This validates the simplified metrics as a useful
approximation for controller design.

The main decision in the design of an SPSDP controller is
the selection of a cost function which reflects desired vehicle
behavior while maintaining feasible off-line computation. This
paper focuses on two specific drivability attributes: the engine
and transmission behavior. If the SPSDP method is to be used
in practice, engineers will likely seek to incorporate addi-
tional criteria for vehicle behavior. Many other performance
attributes can be studied using this theoretical framework, but
care must be taken to avoid excessive computational burden.
Several options for incorporating vehicle behaviors in the
problem formulation are discussed.

The paper is organized as follows: After a statistical com-
parison of real-world and government test drive cycles, Section
II examines how various controllers (each designed for a
given drive cycle) perform on real-world drive cycles. Section
III establishes the robustness of controller performance to
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different drive cycles, including the dependence of engine
events (a drivability metric) and fuel economy. Section IV
develops a reduced (simplified) set of drivability metrics
and validates their use by comparison to a complex set of
drivability metrics. Section V discusses further methods for
controlling vehicle behavior using SPSDP. Finally, section VI
is a general discussion of the SPSDP method used in both
Parts 1 and 2 of this paper.

II. ROBUSTNESS TO REAL-WORLD DRIVING

A. Motivation

Controller performance is often reported on standard test
cycles (FTP, NEDC, US06) for comparison and relevance to
government certification. If real-world fuel economy is lower
than on government test cycles, either the controllers are
tuned primarily for the test cycles, or real-world driving is
fundamentally less fuel-efficient than the test cycles. The real-
world data used in this paper is aimed at evaluating controller
robustness and performance in the “off-cycle” real world.

B. Drive Cycle Data

The drive cycle data used in this paper was collected by
the University of Michigan Transportation Research Institute
(UMTRI) [14]. The “source” data set supplied to us contains
2500 trips made by 87 drivers. Very short trips (less than 3
minutes or 0.5 km) are ignored. We randomly selected two
sets of 100 drive cycles from the UMTRI data. They are called
“Ensemble 1” and “Ensemble 2.”

To gain some insight into the nature of the drive cycles,
we briefly study the characteristics of their distributions. The
cumulative distribution functions (CDF) of trip distance for
the source data and both subsets are shown in Fig. 1a. The
statistics for the two Ensembles are a reasonable match for the
source data set. Each Ensemble represents about 1000 miles
of driving, or 3 tanks of gas.

The CDFs of vehicle speed for Ensembles 1 and 2 are
depicted in Fig. 1b, using vehicle velocity on a second-by-
second basis. Two standard government test cycles are also
shown, the Federal Test Procedure 75 (FTP) and the New
European Drive Cycle (NEDC). This yields a total of five
total in the figure: the Source Data, Ensemble 1, Ensemble 2,
FTP, and NEDC.

There are three interesting things to notice in Figure 1b.
The first is that the government test cycles are fundamentally
different from the real-world data. The real-world cycles
contain substantially higher velocities in general. The second
detail is the step-like nature of the NEDC cycle, which arises
because it is contrived. The cycle is composed of perfect ramps
to constant speeds and is specified by hand. Lastly, Ensemble
2 has lower velocities than Ensemble 1, a difference that will
be reflected in the fuel economy results presented in Section
II-D.

C. Simulation Procedure

To study the effectiveness of the SPSDP controller design
methodology, controllers are first designed based on statistics

from particular drive cycles [1]. Large numbers of controllers
are then simulated on a set of real-world driving data using
two different methods:
• Concatenated Cycle - The Ensemble of 100 cycles is

assumed to represent one vehicle’s driving history, about
1000 miles. The starting SOC of the first trip is 0.5, and
the starting SOC for each subsequent trip is the ending
SOC of the previous trip.

• Individual Cycles - Each cycle is studied individually,
and the starting SOC for each trip is 0.5.

Each method has its advantages, so both are used here.
For the Concatenated Cycle, fuel economy for the Ensemble
is simply the total fuel consumption divided by the total
distance. Drivability events are summed over all trips. The
engine is off at the start and end of each trip. The total fuel
consumption is corrected based on final SOC, but the battery
energy is negligible compared to the fuel consumption on such
a long trip. The SOC correction (see (22) in [1]) impacts fuel
economy less than 0.1%. This is one major advantage of this
method: there is no concern about SOC correction yielding
false fuel economy results. This method is arguably more
representative of typical driving as the SOC varies at the start
of each trip. However, the Ensemble trips are selected from a
group of drivers, so they may better represent a vehicle shared
by a household rather than a single driver.

For the Individual Cycles, total fuel use is individually
corrected for each cycle based on SOC. The fuel economy
for the Ensemble is computed as the total of corrected fuel
consumption divided by total driving distance. This yields
a weighted average over all the trips. The drivability events
are the sum of all the trips. This method is very useful for
generating statistics. Each controller now has 100 sample
points which can be used to calculate the mean, standard
deviation, and 10th/90th percentile bands for fuel economy
and final SOC. This allows deeper understanding than simply
studying the weighted average of fuel consumption.

