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Abstract— Stable walking motions in bipedal robots can be
modeled as asymptotically stable periodic orbits in nonliear
systems with impulse effects. The method of hybrid zero
dynamics, previously used to analyze planar walking in bipds
with one degree of underactuation, is extended to address ¢h
increased degrees of underactuation and the additional imgct
invariance conditions that arise when actuator dynamics ag
explicitly modeled. The resultant controller is parameteized
and includes a discrete feedback in the parameters that is
active only in the instantaneous double support phase. The
controller design method is illustrated on a five-link plana
walker with series compliant actuation, that is, a robot whee
a compliant element has been deliberately inserted between
each actuated joint and its corresponding motor in order to
increase the overall energy efficiency of locomotion.

. INTRODUCTION Fig. 1. Left: A representative example, intentionally anffomorphic, of

. . . . __the class ofV-link biped robot models considered. Right: A schematic of
In legged robots, the physical introduction of tuned spmngt - A, : ; ’
. - ' . o ) a rotational joint with series compliant actuation.
into an otherwise rigid mechanism can significantly improve o - ) o
energy efficiency. The energetic benefits are twofold: withi V&lues, and similar boundary conditions arise for joingta.
the strides of walking and running, springs can store angeemingly benign, these additional post-impact boundary
release some of the energy that would otherwise be lost §8nditions alter the structure of the impact map and can

actuators do negative work [2]: and at foot touchdown eyentSignificantly complicate controller design. _
springs isolate reflected motor inertias from the energy- 1€ method of hybrid zero dynamics, as presented in [25]

dissipating effects of rigid collisions. These and othessugf [0F the control of planar walking, assumed that any actuator
flexible elements have been demonstrateduwmingrobots dynamics were sufficiently fast that they could be neglected
such as RHex [20], Scout [16], Sprawlita [4], and the notabl{]" the _controller de_5|gn process. The novel el_ement of this
efficient ARL Monopod Il [1]. And while the benefits of PaPer is the extension of the hybrid zero dynamics framework
energy storage are most evident in running, in practice maf 2ddress unique aspects of stabilizing walking motions
robots must quite literally walk before they can run. In thesYSing actuators with nontrivial series compliance. Specifi

cases compliance must be taken into account in the desigfiention is given to the post-impact boundary conditions,
and control ofwalking gaits, either explicitly by modeling, which no longer satisfy the linear structures assumed ih [25

or implicitly by treating nonrigid effects as disturbandes 1'eating actuator dynamics in this framework will lead to
a fully rigid model. reduced dimensionality stability tests for closed-loojbkivey
Obtaining the energetic benefits of compliance is ndiaits despite the increased degrees of underactuation that

without cost: delivering torque through compliant elensentCCOmpany compliant actuation.

poses several challenges for control design. There is anS€€ Fig. 1 for a description of the class of robots con-
obvious increase in the degrees of freedom of the robg{dered in this paper, along with a schematic diagram of
model, and hence, the degree of underactuation. This ds/l€xible actuator. One example of the pictured compliant
a widely recognized issue in robotics; see [22], [21], [3]'n_echar_1|sm is the MIT Series Elastic Actuator, which uses
and references therein. An additional challenge particul§ti SPrings and an inner-loop feedback controller to avéi

to legged robots arises from the impulsive effects occgrrinliable force control [18], [17]. Another, the AMASC
when the swing leg impacts the ground. When torque at (g\ct_uator with Mechanically Adjustable _Serles Compliance
joint is generated by a motor and drivetrain in series wit§lesigned by Hurst [11], consists of a drive motor connected
a spring (as in this paper) the spring isolates the motdp series with a pair of large, variable stiffness springsliké

and drivetrain from the effects of an impact. Post-impadf'® MIT Series Elastic Actuator, the AMASC is designed to
values of rotor position and velocity match their pre-impacdmechanically store significant amounts of energy that would
otherwise be wasted when the actuator does negative work.
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main theoretical results of the paper. The concept of a HybrB. Periodic orbits
zero dynamics (HZD) is defined in a more general manner
than in [25], followed by a theorem that provides sufficien
conditions—and a controller design recipe—for stabiligin
periodic orbit in a nonlinear system with impulse effectaeO

|

A C°° autonomous system with impulse effastgiven
y (2) with v = 0, namely,

& = f(z) = €8

zt = A(x7) 2z~ €8.

