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Abstract— Stable walking motions in bipedal robots can be
modeled as asymptotically stable periodic orbits in nonlinear
systems with impulse effects. The method of hybrid zero
dynamics, previously used to analyze planar walking in bipeds
with one degree of underactuation, is extended to address the
increased degrees of underactuation and the additional impact
invariance conditions that arise when actuator dynamics are
explicitly modeled. The resultant controller is parameterized
and includes a discrete feedback in the parameters that is
active only in the instantaneous double support phase. The
controller design method is illustrated on a five-link planar
walker with series compliant actuation, that is, a robot where
a compliant element has been deliberately inserted between
each actuated joint and its corresponding motor in order to
increase the overall energy efficiency of locomotion.

I. I NTRODUCTION

In legged robots, the physical introduction of tuned springs
into an otherwise rigid mechanism can significantly improve
energy efficiency. The energetic benefits are twofold: within
the strides of walking and running, springs can store and
release some of the energy that would otherwise be lost as
actuators do negative work [2]; and at foot touchdown events,
springs isolate reflected motor inertias from the energy-
dissipating effects of rigid collisions. These and other uses of
flexible elements have been demonstrated onrunning robots
such as RHex [20], Scout [16], Sprawlita [4], and the notably
efficient ARL Monopod II [1]. And while the benefits of
energy storage are most evident in running, in practice many
robots must quite literally walk before they can run. In these
cases compliance must be taken into account in the design
and control ofwalking gaits, either explicitly by modeling,
or implicitly by treating nonrigid effects as disturbancesto
a fully rigid model.

Obtaining the energetic benefits of compliance is not
without cost: delivering torque through compliant elements
poses several challenges for control design. There is an
obvious increase in the degrees of freedom of the robot
model, and hence, the degree of underactuation. This is
a widely recognized issue in robotics; see [22], [21], [3]
and references therein. An additional challenge particular
to legged robots arises from the impulsive effects occurring
when the swing leg impacts the ground. When torque at a
joint is generated by a motor and drivetrain in series with
a spring (as in this paper) the spring isolates the motor
and drivetrain from the effects of an impact. Post-impact
values of rotor position and velocity match their pre-impact
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Fig. 1. Left: A representative example, intentionally anthropomorphic, of
the class ofN -link biped robot models considered. Right: A schematic of
a rotational joint with series compliant actuation.

values, and similar boundary conditions arise for joint torque.
Seemingly benign, these additional post-impact boundary
conditions alter the structure of the impact map and can
significantly complicate controller design.

The method of hybrid zero dynamics, as presented in [25]
for the control of planar walking, assumed that any actuator
dynamics were sufficiently fast that they could be neglected
in the controller design process. The novel element of this
paper is the extension of the hybrid zero dynamics framework
to address unique aspects of stabilizing walking motions
using actuators with nontrivial series compliance. Specific
attention is given to the post-impact boundary conditions,
which no longer satisfy the linear structures assumed in [25].
Treating actuator dynamics in this framework will lead to
reduced dimensionality stability tests for closed-loop walking
gaits despite the increased degrees of underactuation that
accompany compliant actuation.

See Fig. 1 for a description of the class of robots con-
sidered in this paper, along with a schematic diagram of
a flexible actuator. One example of the pictured compliant
mechanism is the MIT Series Elastic Actuator, which uses
stiff springs and an inner-loop feedback controller to achieve
reliable force control [18], [17]. Another, the AMASC
(Actuator with Mechanically Adjustable Series Compliance)
designed by Hurst [11], consists of a drive motor connected
in series with a pair of large, variable stiffness springs. Unlike
the MIT Series Elastic Actuator, the AMASC is designed to
mechanically store significant amounts of energy that would
otherwise be wasted when the actuator does negative work.

The rest of the paper is organized as follows: Section II
summarizes background material on systems with impulse
effects, periodic orbits in such systems, and the method of
Poincaré sections. Section III contains two theorems, the



main theoretical results of the paper. The concept of a hybrid
zero dynamics (HZD) is defined in a more general manner
than in [25], followed by a theorem that provides sufficient
conditions—and a controller design recipe—for stabilizing a
periodic orbit in a nonlinear system with impulse effects. One
of the conditions of this theorem, that the continuous-phase
zero dynamics manifold is invariant under the impact map,
can be difficult to meet in practical examples. The second
theorem of this section provides conditions for constructing
an embedding of the original system with impulse effects into
a larger system with impulse effects where the mentioned
impact invariance condition is easier to meet. Moving toward
applications, Section IV presents a model of a class of planar
biped robots with series actuation compliance; properties
of the models are summarized that aid in applying the
theorems of Section III. Section V presents the application
of the results of Section III to a particular instance of the
biped models of Section IV. A simulation of the closed-loop
walking gait shows properties that are predicted by theory.
Conclusions are given in Section VI.