D. Results

The SPSDP controllers generate significantly better perfor-
mance than the baseline controller on real-world cycles and
are reasonably robust to variations in driving patters and the
statistics used to design the controller.

The Ensemble is first treated as a Concatenated Cycle
representing a single vehicle (Sec. II-C). Fuel economy and
drivability results are shown in Fig. 2a. The figure shows five
controllers sets evaluated on Ensemble 1: the baseline con-
troller and 4 SPSDP controller families designed on statistics
from FTP, NEDC, Ensemble 1 and Ensemble 2. Recall that
a controller family is developed by fixing the driver statistics
and sweeping the drivability penalties to generate a tradeoff
curve (see [1]). All fuel economy numbers are normalized to
the baseline controller running FTP, which has fuel economy
1 (Fig. 4a and Fig. 7c in [1]) just as in Part 1 [1].

The cycles in each Ensemble are also treated as Individual
Cycles, where the SOC always starts at 0.5 (Section II-C).
The weighted average of fuel economy compared to Engine
Events is shown in Fig. 2b for Ensemble 1. The superiority of
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Fig. 1: Statistics of Real-World Driving. Fig. 1a is the Cumulative Distribution Function of trip distance for the source data
and two subsets. Mean distances for the sets are: Full Data Set - 11.7 mi., Ensemble 1 - 12.7 mi., Ensemble 2 - 9.9 mi. Fig. 1b
is the Cumulative Distribution Function of vehicle velocity for the source data, two subsets, and two government test cycles.

the SPSDP controllers with respect to the baseline controller
is maintained under real-world driving conditions as shown in
Figure 2. For the same drive quality index, the fuel economy
is approximately 10% higher.

Using the individual simulation method, each controller now
has 100 data points representing performance on individual
drive cycles. The family of controllers designed with Ensemble
1, shown as a black curve in Fig. 2b, is selected for more
detailed study. The (non-weighted) mean, standard deviation,
and 10th/90th percentile bands are calculated for corrected
fuel economy and final SOC for each controller running both
Ensemble 1 and Ensemble 2. A response surface is fitted to
these data as shown in Fig. 3. The same statistics are calculated
for the baseline controller. The distributions are not Gaussian
and differ with the number of engine events as well as the
simulated Ensemble.

Results like Figure 2 are available [15] for controllers
running Ensemble 2, and the results are very similar. Interested
readers may study the sensitivity to driving cycles and design
statistics on both Ensembles. Additional SOC results are also
shown.

E. Discussion

The performance of the SPSDP controllers on the concate-
nated Ensembles confirms that their superiority is legitimate
and not an artifact of SOC correction; the energy in the SOC
errors is minimal on such a long cycle. Figure 2 demonstrates
that simulating the cycles individually and correcting for SOC
yields results similar to the concatenated version. Specifically,
the SOC correction method is valid and the exact starting
SOC for each cycle is not crucial for overall performance.
This is quite useful because the simulation of individual cycles
is easily parallelized and avoids the difficulties of simulating
such a long (16 hour) cycle.

Figure 2 shows that the SPSDP controllers and the baseline
controller yield lower fuel economy in the real-world than on
government test cycles, implying the difference is fundamental
to the cycle itself and not a result of controller tuning. On FTP
the baseline controller has fuel economy 1 and the SPSDP
controllers do even better. This confirms a known weakness
with the government test cycles: they are not representative of
real-world driving. Real-world driving requires 15-20% more
fuel consumption than the test cycles. Recall the differences
among cycles illustrated in Fig. 1b. This causes a significant
mismatch between the “window sticker” fuel economy from
certification testing and the fuel economy consumers would
measure in practice. Recent changes to the government testing
procedure in the US have attempted to address this problem
and bring the certification fuel economy predictions closer
to real-world practice [16], [17]. Additional results on the
government test cycles are presented in Section III-A (Fig.
4).

The fuel economy curves in Figs. 2 and 3 show a distinct
“knee”, where the tradeoff between fuel economy and engine
activity becomes acute. In both figures, the number of engine
events may be reduced from 9,000 to 5,000 with no significant
loss of fuel economy. This illustrates the power of having
this optimal Pareto curve available. Not only is the tradeoff
quantified, but in some cases it may be possible to reduce
engine activity without any sacrifice in fuel economy. Without
such a curve, a fuel-optimal controller may be designed with
9,000 engine events without the designers knowing the same
fuel economy can be attained with roughly half the engine
activity.

The statistical analysis of the individual cycles in Fig.
3 shows very consistent performance. For the SPSDP con-
trollers, performance one standard deviation below the mean
still exceeds the mean of the baseline controller.