of the conditions of this theorem, that the continuous-phas
zero dynamics manifold is invariant under the impact map,
can be difficult to meet in practical examples. The second
theorem of this section provides conditions for constneeti A solution o(t) of (3) is periodic if there exists a finite

an embedding of the original system with impulse effects int7" > 0 such thatp(t + T') = ¢(t) for all ¢t € [tg, 00). A

a larger system with impulse effects where the mentionezet O C X is a periodic orbitif O = {¢(t) | t > to} for
impact invariance condition is easier to meet. Moving talvarsome periodic solutiorp(t). While a system with impulse
applications, Section IV presents a model of a class of planaffects may certainly have periodic solutions that do not
biped robots with series actuation compliance; propertigsvolve impact events, they are not of interest here because
of the models are summarized that aid in applying théhey could be studied more simply as solutions of (1). If a
theorems of Section Ill. Section V presents the applicatioperiodic solution has an impact event, then the correspondi
of the results of Section Ill to a particular instance of theoeriodic orbit© is not closed; see [8], [14]. LeD denote
biped models of Section IV. A simulation of the closed-loopts set closure. A periodic orbi© is transversalto S if
walking gait shows properties that are predicted by theorits closure intersects§ in exactly one point, and fot* :=

®3)

Conclusions are given in Section VI. ONnS, LyH(z*) = %—f(x*)f(x*) # 0 (in words, at the
intersection,® is not tangent taS). Notions of stability in
Il. TECHNICAL BACKGROUND the sense of Lyapunov, asymptotic stability, and expoaénti
stability of orbits follow the standard definitions; see ,[13
A. Systems with impulse effects pp. 329], [8], [15].

Consider a control system
C. Poincagé return map

&= f(z) + g(z)u, €y

The method of Poincaré sections is the primary tool used
wherex € X, an open connected subset B, u € IR™, to test the stability of periodic orbits in nonlinear sysgeem
and f and the columns ofy are C*° vector fields onX.  When such orbits occur in systems with impulse effects, it is
An impact (or switching) surface is a co-dimension @f  natural to select the impact surfaSeas the Poincaré section.
submanifoldS := {z € X | H(xz) = 0}, whereH : X — IR To define the return map, let(¢, 7o) denote the maximal
is C> andVz € S, %—f(x) # 0. An impact (or reset) map solution of 2 = f(z) in (3) with initial conditionz, at time
is aC> functionA : § — X. A C* system with impulse t, = 0. The time-to-impactfunction, T; : X — IR U {oo},

effectsis a model of the form is defined by
5. & = fl@)+g@x)u = &S @ inf{t > 0]p(t,79) € S} if 3 ¢ such that
| o2t = A(z7) x” €8, Tr(xg) := o(t,x0) €S
where = () = lim, ~2(r) and z* () = limo 2(r) > otherwise. 4

denote, respectively, the left and right limits of a trag@¥f e poincaré return mag : S — S, is then given as (the
z(t). In simple words, a trajectory of the model is SpeCiﬁecbartial map)

by the differential equation (1) until its state “impactsiet

hypersurfaceS. At this point, the impact mag\ assigns a P(z) == o(T7 o Alz), A(z)). (5)

new initial condition from which the differential equation

evolves until the next impact witls. In order to avoid theé Tha method of Poincaré sections can then be stated as
state having to take on two values at the same instant, th8,s:

impact event is, roughly speaking, described in terms of the

Xalljtesﬂof .the st?,tet gyst ?i',?thr? |mpa<|:t” at time™, andt Theorem 0: (Method of Poincaré Sections [14], [8], [15]) If
Just atter impact-atime ¢ - These vajues are represen eqhe C* system with impulse effects (3) has a periodic orbit

by the left and right limits,z— and =+, respectively. A O with 2* :— ON S a singleton and. ; H (x*) # 0, then the
formal definition of a solution is easily written down by following are equivalent: ! '

piecing together appropriately initialized solutions df;(see
[26], [8], [15], [5]. A choice must be made whether to take 1) z* is an exponentially stable (resp., asymp. stable, or
a solutiony(t) of (2) to be a left- or a right-continuous stable i.s.L.) fixed point of?;

function of time at each impact event; here, solutions are ii) O is an exponentially stable (resp., asymp. stable, or
assumed to be right continuous as in [8]. stable i.s.L.) periodic orbit of.



