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ABSTRACT

Energy management controllers for hybrid electric vehicles
typically contain numerous parameters that must be tuned in
order to arrive at a desired compromise among competing at-
tributes, such as fuel economy and driving quality. This paper
estimates the Pareto tradeoff curve of fuel economy versus driv-
ing quality for a baseline industrial controller, and compares
it to the Pareto tradeoff curve of an energy management con-
troller based on Shortest Path Stochastic Dynamic Programming
(SPSDP). Previous work had shown important performance ad-
vantages of the SPSDP controller in comparison to the baseline
industrial controller. Because the baseline industrial controller
relies on manual tuning, there was always the possibility that
better calibration of the algorithm could significantly improve
its performance. To investigate this, a numerical search of pos-
sible controller calibrations is conducted to determine the best
possible performance of the baseline industrial controller and
estimate its Pareto tradeoff curve. Both the SPSDP and baseline
controllers are causal (i.e., do not rely on future drive cycle in-
formation). The SPSDP controllers achieve better performance
(i.e., better fuel economy with equal or better driving quality)
over a wide range of driving cycles due to fundamental structural
limitations of the baseline controller that can not be overcome by
tuning. The message here is that any decisions that restrict con-
troller structure may limit attainable performance, even when
many tunable parameters are made available to calibration en-
gineers. The structure of the baseline algorithm and possible
sources of its limitations are discussed.

∗Address all correspondence to this author.

1 Introduction
Hybrid electric vehicle (HEV) energy management con-

trollers have received a lot of interest in both academic and in-
dustrial circles [1]. While many design methods have been pro-
posed, it is difficult to compare them. Most algorithms, even
those from academia based on formal optimization methods,
have at least some parameters that must be selected by the de-
signer. This is even more true of industrial controllers, which
tend to use extensive hand-tuning and in-vehicle calibration in
order to trade off what are often very subjective driving quality
attributes.

Any performance comparison of controller design methods
is only as good as the engineers that tune the various algorithms,
and thus the comparison always suffers from the refrain that “al-
gorithm X could have been tuned better.” Comparisons are even
more difficult when the designer is forced to compromise among
competing performance attributes, such as the tradeoff between
fuel economy and engine start-stop activity, which is investigated
here. The relative value of one characteristic compared to an-
other is highly subjective, meaning comparisons among different
operating points necessitate a qualitative value judgement.

The goal of this paper is to study the performance of the in-
dustrial controller introduced in [2] as the baseline energy man-
agement system for a prototype HEV. Its performance is com-
pared to a causal academic controller based on stochastic op-
timization, namely Shortest Path Stochastic Dynamic Program-
ming (SPSDP). The baseline industrial controller is first evalu-
ated to determine its Pareto tradeoff curve of best possible per-
formance in terms of fuel economy versus engine activity. This is
accomplished by sweeping the parameters of the controller over
a wide range of values, thereby generating a point cloud of pos-



sible fuel economy and engine start-stop operating points of the
prototype HEV under this controller. The frontier of this point
cloud is the Pareto tradeoff curve of maximum attainable perfor-
mance; the HEV with this controller can be operated anywhere
on that line, but not above it. A comparison is then made to the
Pareto tradeoff curves of the SPSDP studied in [2, 3].

The method of SPSDP generates causal controllers that are
directly implementable in a real-time setting [4]. In particular,
the resulting controllers do not use future drive cycle informa-
tion. This is in contrast to Deterministic Dynamic Program-
ming [5], which is cycle dependent (it relies on a priori knowl-
edge of the entire drive cycle). The causal nature of a SPSDP
controller allows a fair comparison to the baseline controller.

The Pareto frontier for the SPSDP controllers are shown to
lie above the Pareto frontier of the baseline controller, mean-
ing that the SPSDP controllers achieve superior fuel economy
performance for a given level of engine on-off activity, for any
possible tuning of the baseline controller. This limitation is fun-
damental to the structure of the baseline algorithm: no amount
of parameter tuning or calibration can generate performance that
equals that of the SPSDP algorithm. An advantage of the SPSDP
algorithm is that it directly generates controllers that lie on the
tradeoff curve, and does so without requiring hand calibration.
The role of expert judgement is then to decide where on the
Pareto tradeoff curve to operate the vehicle for a given market.