Battery charge maintenance for real-world driving is very
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(a) Fuel Economy for Ensemble 1 - Concatenated Cycle
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(b) Fuel Economy for Ensemble 1 - Individual Cycles

Fig. 2: Fuel Economy and Drivability Metrics on Ensemble 1 when simulated as Concatenated and Individual Cycles for the
baseline controller and SPSDP controller families designed with statistics from FTP, NEDC, Ensemble 1, and Ensemble 2. Fuel
Economy, Gear Events, and Engine Events are cumulative for the whole cycle set, representing approximately 1000 miles.
Results are normalized to the baseline controller on FTP, as in [1].

consistent as shown in Figures 3c and 3d; there is little
variation across the different drive cycles. The nominal target
SOC is 0.5, which is nearly achieved in the high fuel economy
operating region (above 5000 engine events). Both figures
show a trend towards higher SOC with fewer engine events.
As engine events become more costly, the controller tends to
operate at a higher SOC, presumably to stay in electric mode
and avoid engine starts whenever possible. The SPSDP con-
trollers also maintain tighter control of final SOC compared to
the baseline controller, as evidenced by the standard deviation
and percentile bands.

The results in these two papers represent more than 4000
controllers and 500,000 simulated cycles (most in Figs. 2
and 3), requiring roughly 10.5 CPU-years of computing time
on a cluster of desktop-class machines at the University of
Michigan Center for Advanced Computing. Most problems
can be solved with fewer controllers and cycles: the sensitivity,
robustness, and real-world driving studies are not required in
every application.

III. ROBUSTNESS TO VARIABLE DRIVING STYLES AND
SENSITIVITY TO DESIGN CYCLE STATISTICS

This paper uses drive cycles for two purposes: to design a
controller, and then to simulate its performance. As described
in [1], SPSDP uses a Markov chain to model driver behavior,
with the states and transition probabilities extracted from one
or more design cycles provided during the controller develop-
ment process. The statistical driver model clearly affects the
final controller and the obtained closed-loop behavior, which
opens a question about the relationship between the (possibly
different) cycles used to design and simulate the controller.
Here we investigate the sensitivity of closed-loop behavior to
the assumed driver statistics.

In Section II-D, four different families of controllers were
designed using statistics from FTP, NEDC, Ensemble 1 and
Ensemble 2. These controllers were then simulated on the
two Ensemble sets [15]. In this section, these four families of
controllers are also simulated on the FTP and NEDC cycles.

A. Results

In general, the SPSDP method is relatively insensitive to
the choice of cycles used to design the controllers, although
the controller that performs best on a given cycle is generally
the controller designed for that cycle, as would be expected.
The controllers from Section II-D are shown running the FTP
and NEDC cycles in Figure 4, using the same markers as in
Figure 2.

B. Discussion

This cross-combination of design and simulation cycles
allows study of a controller’s performance on both the de-
sign and arbitrary cycles. Excluding the NEDC, design cycle
statistics cause less than 3.5% difference between controllers
across all other cycles. The fuel economy difference when
using Ensemble 1 or 2 statistics is small, which indicates
that the sample sizes are large enough to reasonably represent
typical driving.

This idea is reinforced in the surprising robustness of
controllers when dealing with the FTP cycle. The enormous
20% fuel economy difference between FTP (fig. 4a) and
Ensemble 1(Fig. 2) seems to indicate that the statistics of the
two cycles are not representative of each other. Nevertheless,
controllers designed on the Ensemble cycles do very well on
the FTP cycle, and the FTP-based controllers sacrifice 3%
performance on the Ensemble cycles. While the FTP and
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(a) Fuel economy statistics for Ensemble 1
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(b) Fuel economy statistics for Ensemble 2
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(c) Final SOC statistics for Ensemble 1
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(d) Final SOC statistics for Ensemble 2

Fig. 3: Statistical fuel economy. The SPSDP controller family designed on Ensemble 1 is simulated on Ensemble 1 and Ensemble
2, and each cycle is corrected for SOC. The mean, standard deviation, and 10th and 90th percentile are calculated. The mean,
standard deviation (error bars), and 10th and 90th percentile are also calculated for the baseline controller.

Ensemble cycles are very different, the statistics from either
cycle are sufficiently representative to generate controllers that
perform reasonably well on both cycles.

The NEDC cycle is somewhat of an outlier in this study.
NEDC is used to address the European market in addition to
US regulations. Although the fuel economy of the NEDC-
based controllers is reasonable on the FTP and Ensemble
cycles, the NEDC is generally avoided as a test cycle . As
seen in Figure 1b, the NEDC cycle is vastly different from
both real-world driving and the FTP. It is periodic and clearly
specified by hand, which is not well suited to a Markov chain
based expectation.

Figures 2 and 4 allow a comparison of performance on real-
world and government test cycles, as mentioned in Section
II-E. The controllers are the same in each figure and use
consistent markers, they are just running different cycles. The

fuel economy normalization is the same in all figures. The
baseline controller drops from a fuel economy of 1 Mpg on
FTP (Fig. 4a) to 0.835 Mpg on Ensemble 1 (Fig. 2a). The best
SPSDP controllers achieve 1.18 Mpg on FTP, but only 0.92
Mpg on Ensemble 1.