[1l. NEW RESULTS ONHYBRID ZERO DYNAMICS to systems with general vector relative degree, or to system

The paper [25] introduced the notion of kybrid zero for which a vector relative degree is achievable by dynamic
dynamicgHZD) for systems with impulse effects. The HzD feedback; see [12]. o
is based on two principles that are ubiquitous in non-hybrid Remark 1: When a system with impulse effects (2) has
systems, namely invariance and attractivity. Many prolslenn outputh(z) with uniform vector relative degreg, the
involving the existence and stability of periodic orbits infollowing are equivalent:
systems with impulse effects can be simplified if the system a) A(SN Z2) C Z;
possesses an appropriately defined hybrid invariant mnifo  b) Vz € A(SN Z) andV0 <i <k —1 Ljh(x) = 0.
In the context of planar bipedal locomotion, insight can be
gained by studying the system restricted to the invariant The following theorem gives HZD-based sufficient con-
submanifold, that is, the HZD. ditions for stabilization of a periodic orbit in an open-fmo

The current paper presents two theorems that directBystem with impulse effects.
extend the results of [25], [14], and several others. In the Theorem 1: Consider aC> system with impulse effects
first theorem, using [14], the HZD is extended to outputs witlf2) with aC*° output (6) and hybrid zero dynamics (8). Sup-
uniform vector relative degree greater than or equal to onpose that (8) contains a periodic orBltthat is exponentially
Previous work of [25] applies to outputs of uniform vectorstable and transversal . If in addition
relative degree two (each output component has relative 1) the output has uniform vector relative degrée and
degree two and the associated decoupling matrix is square) there exists a vector of functions: X — IR" ™k
and invertible [12]). The key contribution of the second such thatL,¢ = 0; and
theorem is a novel dynamic controller that is active only
at the impacts, whose function is to relax the conditions for O(x) = (¢(a:); h(z); Lyh(x);- - - ;L’;*lh(x)) 9)

achieving impact invariance when constructing an HzZD. _ . .
is a diffeomorphism ont’,

A. Hybrid Zero Dynamics for Systems with Uniform Vectofhen the orbit® is exponentially stabilizable. For any

Relative Degreé: > 1 choice of matrices Ko, K1,---,K,_; satisfying that
The basic idea of an HZD is that an output should give* + K;,_;s*~1 4+ ... K is Hurwitz, for e > 0 sufficiently

rise to a zero dynamics for the continuous portion of themall, the feedback

model [12] and the resulting zero dynamics manifold should L[ —LRh(z) +

be invariant under the impact map. This is formalized as u(z) = (LgL’;_lh(z)) ( kfil ) 7

follows: ' Yico wKiL}h(z)
Associate 80> output (10)

applied to (2) render®) exponentially stable in the (full-
y = h(z) (6) dimensional) closed-loop system

to (2) and assume thah has vector relative degree i = f@)+g@ulz) 2= €S

(k1,-- -, kn) with respect to the continuous portion of the ) N —cs (11)

hybrid model (that ish; has relative degrek; with respect v (@) roee

g)nfjl)t r?gtdtthheer gii?:ggng n;(atgg Clrs] ?ﬂ;;r& ?)nd: m(\)/.e[“e?li)’[lz Proof: AsOI in[12, Prop.. 6.1..5]],Ci_nltroduce the c.oordirr:ates

be the zero dynamics manifold for the continuous portion of, _ o) andn = (h(w);--- 5Ly "h(z)). In (zn), the

: . Closed-loop dynamics = f(z) + g(zr)u(x) satisfies all of
the dynamics and lei* be the feedback (unique o) such .
that for all = € 2, f*(z) == f(z) + g(x)u*(z) € T, 2. If the hypotheses of [14, Thm. 2]. Hence, fersufficiently

in addition,S N Z is a C*> manifold of dimension one less small, expon.entlallstab|l|ty of the Orp't n th_g closed-!jno
than 2 and system (11) is equivalent to exponential stability of thbitor