II. T ECHNICAL BACKGROUND

A. Systems with impulse effects

Consider a control system

ẋ = f(x) + g(x)u, (1)

wherex ∈ X , an open connected subset ofIRn, u ∈ IRm,
and f and the columns ofg are C∞ vector fields onX .
An impact (or switching) surface is a co-dimension oneC∞

submanifoldS := {x ∈ X | H(x) = 0}, whereH : X → IR
is C∞ and∀x ∈ S, ∂H

∂x
(x) 6= 0. An impact (or reset) map

is a C∞ function ∆ : S → X . A C∞ system with impulse
effectsis a model of the form

Σ :

{

ẋ = f(x) + g(x)u x− 6∈ S

x+ = ∆(x−) x− ∈ S,
(2)

where x−(t) := limτրt x(τ) and x+(t) := limτցt x(τ)
denote, respectively, the left and right limits of a trajectory,
x(t). In simple words, a trajectory of the model is specified
by the differential equation (1) until its state “impacts” the
hypersurfaceS. At this point, the impact map∆ assigns a
new initial condition from which the differential equation
evolves until the next impact withS. In order to avoid the
state having to take on two values at the same instant, the
impact event is, roughly speaking, described in terms of the
values of the state “just prior to impact” at time “t−”, and
“just after impact” at time “t+”. These values are represented
by the left and right limits,x− and x+, respectively. A
formal definition of a solution is easily written down by
piecing together appropriately initialized solutions of (1); see
[26], [8], [15], [5]. A choice must be made whether to take
a solutionϕ(t) of (2) to be a left- or a right-continuous
function of time at each impact event; here, solutions are
assumed to be right continuous as in [8].

B. Periodic orbits

A C∞ autonomous system with impulse effectsis given
by (2) with u = 0, namely,

Σ :

{

ẋ = f(x) x− 6∈ S

x+ = ∆(x−) x− ∈ S.
(3)

A solution ϕ(t) of (3) is periodic if there exists a finite
T > 0 such thatϕ(t + T ) = ϕ(t) for all t ∈ [t0,∞). A
setO ⊂ X is a periodic orbit if O = {ϕ(t) | t ≥ t0} for
some periodic solutionϕ(t). While a system with impulse
effects may certainly have periodic solutions that do not
involve impact events, they are not of interest here because
they could be studied more simply as solutions of (1). If a
periodic solution has an impact event, then the corresponding
periodic orbitO is not closed; see [8], [14]. Let̄O denote
its set closure. A periodic orbitO is transversal to S if
its closure intersectsS in exactly one point, and forx∗ :=
Ō ∩ S, LfH(x∗) := ∂H

∂x
(x∗)f(x∗) 6= 0 (in words, at the

intersection,Ō is not tangent toS). Notions of stability in
the sense of Lyapunov, asymptotic stability, and exponential
stability of orbits follow the standard definitions; see [13,
pp. 329], [8], [15].

C. Poincaŕe return map

The method of Poincaré sections is the primary tool used
to test the stability of periodic orbits in nonlinear systems.
When such orbits occur in systems with impulse effects, it is
natural to select the impact surfaceS as the Poincaré section.
To define the return map, letϕ(t, x0) denote the maximal
solution of ẋ = f(x) in (3) with initial conditionx0 at time
t0 = 0. The time-to-impactfunction, TI : X → IR ∪ {∞},
is defined by

TI(x0) :=











inf{t ≥ 0|ϕ(t, x0) ∈ S} if ∃ t such that

ϕ(t, x0) ∈ S

∞ otherwise.
(4)

The Poincaré return map,P : S → S, is then given as (the
partial map)

P (x) := ϕ(TI ◦ ∆(x), ∆(x)). (5)

The method of Poincaré sections can then be stated as
follows:

Theorem 0: (Method of Poincaré Sections [14], [8], [15]) If
theC∞ system with impulse effects (3) has a periodic orbit
O with x∗ := Ō∩S a singleton andLfH(x∗) 6= 0, then the
following are equivalent:

i) x∗ is an exponentially stable (resp., asymp. stable, or
stable i.s.L.) fixed point ofP ;

ii) O is an exponentially stable (resp., asymp. stable, or
stable i.s.L.) periodic orbit ofΣ.