Traditional vehicle software is produced through a process
of continuous improvement. While each year’s model has bet-
ter vehicle control software than the last, in practice, control de-
sign engineers are hesitant to change the basic structure of the
energy management algorithms, both because of their inherent
complexity as well as their complex relationship to other vehi-
cle systems. Instead, if a better controller is developed, its ac-
tions are analyzed in detail, and the existing software is tuned to
mimic the actions of the new controller. This paper emphasizes
that such an approach will not always work. While it is possi-
ble that a given controller architecture may be tuned for a par-
ticular vehicle to achieve the maximum performance, there are
no guarantees. When manually tuning an algorithm, engineers
may be unaware they are finding the maximum attainable per-
formance for a particular controller architecture rather than the
optimal causal controller. A more general benchmark that avoids
specifying a controller architecture is required to correctly gauge
performance. SPSDP is one such method for generating causal
controllers.

The remainder of the paper is structured as follows. The ve-
hicle model and drivability metrics are summarized in Sections
2 and 3, respectively; these are similar to previous work in [2, 3]
and are included for the convenience of the reader. The archi-
tecture of the baseline industrial energy management controller
and the tuning methods used are discussed in Section 4. The
academic controller against which it is bench marked, SPSDP, is
briefly described in Section 5, with details relegated to Appendix
A. The main contribution of the paper, the careful comparison of
an industrial state of the art controller to SPSDP through Pareto

Figure 1. The prototype hybrid: a modified Volvo S-80

tradeoff curves, is presented in Sections 6 and 7.

2 Vehicle
2.1 Vehicle Architecture

The vehicle model studied in this paper is a prototype Volvo
S-80 series-parallel electric hybrid and is shown in Figures 1 and
2. A 2.4 L diesel engine is coupled to the front axle through
a clutched 6-speed automated manual transmission. An electric
machine, EM1, is directly coupled to the engine crankshaft, and
can generate power regardless of clutch state. A second elec-
tric machine, EM2, is directly coupled to the rear axle through a
fixed gear ratio without a clutch, therefore the electric machine is
always rotating at a speed proportional to vehicle speed. Energy
is stored in a 1.5 kWh battery pack. The system parameters are
listed in Table 1.

Table 1. Vehicle Parameters

Engine Displacement 2.4 L

Max Engine Power 120 kW

Electric Machine Power EM1 (Front) 15 kW

Electric Machine Power EM2 (Rear) 35 kW

Battery Capacity 1.5 kWh

Battery Power Limit 34 kW

Vehicle Mass 1895 kg
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Figure 2. Vehicle Configuration

2.2 Vehicle Models
The work presented in this paper uses two different dynamic

models to represent the same prototype hybrid vehicle. The first
model is quite simple; it uses lookup tables to calculate relevant
dynamics and has a sample time of 1s. It is used primarily to
design the controller and do the optimization, and is called the
“control-oriented” model.

The second model comes from Ford Motor Company and
uses its in-house modeling architecture. This sophisticated
model is used to test fuel economy and controller behavior by
simulating controllers on drive cycles. This model is referred to
as the “vehicle simulation” model in this paper [6].

This combination of models allows the controller to be de-
signed on a simple model and keeps the problem feasible, while
providing accurate fuel economy results on a complex model.

2.3 Control Model
When using Shortest-Path Stochastic Dynamic Program-

ming, the off-line computation cost is very sensitive to the num-
ber of system states. For this reason, the model used to develop
the controller must be as simple as possible. The vehicle model
used here contains the minimum functionality required to model
the vehicle behavior of interest on a second-by-second basis. Dy-
namics much faster than the sample time of 1s are ignored. Long-
term transients that only weakly affect performance are also ig-
nored; coolant temperature is one example.

The vehicle hardware allows three main operating condi-
tions:

1. Parallel Mode-The engine is on and the clutch is engaged.
2. Series Mode-The engine is on and the clutch is disengaged.

The only torque to the wheels is through EM2.
3. Electric Mode-The engine is off and the clutch is disen-

gaged; again the only torque to the wheels is through EM2.

The model does not restrict the direction of power flow. The

electric machines can be either motors or generators in all modes.
The dynamics of the internal combustion engine are ignored;

it is assumed that the engine torque exactly matches valid com-
mands and the fuel consumption is a function only of speed,
ωICE , and torque, TICE . The fuel consumption F is derived from
a lookup table based on dynamometer testing,

Fuel f low = F(ωICE ,TICE).