ASNZ)C 2, ) in the zero dynamics (8). ]

then Z is a hybrid zero dynamics manifoltbr %2 and the B. Using a Deadbeat Hybrid Extension to Achieve Impact

restriction dynamics Invariance
) . 3 One critical aspect of applying Theorem 1 in the context
I io= [z () T gSNZ (@) Of bipedal locomotion is the selection of an outpt) that
2t = Algrnz(z7) z7eSNZ, leads to a hybrid zero dynamics. Appropriately choosing an

output so thatZ is impact invariant is a nontrivial task, in
Al are the restrictions of* and A to Z and S N 2, general. In previous V\_/ork, [25, Sec. V,. Thm. 4] identified a
. class of holonomit; uniform vector relative degree 2 outputs
respectively. o . ) | .
4 . . . fPr which it is straightforward to meet the impact invarianc
For notational expediency, we assume in the following tha I, . . . .
: : c9nd|t|on. The reasoning employed in [25] relied heavily
the relative degree is the same for each output componernit.
This level of generality is all that will be needed in the re- 1The output functionh depended only on the configuration variables of

mainder of the paper. The developed results can be extendegrobot, hence the terminology “holonomic”.

is called thehybrid zero dynamicef 3, where f*|; and



on the fact that both the impact map and L;h were c) the Poincaré map of the hybrid zero dynamics,

linear in the generalized velocity coordinate. This lingar Poro : SNZp x A— SN Zy x A, has the form
property breaks down already fdi:}h (equivalently, for

outputs with uniform vector relative degree 3), and in Pruro(z,0) = p(2) _ (15)
the context of compliant actuation, the impact mapis Ailsnz, (2)

affine in the generalized velocity coordinate (not strictly  proof: Hypotheses 1) and 2) imply immediately two
linear). Without linearity, giving checkable conditionerf things: thatva € A the continuous part of (12) with
impact invariance becomes very hard. We will overcome thigytpyt (13) has a well-defined, zero dynamics manffold
obstacle by embedding the system with impulse effects (2} = and that the continuous portion of (14) with output
in a larger, parameterized system calledeadbeat hybrid (13) has a well-defined zero dynamics manifold, denoted
extensionWith the introduction of parameterized outputs, &emporarily byZ. Again using Hypothesis 2), it follows that
discrete feedback element becomes available—the paramefe — . ,(Z,, ), and hence the sef = Z4 is a zero
update law. dynamics manifold of the continuous portion of (14). Next,
The following theorem illustrates the use of a parametg{pte that by Hypothesis 3),
update law in achieving a hybrid zero dynamics. Under the

given hypothesis, the extra dimensionality associatedh wit ZaN(ExA) = (Usea(Za, @) N (UacalS;a))
the parameters does not significantly complicate the Pdénca = Unea (SN Z,, )
return map. _ o = Unea (SN Zg,0)
Theorem 2: Consider aC> system with impulse effects (SN Z) x A
= O N
oF & = fl2)+gl@)u 27 ¢S (12) establishing part b) of the Theorem. This and Hypothesis 4)
zt o= Ar7) z” €S, imply that Z4 N (S x A) is aC*> submanifold ofX x A,

and has dimension one less thafy. By Hypothesis 5)
and Remark 124 N (S x A) is invariant under the impact
map of (14). It follows that (14) has an HZD with zero
dynamics manifoldZ 4, proving part a) of the Theorem. The
corresponding restriction dynamics of (14) is

with ann-dimensional state manifold andm-dimensional
inputsu. Let A be an open subset dk?, for somep > 1,
and leth : X x A — IR™ be C*°.

Suppose furthermore that

1) Va € A, .
y = hiz,a). (13) [ ] _ l fl, (z,a>] sz,
p 0
has uniform vector relative degrée ~’ : “
2) there exists a non-empty C°° sub- Za 2t Algnz. (27) 3
manifold Z such that Va € A, ot = A1|SDZ<> () 2T €SN 2y,
Za = {reXx | h(x,.oz) =0, ,Ll;_lh(a:,oz) =0} ¢ (16)
is diffeomorphic to2; _ from which the form of the Poincaré map is immediate, thus
3) SN2Z, is independent Ob‘;. deno.te it byS N Zy; proving part c). -
4) SN Z, is C* and has dimension one less than
and C. Remarks
5) there exits aC*> function A; : S — A such that,  |f a nonlinear system with impulse effects has an HZD,
Vr € SNZ,, the valuest = A(x), a = Ay (z) result  Theorem 1 provides sufficient conditions for being able to
in exponentially stabilize a periodic orbit, such as a walking
h(§,a)=0,--- 7L’Ji_1h(§, a) =0. motion of a bipedal robot. As in [25, Sec. VI], one interegtin

implication of Theorem 1 is the possibility of creating the

Then the control system, periodic orbit on the basis of the HZD, which results in a