III. N EW RESULTS ONHYBRID ZERO DYNAMICS

The paper [25] introduced the notion of ahybrid zero
dynamics(HZD) for systems with impulse effects. The HZD
is based on two principles that are ubiquitous in non-hybrid
systems, namely invariance and attractivity. Many problems
involving the existence and stability of periodic orbits in
systems with impulse effects can be simplified if the system
possesses an appropriately defined hybrid invariant manifold.
In the context of planar bipedal locomotion, insight can be
gained by studying the system restricted to the invariant
submanifold, that is, the HZD.

The current paper presents two theorems that directly
extend the results of [25], [14], and several others. In the
first theorem, using [14], the HZD is extended to outputs with
uniform vector relative degree greater than or equal to one.
Previous work of [25] applies to outputs of uniform vector
relative degree two (each output component has relative
degree two and the associated decoupling matrix is square
and invertible [12]). The key contribution of the second
theorem is a novel dynamic controller that is active only
at the impacts, whose function is to relax the conditions for
achieving impact invariance when constructing an HZD.

A. Hybrid Zero Dynamics for Systems with Uniform Vector
Relative Degreek ≥ 1

The basic idea of an HZD is that an output should give
rise to a zero dynamics for the continuous portion of the
model [12] and the resulting zero dynamics manifold should
be invariant under the impact map. This is formalized as
follows:

Associate aC∞ output

y = h(x) (6)

to (2) and assume thath has vector relative degree
(k1, · · · , km) with respect to the continuous portion of the
hybrid model (that is,hi has relative degreeki with respect
to (1) and the decoupling matrix is square and invertible [12])
and that there existsx0 ∈ X such thath(x0) = 0. Let Z
be the zero dynamics manifold for the continuous portion of
the dynamics and letu∗ be the feedback (unique onZ) such
that for all x ∈ Z, f∗(x) := f(x) + g(x)u∗(x) ∈ TxZ. If
in addition,S ∩Z is a C∞ manifold of dimension one less
thanZ and

∆(S ∩ Z) ⊂ Z, (7)

then Z is a hybrid zero dynamics manifoldfor Σ and the
restriction dynamics

Σ|Z :

{

ż = f∗|Z (z) z− 6∈ S ∩ Z

z+ = ∆|S∩Z (z−) z− ∈ S ∩ Z,
(8)

is called thehybrid zero dynamicsof Σ, where f∗|Z and
∆|S∩Z are the restrictions off∗ and ∆ to Z andS ∩ Z,
respectively.

For notational expediency, we assume in the following that
the relative degree is the same for each output component.
This level of generality is all that will be needed in the re-
mainder of the paper. The developed results can be extended

to systems with general vector relative degree, or to systems
for which a vector relative degree is achievable by dynamic
feedback; see [12].

Remark 1: When a system with impulse effects (2) has
an outputh(x) with uniform vector relative degreek, the
following are equivalent:

a) ∆(S ∩ Z) ⊂ Z;
b) ∀x ∈ ∆(S ∩ Z) and∀0 ≤ i ≤ k − 1 Li

fh(x) = 0.

The following theorem gives HZD-based sufficient con-
ditions for stabilization of a periodic orbit in an open-loop
system with impulse effects.

Theorem 1: Consider aC∞ system with impulse effects
(2) with aC∞ output (6) and hybrid zero dynamics (8). Sup-
pose that (8) contains a periodic orbitO that is exponentially
stable and transversal toS. If in addition

1) the outputh has uniform vector relative degreek; and
2) there exists a vector of functionsφ : X → IRn−mk

such thatLgφ ≡ 0; and

Φ(x) =
(

φ(x); h(x); Lf h(x); · · · ; Lk−1
f h(x)

)

(9)

is a diffeomorphism onX ,

then the orbitO is exponentially stabilizable. For any
choice of matrices K0, K1, · · · , Kk−1 satisfying that
sk + Kk−1s

k−1 + · · ·K0 is Hurwitz, for ǫ > 0 sufficiently
small, the feedback

u(x) =
(

LgL
k−1
f h(x)

)−1
(

−Lk
fh(x) + . . .