The automated manual transmission has discrete gears and
no torque converter. The transmission is modeled with a con-
stant mechanical efficiency of 0.95. Transmission gear shifts are
allowed every time step (1s) and transmission dynamics are as-
sumed negligible. When the clutch is engaged, the vehicle is in
Parallel Mode and the engine speed is assumed directly propor-
tional to wheel speed based on the current transmission gear ratio
Rg,

ωICE = Rgωwheel .

The electric machine EM1 is directly coupled to the crankshaft,
and thus rotates at the engine speed ωICE ,

ωEM1 = ωICE .

In Parallel Mode, the engine torque TICE and EM1 torque
TEM1 transmitted to the wheel are assumed proportional to wheel
torque based on the current gear ratio Rg and the transmission
efficiency ηtrans. The rear electric machine EM2 torque TEM2
transmitted to the wheel is proportional to the constant EM2 gear
ratio REM2 and rear differential efficiency ηdi f f . The total wheel
torque Twheel is thus the sum of the ICE and EM1 torques to the
wheel ηTransRg(TICE +TEM1) and the rear electric machine EM2
torque to the wheel ηdi f f REM2TEM2,

ηtransRg(TICE +TEM1)+ηdi f f REM2TEM2 = Twheel .

The clutch can be disengaged at any time, and power is de-
livered to the road through the rear electric machine EM2. This
condition is treated as the “neutral” gear 0, which combines with
the 6 standard gears for a total of 7 gear states. If the engine is on
with the clutch disengaged, the vehicle is in Series Mode. The
engine-EM1 combination acts as a generator and can operate at
arbitrary torque and speed. The EM1 command is a speed rather
than a torque in Series Mode. If the engine is off while the clutch
is disengaged, the vehicle is in Electric Mode.

The battery system is similarly reduced to a table lookup
form. The electrical dynamics due to the motor, battery, and
power electronics are assumed sufficiently fast to be ignored.
The energy losses in these components can be grouped together



Table 2. Vehicle Mode Definitions.

Gear Engine State Clutch State Mode

0 Off Disengaged Electric

0 On Disengaged Series

1-6 On Engaged Parallel

1-6 Off Engaged Undefined/not used

such that the change in battery State of Charge (SOC) is a func-
tion κ̄ of Electric Machine speeds ωEM1 and ωEM2, torque TEM1
and TEM2, and battery SOC at the present time step,

SOCk+1 = κ̄(SOCk,ωEM1,ωEM2,TEM1,TEM2). (1)

Assuming a known vehicle speed, the only state variable required
for this vehicle model is battery SOC. Changes in battery perfor-
mance due to temperature, age, and wear are ignored. An addi-
tional constant power drain is used to represent accessory loads
like radios and headlights, as well as additional losses.

During operation, the desired wheel torque is defined by the
driver. If we assume the vehicle must meet the torque demand
perfectly, then the sum of the ICE and EM contributions to wheel
torque must equal the demanded torque Tdemand ,

Twheel = Tdemand .

This adds a constraint to the control optimization, reducing
the 4 control inputs to a 3 degree of freedom problem. In Par-
allel Mode the control inputs are Engine Torque, EM1 Torque,
and Transmission Gear. In Series Mode, the electric machine
command becomes EM1 Speed.

Simulation is conducted assuming a “perfect” driver. At
each time step, the vehicle velocity is the desired cycle velocity.
The desired road power is calculated as the exact power required
to drive the cycle at that time, and is a function of the desired ve-
locity profile. Now, given vehicle speed, demanded road power,
and this choice of control inputs, the dynamics become an ex-
plicit function κ of the state Battery SOC and the three control
choices as shown in Table 3,

Table 3. Vehicle Dynamic Model

State Control Inputs

Battery Chg. (SOC) Engine Torque

EM1 Tq. (Parallel) or Speed (Series)

Transmission Gear

SOCk+1 = κ(SOCk,TICE ,TEM1,Gear). (2)

The engine fuel consumption can be calculated from the control
inputs.
Operational Assumptions:

This control-oriented model uses several assumptions about
the allowed vehicle behavior.

1. The clutch in the automated manual transmission allows the
diesel engine to be decoupled from the wheels. This allows
the engine to shut off during forward motion.