IV. DEVELOPMENT AND VALIDATION OF DRIVABILITY
METRICS

A. Formulation

As mentioned in Part 1 of this paper [1], two significant
characteristics that are noticeable to the driver are the basic
behaviors of the transmission and engine. There are a large
number of qualitative characteristics that describe powertrain
behavior [18]. While metrics exist to quantify a large variety
of behaviors, overall value judgements are largely qualitative.
There are no high-level rules or metrics that exactly quantify
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(a) FTP Cycle

5 10 15 20 25 30
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Engine Events

N
or

m
al

iz
ed

 M
pg

 

 

10 Gear Ev.−FTP
10 Gear Ev.−NEDC
10 Gear Ev.−Ensemble1
10 Gear Ev.−Ensemble2
Baseline− 19 Gear Events

(b) NEDC Cycle

Fig. 4: Fuel Economy and Drivability Metrics on the FTP and NEDC Cycle for 5 controller options. Controller familes are
designed with statistics from FTP, NEDC, Ensemble 1, and Ensemble 2. All fuel economy figures are normalized to the baseline
controller performance on FTP, shown as a large green dot in Fig. 4a. The controllers are the same as those shown in Fig. 2.

the overall drivability performance or describe the relative
importance of various behaviors. An important contribution
of the work reported here is the translation of these value
judgements into quantitative metrics than can be used in the
optimization formulation. The first step is to describe and
quantify engine and transmission behaviors using performance
metrics, and the second step is to reduce the complexity of
these metrics so that they may be easily used in optimization.

A primary concern in drivetrain activity is the the frequency
and timing of events, like gear shifts and engine start/stop.
Two categories of metrics are used, the mean time between
events and the number of short-duration events; the latter are
especially bothersome to drivers. A short duration event occurs
when the dwell time in a particular state is less than some
specified value; the metric is the number of these occurrences.
This type of metric is denoted “Dwell time less than X
seconds,” where X is the cutoff criteria. These “mean” and
“short duration” categories of metrics applied to the engine and
transmission generate 7 distinct metrics, termed the “complex”
metrics. These 7 metrics represent a detailed description of
vehicle behavior and are shown in the top table in Fig. 5.
Many other metrics could obviously be used, but these are an
important subset of the possibilities.

For the transmission, a particularly annoying short-duration
event is “hunting,” rapid shifting back and forth between
the same two gears. We define a gear “hunting” event as a
sequential upshift-downshift or downshift-upshift that occurs
faster than some cutoff time X . The metric is the number of
occurrences of a hunting event. This type of shifting often
occurs in normal driving, but only becomes bothersome when
the shifts are closely spaced. Shifting that is frequent or
perceived to be unnecessary is often termed shift “busyness,”
and is reflected in both mean dwell time and short duration
metric categories.

Gear Hunting EventsEngine Off Dwell Time <X seconds

Gear Dwell Time < X secondsEngine On Dwell Time < X secondsShort Duration Events

Mean Engine Off Time

Mean Time in GearMean Engine On TimeMean Dwell Times

Transmission BehaviorEngine Behavior

Gear EventsEngine EventsSimplified Metrics

Fig. 5: Drivability Metric Reduction. The seven complex
engine and transmission metrics are divided into two cat-
egories, mean dwell times and short-duration dwell times.
These metrics are then reduced to the two simplified metrics.

The most bothersome engine events are those of very short
duration, and to some extent drivers ignore the long-horizon
(10-20s) engine behavior as long as there are no short-duration
events.

Although it is theoretically possible to incorporate these
metrics in the optimization formulation, the computation
burden of the required additional states makes the problem
intractable. Another disadvantage is the large parameter space
of penalty weights for the various metrics. Even if all these
metrics were directly implemented and a controller computed,
the control designer is left with a very complex design process.

Therefore, we choose to simplify these complex metrics into
something that can be easily used. Ideally, the information
contained in the seven metrics listed above could be distilled
into a smaller number of simple metrics. Indeed, the behaviors
measured by these metrics are well correlated with the two
simple metrics proposed below, which allows effective control
of complex behavior with a simple implementation.
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B. Simplified Drivability Metrics

The seven complex metrics are reduced to two baseline
metrics to quantify behavior for a particular trip. These are
the two simplified metrics described in Part 1 [1]. The first
is Gear Events, the total number of shift events on a given
trip. The second metric is Engine Events, the total number
of engine start and stop events on a trip. This reduction is
depicted in Fig. 5.

By definition, engine starts and stops are each counted as
an event. Each shift is counted as a gear event, regardless of
the change in gear number. A 1st − 2nd shift is the same as
a 1st − 3rd shift. Engaging or disengaging the clutch is not
counted as a gear event, regardless of the gear before or after
the event.

The utility of these simplified drivability metrics is validated
by studying how they relate to the more detailed metrics.
By finding simple metrics that are well correlated with the
complex metrics, one can incorporate the simple metrics into
the full SPSDP algorithm to maintain some control over
complex behavior while keeping the problem feasible.

C. Drivability on Government Test Cycles

Simulations on the FTP cycle show strong correlations
between the simple and complex metrics. For a family of
controllers running the FTP cycle, drivability metrics are
recorded for both the simple and complex metrics. The engine
activity is studied in Figs. 6a-6c. The metric Engine Events is
shown on the horizontal axis for all 3 figures. The mean engine
on and off times are shown in Figure 6a. Short duration engine
events are studied next, the engine on and off Dwell Time less
than X seconds are shown in Figures 6b and 6c respectively
for various cutoff criteria X.