∑k−1
i=0

1
ǫk−i KiL

i
fh(x)

)

,

(10)
applied to (2) rendersO exponentially stable in the (full-
dimensional) closed-loop system

Σ :

{

ẋ = f(x) + g(x)u(x) x− 6∈ S

x+ = ∆(x−) x− ∈ S. (11)

Proof: As in [12, Prop. 6.1.5], introduce the coordinates
z = φ(x) and η = (h(x); · · · ; Lk−1

f h(x)). In (z; η), the
closed-loop dynamicṡx = f(x) + g(x)u(x) satisfies all of
the hypotheses of [14, Thm. 2]. Hence, forǫ sufficiently
small, exponential stability of the orbit in the closed-loop
system (11) is equivalent to exponential stability of the orbit
in the zero dynamics (8).

B. Using a Deadbeat Hybrid Extension to Achieve Impact
Invariance

One critical aspect of applying Theorem 1 in the context
of bipedal locomotion is the selection of an outputh(x) that
leads to a hybrid zero dynamics. Appropriately choosing an
output so thatZ is impact invariant is a nontrivial task, in
general. In previous work, [25, Sec. V, Thm. 4] identified a
class of holonomic1, uniform vector relative degree 2 outputs
for which it is straightforward to meet the impact invariance
condition. The reasoning employed in [25] relied heavily

1The output functionh depended only on the configuration variables of
the robot, hence the terminology “holonomic”.



on the fact that both the impact map∆ and Lfh were
linear in the generalized velocity coordinate. This linearity
property breaks down already forL2

fh (equivalently, for
outputs with uniform vector relative degree≥ 3), and in
the context of compliant actuation, the impact map∆ is
affine in the generalized velocity coordinate (not strictly
linear). Without linearity, giving checkable conditions for
impact invariance becomes very hard. We will overcome this
obstacle by embedding the system with impulse effects (2)
in a larger, parameterized system called adeadbeat hybrid
extension. With the introduction of parameterized outputs, a
discrete feedback element becomes available—the parameter
update law.

The following theorem illustrates the use of a parameter
update law in achieving a hybrid zero dynamics. Under the
given hypothesis, the extra dimensionality associated with
the parameters does not significantly complicate the Poincaré
return map.

Theorem 2: Consider aC∞ system with impulse effects

Σ :

{

ẋ = f(x) + g(x)u x− 6∈ S

x+ = ∆(x−) x− ∈ S,
(12)

with ann-dimensional state manifoldX andm-dimensional
inputsu. Let A be an open subset ofIRp, for somep ≥ 1,
and leth : X ×A → IRm be C∞.

Suppose furthermore that

1) ∀α ∈ A,
y = h(x, α), (13)

has uniform vector relative degreek;
2) there exists a non-empty C∞ sub-

manifold Z such that ∀α ∈ A,
Zα := {x ∈ X | h(x, α) = 0, · · · , Lk−1

f h(x, α) = 0}
is diffeomorphic toZ;

3) S ∩ Zα is independent ofα; denote it byS ∩ Z♦;
4) S ∩ Z♦ is C∞ and has dimension one less thanZ;

and
5) there exits aC∞ function ∆1 : S → A such that,

∀x ∈ S ∩Z♦, the valuesξ = ∆(x), α = ∆1(x) result
in

h(ξ, α) = 0, · · · , Lk−1
f h(ξ, α) = 0.

Then the control system,

Σ̃ :



























[

ẋ

α̇

]

=

[

f(x) + g(x)u

0

]

x− /∈ S

[

x+

α+

]

=

[

∆(x−)

∆1(x
−)

]

x− ∈ S

(14)
with output

y = h(x, α)

has a hybrid zero dynamics. Moreover,

a) the hybrid zero dynamics manifold of (14) is
ZA := ∪α∈A(Zα, α),

b) ZA ∩ (S ×A) = (S ∩ Z♦) ×A, and

c) the Poincaré map of the hybrid zero dynamics,
Pzero : S ∩ Z♦ ×A → S ∩ Z♦ ×A, has the form

Pzero(z, α) =

[

ρ(z)

∆1|S∩Z♦
(z)

]

. (15)

Proof: Hypotheses 1) and 2) imply immediately two
things: that ∀α ∈ A the continuous part of (12) with
output (13) has a well-defined, zero dynamics manifold2

Zα, and that the continuous portion of (14) with output
(13) has a well-defined zero dynamics manifold, denoted
temporarily byZ̃. Again using Hypothesis 2), it follows that
Z̃ = ∪α∈A(Zα, α), and hence the set̃Z = ZA is a zero
dynamics manifold of the continuous portion of (14). Next,
note that by Hypothesis 3),

ZA ∩ (S ×A) = (∪α∈A(Zα, α)) ∩ (∪α∈A(S, α))

= ∪α∈A (S ∩ Zα, α)

= ∪α∈A (S ∩ Z♦, α)