2. There is no ability to slip the clutch for starts.
3. There are no traction control restrictions on the amount of

torque that can be applied to the wheels.

2.4 Vehicle Simulation Model
As part of this project, Ford provided an in-house model

used to simulate fuel economy. It is a complex, MAT-
LAB/Simulink based model with a large number of parameters
and states [6]. Every individual subsystem in the vehicle is rep-
resented by an appropriate block. For each new vehicle, subsys-
tems are combined appropriately to yield a complete system.

The control-oriented model of Section 2.3 is very closely
matched to the vehicle simulation model is nearly identical in
the parameters: efficiencies, mass, drag, power limits, etc. The
control-oriented model has a limited number of states and thus
cannot fully match the simulation model.

The vehicle simulation model contains the baseline con-
troller algorithm. To generate simulation results using this con-
troller, the controller parameters are adjusted and a target drive
cycle is provided to the model. The baseline controller does not
use Series Mode, although the plant model allows it.

To use the vehicle simulation model with the algorithm de-
veloped here, the SPSDP controller is implemented in Simulink
by interfacing appropriate feedback and command signals: Bat-
tery SOC, Vehicle Speed, Engine State, Gear Command, etc. The
vehicle simulation model can then be “driven” by the SPSDP
controller along a given drive cycle.

3 Drivability Constraints
3.1 Motivation

Drivability is a commonly used term that covers many
aspects of vehicle performance including acceleration, engine
noise, braking, shifting activity, shift quality [7], and other be-
haviors. All of these contribute to consumer perception of the
vehicle, which is crucial in purchasing decisions. This research
addresses only the hybrid vehicle drivability issues of gear selec-
tion and when to start or stop the internal combustion engine.

Current academic work in hybrid vehicle optimization pri-
marily focuses on fuel economy. These tools are somewhat less
useful to industry because of drivability restrictions in produc-
tion vehicles, which fuel-optimal controllers usually violate. If



these fuel-optimal controllers are used, drivability restrictions are
typically imposed as a separate step.

In this paper we investigate the usefulness of optimizing for
fuel economy and drivability simultaneously. By including these
real-world concerns, one can generate controllers that improve
performance and are one step closer to being directly imple-
mentable in production. Specifically, these results validate the
real-world performance of the SPSDP algorithm and compare it
to the best possible performance of an industrial controller.

For this particular vehicle configuration, the fuel economy is
much more sensitive to engine activity than transmission activity.
For this reason, the results are shown only for engine activity,
although the controller design and implementation also includes
gear selection as in [2, 3].

3.2 Chosen Penalties
In the context of the overall system, two significant charac-

teristics that are noticeable to the driver are the basic behaviors
of the transmission and engine. These are included in both ve-
hicle models presented in Section 2. To effectively design con-
trollers, qualitative drivability requirements must be transformed
into quantitative restrictions or metrics. Drivability experts at
Ford Motor Company were consulted to assist in developing nu-
merical drivability criteria. Two baseline metrics are used to
quantify behavior for a particular trip. The first is Gear Events,
the total number of shift events on a given trip. The second met-
ric is Engine Events, the total number of engine start and stop
events on a trip.

By definition, engine starts and stops are each counted as
an event. Each shift is counted as a gear event. In this paper,
the transmission is constrained to one step shifts (i.e. 1st − 2nd)
to match the transmission restrictions of the baseline controller.
Shifts that occur with the clutch disengaged are not counted. En-
gaging or disengaging the clutch is not counted as a gear event,
regardless of the gear before or after the event.

Despite the relative simplicity of these metrics, simulations
have shown that they capture a wide range of vehicle behavior
and are well correlated with more complicated metrics.

4 Baseline Controller
4.1 Architecture

The “baseline” prototype controller architecture studied here
is commonly used for energy management. It is obviously quite
complex, but the critical energy management features are de-
scribed here and shown in Figure 3. One module determines
the optimal battery power flow and adds it to the driver demand
to determine the Total Power. A second module determines the
optimal engine state based on the Total Power using a state ma-
chine with hysteresis. A third module then determines individual
actuator commands based on the Total Power and the desired en-
gine state. The transmission gear is selected independently by
the transmission.

Optimal 
Battery 
Power

Engine 
State 

Machine

Actuator 
CommandsWheel Power

Battery Power

Eng 
State

Figure 3. High Level Baseline Controller Architecture.