7 flz) + gla)u - lower-dimensional _design p_rc_)blem. o _

& = 0 = &S Theorem 2 provides additional flexibility in meeting the

3. hybrid invariance condition (7) by embedding the hybrid
' 2+ Az™) system in a special kind of dynamic extension. The dynamic

ot = As () - €8 extension is deadbeat in that the additional states areteghda
! (14) only at impacts, and their new values depend only on the

with outout original states of the system. This is beneficial because the
P y = h(z, ) the existence and stability of a fixed point of the Poincaré

map of the restriction dynamics, given by (15), is deterrdine
has a hyb”d zZero dynamics_ Moreover, Completely byp, the termAl is deadbeat. In other WordS, the

a) the hybrid zero dynamics manifold of (14) isdeadbeat hybrid extension has not significantly complitate

Z = VUsea(Za, ), 2This does not imply that there exists a valuecoffor which Z,, is a
b) Z4N(SxA)=(SNZy) x A, and hybrid zero dynamics manifold of (12). No such value éoneed exist.



the determination of the stability properties of a periodic
orbit on the basis of the HZD.

In (14), the switching surface iS x A. It has been written
in the given form to emphasize that the switching condition
does not depend the value of

IV. APPLICATION TOPLANAR BIPEDAL WALKERS

This section provides models for a class of planar bipedal
walkers, with and without actuator dynamics. Key propsrtie
of the models that are useful for checking the hypotheses of
Theorems 1 and 2 are then succinctly summarized. These
properties take advantage of the fact that the hypotheses of , _ o
Theorems 1 and 2 are invariant under regular static stai%' 2. A coordinate diagram of the robot model used in thisecstudy.

. ) . gles are positive in the counterclockwise direction. liklks have length
feedback (applied to the continuous portion of the modeb).5m. The thigh and shin links have masse®df and0.75 kg respectively.

and coordinate changes. The torso link has a mass 7.5 kg. Mass distributions are uniform.
The motors’ reflected inertias a®404 kg - m? at each actuated joint.

A. Robot model without actuator dynamics Each motor acts through a series spring having an effectiffaess of
550Nm/rad.

As in [25, Sec. Il], consider a bipedal robot consisting of

_]g Iln_kslclonnect_er:j Il<n a plailanar tre:}e str;Jcture t(;l f(;]rmltw%an be used independent of which leg is the stance leg, the
identical degs with knees, _Ut Wlltl ((;Uth eit_’ wit (; N egé:oordinates must also be relabeled at impact, giving rise to
connected at a common point called the hips, and possibly;,my, in the configuration variables as well; see[8], [25].

qther limbs (such as a torfso, etc.). A”. I!nks have mass, arhe corresponding system with impulse effects is written as
rigid, and are connected in revolute joints (see Fig. 2). It

is assumed that no actuation is applied between the stance i = f@)+gl@u =z ¢8
leg and the ground, while all other joints are independently bY ot = Alr) €S (19)
actuated, and hence there & — 1) controls. As shown in

[6], [7], addressing the control of robots without actuatio

between the stance leg and ground is an important step 87 Robot model with compliant actuation

achieving anthropomorphic walking motions in robots with ,
non-trivial feet and actuated ankles. Further details an th Assume now that the vector of torques applied to the robot

model are given in [25, Sec. I}, along with assumption model (17) is generated through a compliant model of the

on the walking gait (instantaneous double support phase, no

slipping nor rebound at impact, motion from left to right, u = k(gm—qa) (20)
symmetric gait). A rigid impact is used to model the contact Tiim + k(G — ) = u 21)
of the swing leg with the ground. m 4m = da m

The configuration coordinates of the robot in singleyhereq,, € Q,, is an (N — 1) tuple of motor anglesy, is
support (also called the stance phase) are denoted BYector of the relative angles corresponding to (te— 1)

q=(qu;---;qn) € Q, the state space is denoted BY.  actuated joints of the roba,y, is the vector of N—1) motor
The method of Lagrange leads to the mechanical model torquesy is a diagonal matrix of (positive) spring constants
D(q)i + Clg,9)d + G(g) = Bu, (17) and J is a diagonal matrix of (positive) rotor inertias. The

stance phase dynamics of the robot is now given by the
whereB is anN x (N —1) constant matrix with rankV—1). (2N — 1) DOF Lagrangian system
Letting = := (g;¢), and definingf and g in the obvious B .
manner, the mechanical model is expressed in state variable D(q)i+Cl(a:4)i+Glg) = Bk(gm — ga) 22)
form as JGm + k(gm — qa) = Un-