= (S ∩ Z♦) ×A,

establishing part b) of the Theorem. This and Hypothesis 4)
imply thatZA ∩ (S ×A) is a C∞ submanifold ofX ×A,
and has dimension one less thanZA. By Hypothesis 5)
and Remark 1,ZA ∩ (S ×A) is invariant under the impact
map of (14). It follows that (14) has an HZD with zero
dynamics manifoldZA, proving part a) of the Theorem. The
corresponding restriction dynamics of (14) is

Σ̃
∣

∣

∣

ZA

:



























[

ż

α̇

]

=

[

f∗|Zα
(z, α)

0

]

z− 6∈ S ∩ Z♦

[

z+

α+

]

=

[

∆|S∩Z♦
(z−)

∆1|S∩Z♦
(z−)

]

z− ∈ S ∩ Z♦,

(16)
from which the form of the Poincaré map is immediate, thus
proving part c).

C. Remarks

If a nonlinear system with impulse effects has an HZD,
Theorem 1 provides sufficient conditions for being able to
exponentially stabilize a periodic orbit, such as a walking
motion of a bipedal robot. As in [25, Sec. VI], one interesting
implication of Theorem 1 is the possibility of creating the
periodic orbit on the basis of the HZD, which results in a
lower-dimensional design problem.

Theorem 2 provides additional flexibility in meeting the
hybrid invariance condition (7) by embedding the hybrid
system in a special kind of dynamic extension. The dynamic
extension is deadbeat in that the additional states are updated
only at impacts, and their new values depend only on the
original states of the system. This is beneficial because then
the existence and stability of a fixed point of the Poincaré
map of the restriction dynamics, given by (15), is determined
completely byρ; the term∆1 is deadbeat. In other words, the
deadbeat hybrid extension has not significantly complicated

2This does not imply that there exists a value ofα for which Zα is a
hybrid zero dynamics manifold of (12). No such value forα need exist.



the determination of the stability properties of a periodic
orbit on the basis of the HZD.

In (14), the switching surface isS×A. It has been written
in the given form to emphasize that the switching condition
does not depend the value ofα.

IV. A PPLICATION TO PLANAR BIPEDAL WALKERS

This section provides models for a class of planar bipedal
walkers, with and without actuator dynamics. Key properties
of the models that are useful for checking the hypotheses of
Theorems 1 and 2 are then succinctly summarized. These
properties take advantage of the fact that the hypotheses of
Theorems 1 and 2 are invariant under regular static state
feedback (applied to the continuous portion of the model)
and coordinate changes.

A. Robot model without actuator dynamics

As in [25, Sec. II], consider a bipedal robot consisting of
N links connected in a planar tree structure to form two
identical legs with knees, but without feet, with the legs
connected at a common point called the hips, and possibly
other limbs (such as a torso, etc.). All links have mass, are
rigid, and are connected in revolute joints (see Fig. 2). It
is assumed that no actuation is applied between the stance
leg and the ground, while all other joints are independently
actuated, and hence there are(N −1) controls. As shown in
[6], [7], addressing the control of robots without actuation
between the stance leg and ground is an important step in
achieving anthropomorphic walking motions in robots with
non-trivial feet and actuated ankles. Further details on the
model are given in [25, Sec. II], along with assumptions
on the walking gait (instantaneous double support phase, no
slipping nor rebound at impact, motion from left to right,
symmetric gait). A rigid impact is used to model the contact
of the swing leg with the ground.

The configuration coordinates of the robot in single
support (also called the stance phase) are denoted by
q = (q1; · · · ; qN ) ∈ Q, the state space is denoted byTQ.
The method of Lagrange leads to the mechanical model

D(q)q̈ + C(q, q̇)q̇ + G(q) = Bu, (17)

whereB is anN×(N−1) constant matrix with rank(N−1).
Letting x := (q; q̇), and definingf and g in the obvious
manner, the mechanical model is expressed in state variable
form as

ẋ = f(x) + g(x)u. (18)

The hybrid model of the robot (single support phase
Lagrangian dynamics plus impact map) is constructed by
specifying the impact or switching surface

S = {(q; q̇) ∈ TQ | y2(q)−y1(q) = 0, x2(q)−x1(q) > 0},

to be the set of points where the swing leg height is zero
and positioned in front of the stance leg. The impact map
∆ : S → TQ is computed as in [10], [8]. When the swing leg
contacts the ground, a rigid collision gives rise to a jump in
the velocity coordinates. So that the same mechanical model

q2

q1

q4

q3

θ (x1,y1)