SPSDP Process: Drivability

Energy 
Management

High Level Constraints

ControllerAutomated 
Stochastic DP

Energy 
Management 
Design Team

Drivability 
Design Team

Common Development Process:

Figure 4. Two possible design processes. The SPSDP process con-
ducts the optimization in one step, but adds complexity. The “Common”
two stage optimization is often used in industry. It is easier to tune but
may sacrifice some performance.

This architecture is fundamentally different from the SPSDP
algorithm discussed in Section 5. These two choices are repre-
sented in Figure 4. The SPSDP controller is a single step opti-
mization, while the baseline algorithm mimics the common two
step design procedure. Structurally, the two-stage algorithm is
similar to the “local” optimization discussed in [3, 4].

The fundamental limitations of the baseline controller likely
arise from three sources. The first is structural; the optimal bat-
tery charging power and engine state are determined sequentially
and not simultaneously. Other major automakers use similar two-
stage architectures that likely exhibit these limitations. The sec-
ond possible source is that the engine state machine is inherently
rule-based as a function of total power demand. While the total
power demand is strongly correlated with optimal trajectories, a
rule-based strategy is likely suboptimal for the metrics consid-
ered here because it imposes an assumed structure on the con-
troller. The third possible source of limitations is the “actuator
commands” block, which is somewhat rule-based and not a pure
optimization.



4.2 Performance Capability
The flexibility of rule-based controllers with many calibra-

tion parameters is tempered by the fact that there is no guarantee
of optimality. Furthermore, it is difficult to compare controller
architectures since it is very hard to assess whether or not a given
calibration might be improved by judicious tuning [2].

The goal of this work is to determine the best case per-
formance of the baseline architecture and compare it to other
available architectures. By simulating many possible tunings of
the baseline controller, the best case performance can be esti-
mated. The best case performance is useful information in and
of itself, but also allows rigorous comparisons among multiple
control methods. Performance can be defined not only as fuel
economy, but to quantify additional performance tradeoffs. This
paper studies engine activity, but other important tradeoffs could
easily be considered.

The main tuning parameters available are six functions of
speed, three in each of the “Optimal Battery Power” and “Engine
State Machine” blocks. This is obviously a very large space to
search, especially for an engineer tuning the algorithm by hand.
One advantage of this architecture is that the engine behavior and
battery charge maintenance are largely confined to their respec-
tive blocks with minor crosstalk, simplifying the tuning process
considerably.

There are three tuning parameters in the Engine State Ma-
chine. These parameters are functions of speed, yielding three
tuning functions that can be varied.

4.3 Search Methods
Initially, proposed controller tunings are simulated on the

FTP cycle. The fuel economy numbers are corrected based on
final SOC, and the number of Engine Events is recorded as dis-
cussed in Section 3. Controllers are evaluated based on both fuel
economy and engine activity.

First, the three functions the in Engine State Machine are
varied, using both small perturbations from the nominal tuning
and a brute force sweep of a larger function space. This generates
about 100,000 possible controllers. A few hundred of the best
tunings are randomly selected for further study. For each of these
tunings, the engine state machine parameters are fixed and the
three functions in the battery power block are varied. This yields
the base set of 180,000 controllers.

To evaluate robustness to real-world driving, 210 of these
controllers are selected and extensively evaluated using real-
world drive cycles.

5 Academic Benchmark
In order to evaluate the performance of the industrial algo-

rithm, an academic algorithm is used to evaluate state-of-the-art
performance for the same information conditions. Controllers
must be causal, implementable, and use no future information.
The method chosen is Shortest Path Stochastic Dynamic Pro-
gramming (SPSDP), a well-established controller design method

that has been previously used for hybrid vehicle energy manage-
ment [4]. This method is not the focus of this paper, merely a
benchmark for comparison. The details of the algorithm are in-
cluded as Appendix A as well as in previously published work
[2, 3].

SPSDP is an automated algorithm that generates a causal
controller from a vehicle model, a cost function, and statistics
about typical driving. The resulting controller can be directly
implemented in real-time. The controller is provably optimal for
the information given: statistics about general driving behavior
without direct future knowledge. The designer can specify the
cost function, in this case fuel and engine activity. The resulting
controllers are optimal for a given cost function. The designer
controls the assigned cost, and the algorithm produces behav-
iors. This is different from a manual algorithm where the de-
signer specifies behaviors in an attempt to minimize cost, with
no optimality guarantees. In practice, controllers are generated
with a variety of penalty values in the cost function, and the re-
sulting behaviors generate a continuous curve. The designer then
picks the desired behavior.