The gear shifting activity of the vehicle is studied in Figures
6d-6f. The metric Gear Events is shown on the horizontal
axis for all 3 figures. Figure 6d shows the mean dwell time
in gear. This metric studies the time spent in one particular
gear without shifting or disengaging the clutch. Short durations
between shifts or clutch disengagements are indicated by gear
dwell times less than some variable cutoff criteria as shown
in Figure 6e. Transmission gear “hunting” is shown in Fig. 6f
for varying time length criteria.

These figures (Figs. 6a-6f) show that the complex metrics
are approximately monotone functions of the simple metrics.
To highlight this property, the data in Figures 6c and 6e are
shown with a straight line least squares fit to the data. Each
cutoff time criteria is treated separately and each line matches
the color shown for the underlying data.

The relationships between the metrics in these figures are
very nearly piecewise linear. They generally are zero up to a
certain value on the horizontal axis, then follow a straight line.
These data are fit with functions of the form

ŷ = max(0,mx+ b)

where m and b are the slope and intercept of the best straight-
line fit to the nonzero data; coefficients are available in [15].

D. Drivability on Ensemble Cycles

The FTP results demonstrate that simplified drivability met-
rics of total engine events and total gear events can yield good
vehicle behavior when evaluated in terms of more detailed
metrics such as engine on-off dwell times and gear hunting.
This is also true for real-world driving on the Ensemble cycles.
This particular vehicle is relatively insensitive to gear activity,
so here we focus on engine activity.

As discussed in Section II-C, there are two ways to study
the Ensemble cycles. The first is to treat each Ensemble as
a single trip, about 1000 mi. The second method is to treat
each cycle individually as a unique data point. The drivability
metrics are studied using these two methods. The three detailed
engine activity metrics (Figs. 6a-6c) are first studied for the
Concatenated Ensemble 1 in the top row of Fig. 7 (Figs. 7a-
7c). Each data point represents one controller running a single
simulation, the Concatenated Ensemble 1. Each data point
represents the same cycle, and variation is tied to controller
tuning (i.e., choice of penalties in the cost function).

The second method, treating each cycle individually, is
shown in the bottom row of Figs. 7d-7f. Each data point
represents a controller running one of the 100 cycles in
Ensemble 1. In this case, variation between data points arises
from different controller tunings and different cycles.

E. Discussion

The strong correlations between the simple and complex
metrics allow the drivability attributes to be easily quantified.
A designer can be confident that the simple metrics are directly
related to the complex versions, and that prescribing behavior
with respect to the simple metrics will yield the desired results.
The problem can be greatly simplified in that the designer is
not required to specifically track and control each complex
behavior of interest. The main algorithm will generate tunable
performance that meets the criteria in a general sense.

For example, optimizing for fuel economy often leads to
gear hunting behavior near a shift point. As the total number
of shifts is penalized and reduced, hunting behavior is usually
eliminated first as these frequent shifts do not significantly
improve fuel economy.

Similarly, for fuel-optimal operation, the engine on/off de-
cision can become very sensitive to driver demand, causing
many short-duration engine events even when the driver ap-
plies a nearly constant pedal input. Reducing the total number
of engine events tends to eliminate these short-duration events
(Fig. 6b) and make the engine state less sensitive to the driver
demand.

The detailed drivability metrics are still related to the
simplified metrics in an approximately monotone fashion on
real-world driving (Fig. 7). For the concatenated Ensembles
(Figs. 7a-7c, the correlation is even more clear than on FTP.
The nearly straight-line fits for short duration engine on/off
events demonstrate that the simple and detailed metrics are
related by a nearly constant ratio, which was unexpected.

Perhaps most surprising are the results for the individual
Ensemble cycles (Figs. 7d-7f). Each plot now depicts data
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(a) Mean engine on and off durations compared to
Engine Events.
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(b) Engine on durations less than some number
of seconds compared to Engine Events. Data are
shown for cutoffs of 3, 5, 10, and 30 seconds.
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(c) Engine off durations less than some number of
seconds. Data are shown for cutoffs of 3, 5, 10, and
30 seconds compared to Engine Events.
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(d) Mean dwell time in gear between shifts or clutch
disengagements compared to Gear Events.
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(e) Gear dwell times less than some number of
seconds between shifts or clutch disengagements
compared to Gear Events. Data are shown for
cutoffs of 1, 2, 4, and 6 seconds.
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(f) Gear hunting events that occur within some
number of seconds. This is a sequential up-
shift/downshift or upshift/downshift that occurs
within a set period of time. Data are shown for
cutoffs of 1, 2, 4, and 6 seconds in comparison to
Gear Events.