= /@) +glx)u. (18) Letting z,, := (¢m;¢m) andz. := (z; 2, ), this is easily
The hybrid model of the robot (single support phasexpressed as
Lagrangian dynamics plus impact map) is constructed by )
specifying the impact or switching surface Te = fe(xe) + ge(@e)um. (23)

S={(g;:4) € TQ | y2(q)—y1i(q) =0, x2(¢q)—x1(¢) > 0}, The corresponding model with impulse effects is written as

and positioned in front of the stance leg. The impact map ~« - wF = Az) 2 €S, (24)

A : S — TQis computed as in [10], [8]. When the swing leg ¢
contacts the ground, a rigid collision gives rise to a jump inwhere the state manifold i8, = TQ x T'Q,,, and because
the velocity coordinates. So that the same mechanical modke impact condition depends only on the state of the biped

to be the set of points where the swing leg height is zero { Te = felxe) + ge(®e)tm . ¢ Se



(and not on the motor angles) = S x T'Q,,. Following
[10], [8], the impact mapA. : S. — X, has the form

Ac(z,) = ; (25)

) m

where A is as in (19) and),, imposes continuityin the

motor positions and velocities across the impact. Henee, th
only “jumps” in the motor variables,,, are those due to leg
swapping (recall that the robot coordinates are permuted at

impact to reflect leg swapping).

C. Model Properties

Some properties of the mechanical models (17) and (22)
are now summarized. These properties provide information
on the zero dynamics of (18) and (23), and hence useful
information on the HZD of (24) in light of applying The-
orem 2 to the biped model with actuator dynamics. In the

whereV and R are as in Proposition 1.

Proposition 3: Consider an outpuj = h(g, ), wherea
is fixed. Then the following hold:
a) h has uniform vector relative degré&efor (18) if, and
only if, it has uniform vector relative degreefor (23);
b) in both cases, the decoupling matrices depend only on
q and they are equal, that Is,Lh = L, L} h;
c) for h(q,a) = qo — ha(6, @),
Bhd(& a) .
09
d) if h(q,a) = ¢go — ha(0,) and has uniform vector
relative degree2 for (18), then the zero dynamics
manifolds and restriction dynamics of (18) and (23) are
diffeomorphic; moreover, the zero dynamics manifold
of (18) is

Zo— {(q;q) € TQ| g0 = ha(0,a), du = Me"}
)

det(LyL¢h)(q, ) =1 — R(qa)

following, we choose configuration coordinates for (17) as 90 @
?he: vx(/gil;de )f;ravr\;hee r(es}gereljgezr;ces a position on the robot to and in the coordinate®); o), the restriction dynamics
Proposition 1: Let o be the angular momentum of the S oV
biped about the contact point of the support leg with the G o= — 29
ground. In the coordinatesg,= (¢.;9), ga=ha(0,c)
a) the inertia matrixD of (17) is independent of; B o 1= R0 )8hd(0,a) 71(30)
b) (18) is globally feedback equivalent to N dn N (8, ) @ 00
& = _a_V(q) Where,cZN,N(b',a) = dN,N'qa:hd(e,a) and R(@,Oé) =
90 R|gu=ha(6,0)-
; o . )
0 = dn .~ (qa) + R(¢a)da (26) Proof: a) and b) are immediate from Propositions 1
io = " and 2. The calculation for c) is a straightforward applizati

of the Sherman-Morrison-Woodbury formula and is left to

whereV is the potential energy of the robot model (17)the reader. The first part of d) follows from basic results in

[dala)
dn,n(qa)’

andd, ; are the elements ab.

dn.N-1(4q)

R(ga) = dn,n(qa)

[12] and equations (28), (29), and (30) follow from [25k

V. EXAMPLE
The results of the paper are now illustrated on the 5-link

The proof and the required feedback are given in [gjPlanar biped of Fig. 2, with model given in (24). On the

and are based on [23], [19]. Because the actuator dynam
(20) is globally feedback equivalent to a vector of doubld/(Te;

integrators, the next result follows from basic resultslig][
dealing with dynamic extensions.