The SPSDP algorithm has several advantages, but suffers
from off-line complexity. While straightforward, it is not easy
to set up the off-line optimization to generate the real-time con-
trollers. The off-line step is also computationally intensive, re-
quiring several hours to compute a controller. In effect, the de-
signer is eliminating the need to decide on a controller architec-
ture and tuning, but it comes at the cost of additional setup.

6 Simulation Procedure
Both baseline and SPSDP controllers are simulated on the

same vehicle simulation model discussed in Section 2.4. These
simulations are all causal, so the final SOC is not guaranteed
to exactly match the starting SOC. This could yield false fuel
economy results, so all fuel economy results are corrected based
on the final SOC of the drive cycle. This is done by estimating the
additional fuel required to charge the battery to its initial SOC,
or the potential fuel savings shown by a final SOC that is higher
than the starting level. This correction is applied according to

∆Fuel = CBatt∆SOC
BSFCmin

η
Regen
max

(3)

where ∆Fuel is the adjustment to the fuel used, CBatt is the bat-
tery capacity, ∆SOC is the difference between the starting and
ending SOC, BSFCmin is the best Brake Specific Fuel Consump-
tion for the engine, and η

Regen
max is the best charging efficiency of

the electric system.
Controllers are initially evaluated on the FTP government

test cycle, in which case there is only one simulation per con-
troller. To study robustness to drive cycle variations, controllers
are also simulated on a set of real-world driving data collected
by the University of Michigan Transportation Research Institute



Figure 5. Best Case performance of the baseline controller running FTP
compared to SPSDP controllers. The black triangles are the “best” avail-
able tunings, and the blue squares are selected randomly from the other
reasonable controllers. SPSDP controllers are shown for comparison as
red diamonds. Fuel economy is normalized to the default baseline con-
troller running the FTP cycle. All markers represent the same controllers
in Figures 5-7.

(UMTRI) [8]. 100 cycles are randomly selected from these data
to generate a set of ensemble cycles. Procedurally, this is con-
ducted as follows:

1. Each controller is simulated on each of the 100 cycles in the
ensemble using the vehicle simulation model.

2. The results for the ensemble set of 100 cycles are compiled
to generate average or cumulative performance for that par-
ticular controller.

In the end result, each controller has average performance
metrics (fuel economy and drivability) representing cumulative
performance on the set of ensemble cycles. Note that studying
100 controllers on 100 cycles each means 10,000 simulations.

7 Results
As discussed in Section 4.3, the base set of 180,000 possi-

ble controller tunings is first simulated on the FTP cycle. The
fuel economy numbers are corrected based on final SOC, and the
number of Engine Events is recorded as discussed in Section 3.
These results are shown in Figure 5 as small gray dots. Many
of the parameter values yield unreasonable controllers with poor
fuel economy and large numbers of engine events. They are out-
side the bounds of the figure.

The default tuning of the baseline controller (provided by
Ford) is shown as a large green circle. The controllers designed
using SPSDP are shown as red diamonds. One major benefit
of SPSDP is clearly visible: controllers are always on the fron-
tier of attainable performance without iterative searching. Vary-

Figure 6. Final Battery SOC of the baseline and SPSDP controllers run-
ning FTP. All cycles start at SOC=0.5. The gray dots are all possible
baseline controllers, the black triangles are the “best” available baseline
controllers, and the blue squares are selected randomly from the other
reasonable baseline controllers. SPSDP controllers are shown as red
diamonds. All markers represent the same controllers in Figures 5-7.

ing the cost function merely moves the operating point along the
Pareto curve of maximum performance. The SPSDP controllers
achieve equal or better performance than the baseline under all
conditions, as would be expected with the optimality guarantees.

These initial results are for a single drive cycle. Real-world
performance is studied by simulating the controllers on a group
of 100 drive cycles. It is impractical to simulate all the controllers
on 100 cycles each, so the majority of the brute-force search is
conducted on the FTP cycle. 210 controllers are then selected for
further testing. 30 of those are selected from the frontier as the
“best” available, and the remainder are selected randomly from
the cloud of reasonable controllers. The selected controllers are
shown as black triangles and blue squares respectively in Figure
5.