(x2,y2)

Fig. 2. A coordinate diagram of the robot model used in this case study.
Angles are positive in the counterclockwise direction. Alllinks have length
0.5 m. The thigh and shin links have masses of0.5 and0.75 kg respectively.
The torso link has a mass of27.5 kg. Mass distributions are uniform.
The motors’ reflected inertias are0.404 kg · m2 at each actuated joint.
Each motor acts through a series spring having an effective stiffness of
550Nm/rad.

can be used independent of which leg is the stance leg, the
coordinates must also be relabeled at impact, giving rise to
a jump in the configuration variables as well; see[8], [25].
The corresponding system with impulse effects is written as

Σ :

{

ẋ = f(x) + g(x)u x− /∈ S

x+ = ∆(x−) x− ∈ S.
(19)

B. Robot model with compliant actuation

Assume now that the vector of torques applied to the robot
model (17) is generated through a compliant model of the
form

u = k(qm − qa) (20)

Jq̈m + k(qm − qa) = um, (21)

whereqm ∈ Qm is an (N − 1) tuple of motor angles,qa is
a vector of the relative angles corresponding to the(N − 1)
actuated joints of the robot,um is the vector of(N−1) motor
torques,k is a diagonal matrix of (positive) spring constants
and J is a diagonal matrix of (positive) rotor inertias. The
stance phase dynamics of the robot is now given by the
(2N − 1) DOF Lagrangian system

D(q) q̈ + C(q, q̇)q̇ + G(q) = Bk(qm − qa)

J q̈m + k(qm − qa) = um.
(22)

Letting xm := (qm; q̇m) and xe := (x; xm), this is easily
expressed as

ẋe = fe(xe) + ge(xe)um. (23)

The corresponding model with impulse effects is written as

Σe :

{

ẋe = fe(xe) + ge(xe)um x−
e /∈ Se

x+
e = ∆e(x

−
e ) x−

e ∈ Se,
(24)

where the state manifold isXe = TQ× TQm and because
the impact condition depends only on the state of the biped



(and not on the motor angles)Se = S × TQm. Following
[10], [8], the impact map∆e : Se → Xe has the form

∆e(x
−
e ) =

[

∆(x−)

∆m(x−, x−
m)

]

, (25)

where∆ is as in (19) and∆m imposes continuity3 in the
motor positions and velocities across the impact. Hence, the
only “jumps” in the motor variablesxm are those due to leg
swapping (recall that the robot coordinates are permuted at
impact to reflect leg swapping).

C. Model Properties

Some properties of the mechanical models (17) and (22)
are now summarized. These properties provide information
on the zero dynamics of (18) and (23), and hence useful
information on the HZD of (24) in light of applying The-
orem 2 to the biped model with actuator dynamics. In the
following, we choose configuration coordinates for (17) as
q = (qa; θ), whereθ references a position on the robot to
the world frame (see Fig 2).

Proposition 1: Let σ be the angular momentum of the
biped about the contact point of the support leg with the
ground. In the coordinates,q = (qa; θ),

a) the inertia matrixD of (17) is independent ofθ;
b) (18) is globally feedback equivalent to

σ̇ = −
∂V

∂θ
(q)

θ̇ =
σ

dN,N(qa)
+ R(qa)q̇a (26)

q̈a = v,

whereV is the potential energy of the robot model (17),

R(qa) = −

[

dN,1(qa)

dN,N(qa)
, · · · ,

dN,N−1(qa)

dN,N(qa)

]

anddi,j are the elements ofD.
The proof and the required feedback are given in [9],

and are based on [23], [19]. Because the actuator dynamics
(20) is globally feedback equivalent to a vector of double
integrators, the next result follows from basic results in [12]
dealing with dynamic extensions.

Proposition 2: Let q = (qa; θ) and letσ be the angular
momentum of the biped about the contact point of the
support leg with the ground. Then (23) is globally feedback
equivalent to

σ̇ = −
∂V

∂θ
(q)

θ̇ =
σ

dNN (qa)
+ R(qa)q̇a (27)

q̈a = v

v̈ = w,

3In other words, the springs isolate the motors’ rotor inertias from
the impact dynamics. Since in practice, these would be the rotor inertias
reflected through a gear ratio on the order of30 : 1, removing the rotor
inertias from the impact dynamics can result in considerably less energy
loss at impacts.

whereV andR are as in Proposition 1.