Proposition 2: Let ¢ = (¢q;0) and leto be the angular
momentum of the biped about the contact point of thifedbackus,
support leg with the ground. Then (23) is globally feedbac

equivalent to

ov
o = —%(Q)
: o
0 = ——— + R(q4)da 27
Ty T Rl (27)
q.a = v
vo= w,

3In other words, the springs isolate the motors’ rotor imartirom
the impact dynamics. Since in practice, these would be thar inertias
reflected through a gear ratio on the order36f: 1, removing the rotor
inertias from the impact dynamics can result in considgragss energy
loss at impacts.

faasis of Theorem 2 and Proposition 3, an output function
«) and a parameter update functidqwill be chosen

for (24) so that, with deadbeat parameter updates, it has
a valid HZD. Then, using once again Proposition 3, the
conditions of Theorem 1 will be verified, resulting in a
(e, ). The closed-loop system will then be
gimulated, showing behaviors that are consistent with the
theoretical analysis.

A. An Output Function, Feedback, and Update Law

Motivated by Proposition 3 and [25], the output is selected

as 0_0
y="h(g,a)=qa—hq (9,»—91-’6”)

wherehy : R x A — IR* is a4 x 1 vector of Bézier
polynomials of degréem > 7. The termsf; and ¢, are

(31)

4Seventh degree Bézier polynomials have eight indepenuimaimeters.
This can be shown to be the minimum number of free parame&mde to
design the parameter update law and guaranteeStrag. ., is independent
of a.



constants, equal to the values éfat the beginning and a forward progression rate df.8 m/s and to minimize
end, respectively, of a steady state gait. For any cRadfe an approximation of motor electrical energy consumed per
a = (ap,a1,a2,a3) € A= R4, the set of outputs (31) distance traveled.
is relative degree 2 with respect to the biped model withmg ina Simulat |
actuator dynamics (19), and so by Proposition 3 (a) is kati — Interpreting Simulation Results
degree 4 with respect to the biped model with compliant Figure 3 illustrates one interpretation of Theorem 1,
actuation (24). In the context of the model with complianhamely that while the feedback law,,(z.,«) of (10)
actuation, differentiating the output four times yields will render Z. 4 forward invariant and continuous-phase
@) A 5 exponentially attractive for any value ef > 0, only for

y = Ly h(we, @) + Lo L h(ze, a)um, B2) . sufficiently small does it render the manifold exponenyiall
where the domain of invertibility of the decoupling matrix,attractive in a hybrid sense. The reason is that for state
Ly, L3 h(z., ), is computable using Proposition 3 (b) angvalues outside the zero dynamics manifold, application of

(c). The zero dynamics manifold associated with this outpdif€ impact map will tend to push the state further away, an
is effect that can be overcome by sufficiently fast convergence

b _0 Leh _0 in the continuous phase. This conclusion is reinforced in Fi

(@e, @) =0, sh(ze, ) =0, 4, where the spectral radius of the Poincaré return map of
Lih(%,a) =0, L?ch(ffe,a) =0 the closed-loop system is plotted along with the eigenvalue
and is diffeomorphic to the zero dynamics manifold (28).0:] the rﬁturr;] map aSSO.C'atefth'mztge HZD. Figure 5 'Fhs_n
The feedbacks,, of (10) will renderZ, 4 := Unea(Ze.a, ) irt())i\;vst at the trajectories of the converge to a periodic

Ze,oc = {xe S Xe

invariant and exponentially attractive in the continuobase
of the closed-loop system. Note that this feedback is defined VI. CONCLUSIONS

using a ct(_)n”starﬁ> (?[_that '_'fht“”fﬂ so_;chz:feiA can be made Motivated by the problem of creating exponentially sta-
exponentially attractive with arbitrarily fast convergen ble periodic orbits in bipedal robots with underactuation

sh\(;vvlvtrT t};\(;(tev’aa)e s;layle;;jdeazea(tsf(;zg,z())’lynomlal, it may beand actuator dynamics, the hybrid zero dynamics (HZD)

framework of [25] has been extended to nonlinear systems

h(ze,a) = Ao(xe)ao + Bolxe) with impulse effects where the outputs have vector relative
Lih(ze,a) = Ay(ze)on + Bi(ze, ap) degree higher than two. The formal part of this extension,
121 _ 4 B (33) formulating the proper conditions of simultaneous invacia
! (we;a) = Ap(ze)az + Ba(ze, a0, 1) under the continuous dynamics and the impact map, was
Lih(ze, ) = As(ze)as + Bs(we, a0, o1, o2) straightforward. Even more, an existing result could beduse

with A’s invertible. This property guarantees that thereto show that exponentially stable periodic orbits of the HZD

exists an impact update law,, satisfying Hypothesis 5 of can be rendered exponentially stable in the (full-dimemaip