All results in this paper are normalized to the default base-
line controller running the FTP cycle. All markers in Figures 5-7
represent the same controllers running various cycles. The fun-
damental tradeoff between vehicle fuel economy and the amount
of engine activity is clearly visible in the results.

Varying the engine state machine parameters does change
the battery SOC behavior, but the controllers are still reasonably
charge-sustaining, as shown in Figure 6. These changes in bat-
tery SOC are used to correct the cycle fuel economy for all results
shown. This correction generally only changes the results 1-2%
and does not alter the relative comparison. The SPSDP con-
trollers generally achieve better performance than the baseline
both in uncorrected fuel economy and in final SOC. All markers
represent the same controllers as shown in Figure 5.

Fuel economy on government test cycles differs from that of
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running the ensemble set of 100 cycles. Fuel economy is normalized to
the default baseline controller running the FTP cycle. All markers repre-
sent the same controllers in Figures 5-7.

real-world driving, so each controller is also evaluated on an en-
semble set of 100 drive cycles. 210 of the baseline controllers are
selected and compared to the SPSDP controllers in Figure 7. The
results are normalized to the baseline controller running the FTP
cycle (Figure 5), so both the SPSDP and baseline controller yield
lower fuel economy in the real-world(0.86-0.93) than on govern-
ment test cycles (1.1-1.18). The SPSDP controllers in Figures
5-7 are the same for all three figures, and are designed using
probabilities from the set of 100 real-world drive cycles.

While it is not easy to specify why the SPSDP controllers
perform better, in general they are more aggressive and efficient
in their use of the ICE and the electric machines. The ICE oper-
ates largely in a “bang-bang” fashion, either at a high efficiency
operating point or completely off. The electric machines are gen-
erally used closer to their maximum efficiency, or near maximum
power to enable high ICE power outputs when little road load
power is required.

These general operating principles seem intuitive, but the
result is one of the major benefits of SPSDP: it automatically
generates the optimal controller without a designer specifying
control actions. Even given these principles, a designer would be
hard-pressed to write control laws that generate optimal perfor-
mance. These principles also do not necessarily hold in general
and may change with different vehicles. Guessing the wrong
“rules of thumb” in the design phase can impose performance
limits, as demonstrated in this paper.

8 Conclusions
A baseline industrial energy management algorithm is ex-

tensively tuned to achieve its maximum performance, but it falls

short of another causal controller design method, SPSDP. There
is no possible tuning or calibration of the baseline algorithm that
can match the SPSDP controller performance. This implies fun-
damental structural limitations of the baseline algorithm. These
limitations likely arise for three reasons: the battery power flows
and engine start-stops are determined sequentially and not si-
multaneously, the engine on-off control is constrained to be a
function of total power demand, and some actuator selection is
rule-based.

The SPSDP-based controllers do not exhibit similar limi-
tations. In particular, a SPSDP-based controller uses full-state
feedback, and thus power flows, engine on-off events and gear
number can be general functions of vehicle speed, battery SOC,
gear number, engine state and total power demand. While it is
very possible that a simpler feedback structure may exist, that
is, one that depends on fewer variables and hence is more easily
calibrated in the field, the search for such a feedback is a sepa-
rate problem. As part of that search, the control designer has to
decide how much degradation in performance is acceptable for
ease of tunability, maintenance, or other considerations.

The work presented here underlines the point that making
an a priori choice of feedback structure or vehicle behavior can
induce significant structural barriers to obtaining optimal vehicle
performance, barriers that cannot be overcome at later stages in
the design process, no matter how well the nominal controller is
tuned. One way to avoid making these choices at an early stage
is to adopt a more sophisticated controller design procedure in
the prototyping phase, one that automatically searchers over all
possible state feedback controllers. One such method is SPSDP.
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APPENDIX

A Shortest Path Stochastic Dynamic Programming
A.1 Cost Function

In order to design a controller with acceptable drivability
characteristics, the optimization goal over a given trip of length
T would ideally be defined as

min∑
T
0 Fuel f low

suchthat (4)

∑
T
0 GE ≤ GEmax , ∑

T
0 EE ≤ EEmax

where GE and EE are the number of Gear and Engine Events
respectively as described in Section 3, and GEmax and EEmax are
the maximum allowable number of events on a cycle.