Fig. 6: Comparison of simple and complex drivability metrics on the FTP cycle. Complex engine activity metrics are compared
to the simplified Engine Events metric in subfigures 6a-6c. Three gear activity metrics are compared to the simplified Gear
Events metric in subfigures 6d-6f. Subfigures 6b and 6e have straight-line fits to the data.

points representing 100 different cycles with different con-
trollers. The drivability behavior is no longer directly related
to the controller but confounded by different cycles, yet the
straight-line trends are still clearly visible. Even for the real-
world drive cycles, it seems that the short duration engine
event metrics are still related to the simple metrics by a nearly
constant ratio.

These methods are quite effective and produce controllers
that are very well behaved. This method is very useful for
adjusting vehicle behavior in practice. Suppose a controller is
selected based on simulation. Once implemented, the engine
state is very sensitive to pedal, as in the previous example.
The designer simply selects a new (still optimal) controller
with higher penalties and thus engine events, and the engine
state becomes less sensitive to the pedal. The designer has
an easy way to control behavior that is simple to tune and
still optimal. Contrast this to a rule-based controller, where
the designer changes the rules that determine when the engine
turns on. It is very difficult to directly tune those rules and
maintain the best fuel economy.

V. CONTROLLING ADDITIONAL BEHAVIOR USING SPSDP

A. Motivation

The design of effective energy-management controllers for
production vehicles is a challenging problem because design-
ers must consider many different vehicle behaviors. In this
paper we study drivability, but engineers must also consider
other attributes like emissions, battery wear, durability, noise,
etc. Even if an attribute is already considered, designers may
want more detailed control. Regardless of the complexity of
the current algorithm, designers are often seeking to control
additional vehicle behaviors.

This section discusses methods for incorporating vehicle
behavior into the SPSDP algorithm. The descriptions largely
refer to a design process: a basic SPSDP controller exists, and
a designer would like to adjust additional vehicle behavior.
This approach covers several levels of complexity. If the basic
SPSDP controller minimizes fuel, the designer may want to
add drivability (as we did in this paper). A more advanced
SPSDP controller may handle fuel and drivability but also
require emissions control, for example.

These additional vehicle behaviors could also be addressed
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(a) Engine On-Off seconds-Concatenated Ens. 1 (b) Engine On TBD seconds-Concatenated Ens. 1 (c) Engine Off TBD seconds-Concatenated Ens. 1

(d) Engine On-Off seconds-Individual Ens. 1 (e) Engine On TBD seconds-Individual Ens. 1 (f) Engine Off TBD seconds-Individual Ens. 1

Fig. 7: Comparison of simple and detailed drivability metrics for concatenated and individual Ensemble 1 cycles. Detailed
engine activity metrics are compared to the simplified Engine Events metric in Figs. 7a-7c for the concatenated Ensemble,
where the 100 cycles are treated as a single trip. Each marker represents the same drive cycle, the concatenated Ensemble 1.
The same metrics are studied for the individual Ensemble 1 in Figs. 7d-7f, where each cycle is simulated individually. Each
marker represents one controller running one of 100 cycles, so the markers no longer represent the same cycle.

with a rule-based controller that operates downstream of the
SPSDP controller, but it is more satisfying to incorporate
these behaviors in the problem formulation. If these vehicle
behaviors require additional model states, solving the Bellman
equation for SPSDP can become intractable, so here we
discuss alternative methods with their benefits and drawbacks.

B. Formulation Methods

Fundamentally, controlling vehicle behavior requires the
designer to specify a cost function for a model. Suppose we
have a basic cost function c(x, u) and model f(x, u, w) that
incorporates some level of functionality. The standard on-line
SPSDP controller is

u∗(x) = argmin
u∈U

Ew[c(x, u) + V ∗(f(x, u, w))]. (1)

We discuss three possible methods to incorporate additional
behaviors which offer a tradeoff between computation and
optimality:

1) Additional Penalties: It may be possible to control
additional behavior by adding penalties to the cost function
using only the states in the base model f(x, u, w). If so, this
yields a new cost function,

cpen(x, u) = c(x, u)+αIEvent1(x, u)+βIEvent2(x, u)... (2)

where I(x, u) is the indicator function of when a behavior
occurs.

The solution complexity for the value function size remains
the same since the base model is still used,

V ∗pen(x) = min
u∈U

Ew[cpen(x, u) + V ∗pen(f(x, u, w))]. (3)

This is termed the ”Additional Penalties” method and yields
an optimal control law. Even though the value function com-
putation remains the same, the number of times Vpen(x) must
be evaluated to tune the controller is exponential in the number
of penalties (α,β,...) in (2).

2) Extended Model: If the new behavior of interest requires
additional states x̌ or control inputs ǔ, the existing model is
extended to include them

xe = [x, x̌] (4)
ue = [u, ǔ] (5)

fe(xe, ue, w). (6)

The SPSDP controller design uses the extended cost ce(xe, ue)
and dynamic model fe(xe, ue, w), and the new value function
V ∗e (x) is solved using the Bellman equation,

V ∗e (xe) = min
ue∈Ue

Ew[ce(xe, ue) + V ∗e (fe(xe, ue, w))]. (7)

This is the standard, provably optimal method and is imple-
mented using the on-line minimization (1). This is termed
the “Extended Model” method. The complexity of computing
the value function grows exponentially with system states,
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requiring more off-line computation. The number of value
function solutions to tune the controller is still exponential
in the number of penalties (α,β,...) in the cost function. This
is the process used in this paper and its companion to include
the simplified drivability metrics.