Proposition 3: Consider an outputy = h(q, α), whereα
is fixed. Then the following hold:

a) h has uniform vector relative degree2 for (18) if, and
only if, it has uniform vector relative degree4 for (23);

b) in both cases, the decoupling matrices depend only on
q and they are equal, that isLgLfh = Lge

L3
fe

h;
c) for h(q, α) = qa − hd(θ, α),

det(LgLfh)(q, α) = 1 − R(qa)
∂hd(θ, α)

∂θ
;

d) if h(q, α) = qa − hd(θ, α) and has uniform vector
relative degree2 for (18), then the zero dynamics
manifolds and restriction dynamics of (18) and (23) are
diffeomorphic; moreover, the zero dynamics manifold
of (18) is

Zα =

{

(q; q̇) ∈ TQ | qa = hd(θ, α), q̇a =
∂hd(θ, α)

∂θ
θ̇

}

(28)
and in the coordinates(θ; σ), the restriction dynamics
is

σ̇ =
−∂V

∂θ

∣

∣

∣

∣

qa=hd(θ,α)

(29)

θ̇ =
σ

d̃N,N(θ, α)

(

1 − R̃(θ, α)
∂hd(θ, α)

∂θ

)−1

,(30)

where, d̃N,N (θ, α) = dN,N |qa=hd(θ,α) and R̃(θ, α) =
R|qa=hd(θ,α).

Proof: a) and b) are immediate from Propositions 1
and 2. The calculation for c) is a straightforward application
of the Sherman-Morrison-Woodbury formula and is left to
the reader. The first part of d) follows from basic results in
[12] and equations (28), (29), and (30) follow from [25].

V. EXAMPLE

The results of the paper are now illustrated on the 5-link
planar biped of Fig. 2, with model given in (24). On the
basis of Theorem 2 and Proposition 3, an output function
y(xe, α) and a parameter update function∆1will be chosen
for (24) so that, with deadbeat parameter updates, it has
a valid HZD. Then, using once again Proposition 3, the
conditions of Theorem 1 will be verified, resulting in a
feedbackum(xe, α). The closed-loop system will then be
simulated, showing behaviors that are consistent with the
theoretical analysis.

A. An Output Function, Feedback, and Update Law

Motivated by Proposition 3 and [25], the output is selected
as

y = h(q, α) = qa − hd

(

θ − θi

θf − θi

, α

)

(31)

where hd : IR × A → IR4 is a 4 × 1 vector of Bézier
polynomials of degree4 m ≥ 7. The termsθi and θf are

4Seventh degree Bézier polynomials have eight independentparameters.
This can be shown to be the minimum number of free parameters needed to
design the parameter update law and guarantee thatSe∩Ze,α is independent
of α.



constants, equal to the values ofθ at the beginning and
end, respectively, of a steady state gait. For any choice5 of
α = (α0, α1, α2, α3) ∈ A = IR4×4, the set of outputs (31)
is relative degree 2 with respect to the biped model without
actuator dynamics (19), and so by Proposition 3 (a) is relative
degree 4 with respect to the biped model with compliant
actuation (24). In the context of the model with compliant
actuation, differentiating the output four times yields

y(4) = L4
fe

h(xe, α) + Lge
L3

fe
h(xe, α)um, (32)

where the domain of invertibility of the decoupling matrix,
Lge

L3
fe

h(xe, α), is computable using Proposition 3 (b) and
(c). The zero dynamics manifold associated with this output
is

Ze,α =

{

xe ∈ Xe

∣

∣

∣

∣

∣

h(xe, α) = 0, Lfh(xe, α) = 0,

L2
fh(xe, α) = 0, L3

fh(xe, α) = 0

}

,

and is diffeomorphic to the zero dynamics manifold (28).
The feedbackum of (10) will renderZe,A := ∪α∈A(Ze,α, α)
invariant and exponentially attractive in the continuous phase
of the closed-loop system. Note that this feedback is defined
using a constantǫ > 0 that is tuned so thatZe,A can be made
exponentially attractive with arbitrarily fast convergence.

With hd(θ, α) selected as a Bézier polynomial, it may be
shown that∀α ∈ A, ∀xe ∈ ∆e(Se ∩ Ze,♦),

h(xe, α) = A0(xe)α0 + B0(xe)

Lfh(xe, α) = A1(xe)α1 + B1(xe, α0)

L2
fh(xe, α) = A2(xe)α2 + B2(xe, α0, α1)

L3
fh(xe, α) = A3(xe)α3 + B3(xe, α0, α1, α2)

(33)

with Ai’s invertible. This property guarantees that there
exists an impact update law,∆1, satisfying Hypothesis 5 of
Theorem 2. Hypotheses 3 and 4 are satisfied by noting that
for a five-link biped without impact updated parameters or
actuator dynamics,S ∩Z is smooth and has dimension one
less thanZ itself [25], and that the same derivation applies
as long asS ∩Zα is independent ofα. (Such independence
has been established earlier by specifying that the last four
coefficients of each Bézier polynomial are unaffected by the
update law). Hypothesis 1 and 2 have already been estab-
lished by Proposition 3. Thus, the conditions of Theorem 2
are met and the chosen outputh(q, α) will yield a valid HZD
of (24) with deadbeat parameter augmentation.