This constrained optimization incorporates the two major ar-
eas of concern: fuel economy and drivability. Constraints of this
type cannot be incorporated in the Stochastic Dynamic Program-
ming algorithm used here because the stochastic nature of the
optimization cannot directly predict performance on a given cy-
cle. Instead, the drivability events are included as penalties, and
those penalty weights are adjusted until the outcome is accept-
able and meets the hard constraints.

Controllers based only on fuel economy and drivability com-
pletely drain the battery as they seek to minimize fuel. An addi-
tional cost is added to ensure that the vehicle is charge sustaining

over the cycle. This SOC-based cost only occurs during the tran-
sition to key-off, so it is represented as a function φSOC(x) of the
state x, which includes SOC [2–4]. The performance index for a
given drive cycle is

J =
T

∑
0

Fuel f low+α

T

∑
0

GE +β

T

∑
0

EE +φSOC(xT ). (5)

The search for the weighting factors α and β involves some
trial and error, as the mapping from penalty to outcome is not
known a priori. Note that setting α and β to zero means solving
for optimal fuel economy only.

Now, to implement the optimization goal of minimizing (5),
a running cost function is prescribed as a function only of the
state x and control input u at the current time

c f ull(x,u) = F(x,u)+αIGE(x,u)+βIEE(x,u)+φSOC(x) (6)

where the function I(x,u) is the indicator function and shows
when a state and control combination produces a Gear Event or
Engine Event. Fuel use is calculated by F(x,u). The SOC-based
cost φSOC(x) still applies only at key-off, when the systems tran-
sitions to the key-off absorbing state. Many other vehicle behav-
iors can be optimally controlled by adding appropriate functions
of the form φ(x,u); a typical example is limiting SOC deviations
during operation to reduce battery wear.

A.2 Problem Formulation
To determine the optimal control strategy for this vehicle,

the Shortest Path Stochastic Dynamic Programming (SPSDP) al-
gorithm is used [4, 9]. This method directly generates a causal
controller; characteristics of the future driving behavior are spec-
ified via a Markov chain rather than exact future knowledge. The
system model is formulated as

xk+1 = f (xk,uk,wk),

where uk is a particular control choice in the set of allowable
controls U , xk is the state, and wk is a random variable arising
from the unknown drive cycle. Given this formulation, the opti-
mal cost V ∗(x) over an infinite horizon is a function of the state
x and satisfies

V ∗(x) = min
u∈U

Ew[c(x,u)+V ∗( f (x,u,w))], (7)

where c(x,u) is the instantaneous cost as a function of state and
control; (6) is a typical example. The optimal control u∗ is a
control that achieves the minimum cost V ∗(x). This equation
represents a compromise between minimizing the current cost



c(x,u) and the expected future cost V ( f (x,u,w)). Note that the
cost V (x) is a function of the state only. This cost is finite for
all x if every point in the state space has a positive probability
of eventually transitioning to an absorbing state that incurs zero
cost from that time onward. Equation (7) is solved using mod-
ified policy iteration, which is one of several available solution
methods.

In order to use this method, the driver demand is modeled
as a Markov chain. This “driver” is assigned two states: current
velocity vk and current acceleration ak, which are included in the
full system state x. A probability distribution is then assigned
to the set of accelerations at the next time step based on drive
cycles that represent typical driving behavior [2–4]. This choice
of typical drive cycles does change the controller that is gener-
ated, but the algorithm is robust to a wide range of probability
distributions as shown in [2].

In addition to fuel economy, it is desirable to study the driv-
ability characteristics of the vehicle. The metrics chosen are gear
shifts and engine events as described in Section 3. To track these
metrics, two additional states are required: the Current Gear (0-
6) and Engine State (on or off).

Bringing this all together, the full system state vector x con-
tains five states: one state for the vehicle (Battery SOC), two
states for the stochastic driver (vk,ak), and two states to study
drivability (Current Gear and Engine State). This formulation
is termed the “SPSDP-Drivability” controller. A summary of
system states is shown in Table 4. The control u contains the
three inputs Engine Torque, EM1 Torque/Speed, and Transmis-
sion Gear, as described in Section 2 and Table 3.

Table 4. Vehicle Model States

State Units

Battery Charge (SOC) [0-1]

Vehicle Speed m/s

Current Vehicle Acceleration m/s2

Current Transmission Gear Integer 0-6

Current Engine State On or Off