3) Instantaneous Cost: Additional states and penalties may
also be incorporated solely in the on-line cost function [19],
[20]. A basic SPSDP controller is designed first, and other
behaviors are added later only in the on-line cost function (1).
The value function V (x) is first calculated via the Bellman
equation using a simple cost c(x, u) and model f(x, u, w)
that only includes minimal detail,

V ∗(x) = min
u∈U

Ew[c(x, u) + V ∗(f(x, u, w))]. (8)

The real-time controller is then implemented using the simple
value function and an extended cost function ce(xe, ue) that
includes the additional vehicle behavior. The real-time con-
troller must still track the extended set of states, but the value
function is only solved for a reduced state space, requiring
much less computation. The real-time controller is then

u∗(xe) = argmin
ue∈Ue

Ew[ce(xe, ue) + V ∗(f(x, u, w))]. (9)

The value function is approximated using the simple model
f(x, u, w), while the cost function is calculated using the
extended model. In this case, the new behavioral restrictions
are still implemented via optimization, but they are only
instantaneous in the sense that there is no estimate of the
future cost [20] because they are not included in the value
function. This method is termed the “Instantaneous Cost”
method. It can be implemented on-line with no additional off-
line computation because it uses the original value function; it
can modify vehicle behavior but the optimality guarantees are
lost. The performance loss is highly dependent on the specific
problem; drivability is studied in [19].

C. Penalty Implementation

Designers must carefully consider how events and penalties
are defined; small changes in definition can save large amounts
of computation. The selection of the drivability definitions and
cost function for this paper was not easy, despite the simplicity
of the final metrics.

Generating usable controllers requires three steps: selecting
the cost function, calculating the value function off-line, and
running a simulation. The mapping from penalty to behavior
is not known a priori, so the simulation must be conducted to
determine the behavior; tuning penalties accounts for most of
the total computation. The relative benefits and drawbacks of
the three methods are shown in Table I.

These three options are illustrated with examples from this
work: Simplified drivability metrics were added to a fuel-
only SPSDP controller using the Extended Model method by
adding states to the value and cost functions. Once the current
transmission gear state was included to track gear events, we
added a penalty for non-sequential shifts (ie. 1st−3rd) without
additional states using the Additional Penalties method. An
Instantaneous Cost implementation can be used to limit the

slew rate of engine power, which would otherwise require an
additional state representing current engine power. This slew
rate restriction was not added in the simulations in this paper,
but was used in a hardware implementation.

Metrics and penalties for behaviors other than simplified
drivability were also included or are planned, but have not
been extensively studied. Their implementations are listed in
Table II as examples. The Additional Penalties method is
generally preferred because it maintains optimality, but not
all penalties can be implemented this way. Several methods
are often possible; Table II refers to the implementation we
selected. Although in some cases additional penalties are com-
putationally “free,” from a practical perspective the number
of possible parameter tunings still grows exponentially with
additional behaviors.

TABLE II: Additional Event implementations

Behavior Method
Series Mode Entry & Exit Additional Penalties

Pedal Correlation with Engine Noise Additional Penalties
Pedal Correlation with Engine Speed Additional Penalties
Pedal Correlation with Engine Torque Additional Penalties

Only single-step gear shifts Additional Penalties
Only even-odd gear shifts Additional Penalties

Emissions Extended Model
Time delay between drivability events Extended Model

Climate Control Loading Extended Model
Slew rate of Engine Power Instantaneous Cost
Slew rate of Engine Speed Instantaneous Cost

D. Computation

As an example, this section quantifies the computation
burden of adding the simplified drivability metrics using the
Extended Model and Instantaneous Cost methods described in
Section V-B.

As mentioned previously, after defining the cost function
there are two basic steps: calculating the value function V (x)
off-line, and then implementing it in a controller to drive
a cycle. The on-line implementation requires calculating the
current cost c(x, u), calculating the set of next states xk+1,
and interpolating into the precomputed V (x).

Both methods require similar operations to calculate the
current cost function, which is somewhat trivial. The main
difference is in calculating the value function, which uses table
interpolation both on-line and off-line. The number of points
used for each table is shown in Table III for comparison.

TABLE III: Comparison of Computation Requirements

Method Off-Line Table Size On-Line Table Size
Extended Model 1.2 · 107 1.4 · 104

Instantaneous Cost 1.3 · 105 1 · 103

Each point in the on-line table represents a state, and each
point in the off-line table represents a state, control, and
disturbance combination. The scaling between off- and on-line
table sizes is roughly the number of control and disturbance
combinations available at each state, a factor of 126 for
the Instantaneous Cost method and 882 for the Full Model
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TABLE I: Comparison of Event Implementations

Option Exponential growth in
V (x) solution complexity

Recompute V (x)
for each tuning

Optimal Rerun simulation
for each tuning

Usable for
any behavior

Additional Penalties X X X
Extended Model X X X X X

Instantaneous Cost X X

method. Off-line computations can be conducted on a desktop
PC. The main point here is that the Instantaneous Cost method
requires 2 orders of magnitude less off-line computation, but
both methods have relatively simple on-line implementations
that run in real-time.