Theorem 2. Hypotheses 3 and 4 are satisfied by noting th%? secil_-logp_ S¥item W'T impulse effects. All of this was
for a five-link biped without impact updated parameters orrmaliized in Tneorem L. .
The more challenging aspect of the extension was to

actuator dynamicss 0 2 is smooth and has dimension Onedetermine how to meet the impact invariance condition when
less thanZ itself [25], and that the same derivation applies P

as long asS N 2, is independent of. (Such independence the relative degree is greater than two. The result in [25]

has been established earlier by specifying that the last fog.n this aspect of the problem could not be extended in a

- L : irect way. A novel embedding of the original system into a
coefficients of each Bézier polynomial are unaffected tegy th stem with event-based parameter undates was introduced
update law). Hypothesis 1 and 2 have already been estdf- . ed p rup '

e additional dynamic elements in the larger system are

lished by Proposition 3. Thus, the conditions of Theorem ailored to meet the boundary conditions associated with

t and the ch t ill yield lidHZD . . . ) .
i;e(znz]l;} va?h denggzten;rl;%?é?;uw myeiitat?o\rqal impact invariance, and hence the existence of an HZD. This
P 9 . result was formalized in Theorem 2.

To apply Theorem 1 to the system (14), all that remains Equipped with Theorems 1 and 2, the motivating problem

is to find an exponentially stable limit cycle within the ¢ i tially stabl iodi bits | |
HZD of (24) and to verify that the coordinate transform of2} crealing exponentially stable periodic orbils in a class
f planar bipedal robots with underactuation and actuator

Theorem 1, Hypothesis 2 is valid. This can be done quit . ;
efficiently on the basis of the HZD using an optimization ynamics was addressed. Key properties of the models were

technique developed in [24] for finding periodic orbits in]cIrSt summarlz_ed, n I|ght_ of applying the main theorems.
A set of detailed simulations on a particular example was

the HZD subject to constraints on stability, torque, energ ded i der to illustrat q t th ;
efficiency, ground friction, etc. Using this method, a gai e€n provided n order o {iustrale and support the prior
heoretical developments.

was designed using Matlab’s FMINCON function to achiev

5Note that although the Bézier polynomials &{q,«) each have 8
coefficients, only the first four components are treated kg ghrameter
update function. The last four must remain constant—aftercomputation
of a periodic orbit—in order thaf. N Z.  is independent oév.
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Fig. 3. The above plot shows that under the feedback (10p faarticular
choice of gain matricesk;, the zero dynamics manifold is attractive for
€ = 0.070 but not fore = 0.075. Plotted on the vertical axis is the euclidian
norm of n (h(q,); Ly h(ze, a); L?eh(me, ); L?eh(xe, a)). The
horizontal axis is time. The observed behavior is consistéth Theorem
1, where the zero dynamics manifajd= 0 is made exponentially attractive
for sufficiently smalle with the feedback (10). Initial conditions for the two
plots are the same and indicated by an asterisk.
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Fig. 4. The above plot shows how the eigenvalues of the liretion

of the return map vary with the parameterof the feedback (10). As

approaches zero, one eigenvalue remains constant, eqtre &igenvalue

of the hybrid zero dynamic®p(z)/0z, while all other eigenvalues go to

zero. The eigenvalue associated with the 1DOF HZD. 7.

0.
0 i i
0.05 0.055 0.06 0.08

40f g
© 30} 1
20 1
10 1t2 1f3 1f4 1?5 1t6 1?7 lt8 1t9
Fig. 5. Theorem 1 links the stability of an orbit within thebnd zero

dynamics to the stability of an orbit in the full system. THeoee shows
the system response to an initial condition (noted with aerek) within
the hybrid zero dynamics but not on the periodic orbit. Ttatestonverges
exponentially quickly back to the periodic orbit.