VI. SUMMARY DISCUSSION

While we have emphasized so far the excellent fuel econ-
omy results of the SPSDP controllers in comparison to the
baseline controller, we feel that the main contribution of this
work is the demonstration of stochastic optimization as a
viable design method for managing the fuel economy vs.
drivability tradeoff. The controllers generated through SPSDP
are directly implementable in real-time and are provably
optimal. The primary engineering tasks are identifying the
vehicle models (simplified and detailed), and performing the
off-line computation of the stochastic dynamic programming
algorithm. The off-line computations can be arduous1, but they
are straightforward and much more rapid than the traditional
manual design process, where engineers spend most of their
time writing rule-based controllers that require significant hand
tuning with no optimality guarantees.

It is straightforward with SPSDP to generate Pareto tradeoff
surfaces. SPSDP not only can identify the optimal tradeoff sur-
face, but it directly generates controllers that operate on it. This
greatly simplifies the design process by precisely quantifying
tradeoffs among various attributes. Once the Pareto tradeoff
surface is known, a decision can be made about where to
operate the vehicle for a particular market.

The SPSDP controllers developed in this series of papers
have been implemented on the prototype vehicle depicted in
[1, Fig. 1], and will be the subject of a future publication. The
controllers run in real time on a rapid-prototyping system, and
the vehicle can be driven normally. To change vehicle behav-
ior, it is straightforward to simply select an operating point
from the Pareto surface, download the appropriate controller,
and drive the vehicle again. The on-line computations are mod-
est, consisting primarily of interpolation and minimization, and
it is possible to trade storage memory for on-line computation.
Changing controller designs simply involves replacing tables
that are computed off-line. In addition, a designer can develop
the full SPSDP controller and then reduce it to a simpler
functional form. At its heart, SPSDP is a pure state feedback
controller, so the feedback function can often be reduced
to a simpler form with some performance loss [21], [22].
Manufacturers may use this technique not just to save on
real-time computation, but to make controller behavior more
transparent, directly tunable, or easier to maintain.

1A single instance of the controllers used here can be computed on a 2008-
era laptop in a few hours.

One place where SPSDP can have a major impact is
in controller design for new vehicles. Significant effort is
required to develop a controller for a new drivetrain, especially
with a completely new architecture (e.g., Series-Parallel vs.
Power Split). The SPSDP method can automatically generate
a provably optimal controller for a given vehicle architecture
and component sizing much faster than a person could do it
manually. This is especially valuable early in a program during
the hardware design phase. When comparing architectures and
components, the vehicle performance is highly dependent on
the controller design, and it is difficult and time-consuming to
manually tune a controller for each possible vehicle design.
Effectively, the design must be conducted with limited ability
to estimate the closed-loop performance of each candidate
design. A method like Deterministic Dynamic Programming
can automatically generate the best possible performance for
a given vehicle, assuming known future drive-cycle infor-
mation. Stochastic Dynamic Programming generates a causal
controller that is a more reliable indicator of what is possible
in practice.

A hardware test of this algorithm in the prototype vehicle
is underway and will be the subject of a future publication.

VII. CONCLUSIONS

This second part of a two-part paper studies controllers gen-
erated using Shortest Path Stochastic Dynamic Programming
(SPSDP) using the models and methods described in Part 1 [1].
Part 2 has focused on practical issues. Controller performance
and robustness on real-world drive cycles were evaluated
using a highly accurate simulation model and compared to
a baseline industrial controller. The fuel economy, drivability,
and battery SOC maintenance were studied on sets of 100 real-
world cycles using both cumulative and statistical methods.
Results show the SPSDP-based controllers yield 10% better
performance than the baseline controller on real-world driving
data.

The SPSDP-based controllers are robust to variations in
drive cycle and the statistics used to design the controllers.
This was shown by simulating about 1000 controllers designed
using four different sets of drive cycle statistics on large
numbers of real-world drive cycles.

Simplified metrics were developed to study the generally
qualitative concept of drivability and shown to be useful even
when considering more complex metrics. Future development
of the SPSDP method will likely require additional control
over vehicle behaviors, especially in an industrial setting.
Selecting good metrics is crucial in generating the desired
system behavior and implementing the behavior in SPSDP.
There are several ways to incorporate a given metric in SPSDP,
each with its own benefits and drawbacks.
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The SPSDP design procedure is especially useful early
in the design phase, during hardware selection or initial
controller design. Controllers can be designed for arbitrary
vehicle configurations and component sizing. The process can
be highly automated.

This analysis shows that Shortest Path Stochastic Dynamic
Programming is a viable method for designing real-world con-
trollers. The controllers can be implemented directly with little
manual adjustment, and generate performance comparable to
the current industrial state of the art. These controllers are
currently being tested in the prototype vehicle; this hardware
testing will be the subject of a future publication.
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