To apply Theorem 1 to the system (14), all that remains
is to find an exponentially stable limit cycle within the
HZD of (24) and to verify that the coordinate transform of
Theorem 1, Hypothesis 2 is valid. This can be done quite
efficiently on the basis of the HZD using an optimization
technique developed in [24] for finding periodic orbits in
the HZD subject to constraints on stability, torque, energy
efficiency, ground friction, etc. Using this method, a gait
was designed using Matlab’s FMINCON function to achieve

5Note that although the Bézier polynomials ofh(q, α) each have 8
coefficients, only the first four components are treated by the parameter
update function. The last four must remain constant—after the computation
of a periodic orbit—in order thatSe ∩ Ze,α is independent ofα.

a forward progression rate of0.8 m/s and to minimize
an approximation of motor electrical energy consumed per
distance traveled.

B. Interpreting Simulation Results

Figure 3 illustrates one interpretation of Theorem 1,
namely that while the feedback lawum(xe, α) of (10)
will render Ze,A forward invariant and continuous-phase
exponentially attractive for any value ofǫ > 0, only for
ǫ sufficiently small does it render the manifold exponentially
attractive in a hybrid sense. The reason is that for state
values outside the zero dynamics manifold, application of
the impact map will tend to push the state further away, an
effect that can be overcome by sufficiently fast convergence
in the continuous phase. This conclusion is reinforced in Fig.
4, where the spectral radius of the Poincaré return map of
the closed-loop system is plotted along with the eigenvalue
of the return map associated with the HZD. Figure 5 then
shows that the trajectories of the HZD converge to a periodic
orbit.

VI. CONCLUSIONS

Motivated by the problem of creating exponentially sta-
ble periodic orbits in bipedal robots with underactuation
and actuator dynamics, the hybrid zero dynamics (HZD)
framework of [25] has been extended to nonlinear systems
with impulse effects where the outputs have vector relative
degree higher than two. The formal part of this extension,
formulating the proper conditions of simultaneous invariance
under the continuous dynamics and the impact map, was
straightforward. Even more, an existing result could be used
to show that exponentially stable periodic orbits of the HZD
can be rendered exponentially stable in the (full-dimensional)
closed-loop system with impulse effects. All of this was
formalized in Theorem 1.

The more challenging aspect of the extension was to
determine how to meet the impact invariance condition when
the relative degree is greater than two. The result in [25]
on this aspect of the problem could not be extended in a
direct way. A novel embedding of the original system into a
system with event-based parameter updates was introduced.
The additional dynamic elements in the larger system are
tailored to meet the boundary conditions associated with
impact invariance, and hence the existence of an HZD. This
result was formalized in Theorem 2.

Equipped with Theorems 1 and 2, the motivating problem
of creating exponentially stable periodic orbits in a class
of planar bipedal robots with underactuation and actuator
dynamics was addressed. Key properties of the models were
first summarized, in light of applying the main theorems.
A set of detailed simulations on a particular example was
then provided in order to illustrate and support the prior
theoretical developments.
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Fig. 3. The above plot shows that under the feedback (10), fora particular
choice of gain matrices,Ki, the zero dynamics manifold is attractive for
ǫ = 0.070 but not forǫ = 0.075. Plotted on the vertical axis is the euclidian
norm of η = (h(q, α); Lfe

h(xe, α); L2

fe
h(xe, α); L3

fe
h(xe, α)). The

horizontal axis is time. The observed behavior is consistent with Theorem
1, where the zero dynamics manifoldy ≡ 0 is made exponentially attractive
for sufficiently smallǫ with the feedback (10). Initial conditions for the two
plots are the same and indicated by an asterisk.
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Fig. 4. The above plot shows how the eigenvalues of the linearization
of the return map vary with the parameterǫ of the feedback (10). Asǫ
approaches zero, one eigenvalue remains constant, equal tothe eigenvalue
of the hybrid zero dynamics∂ρ(z)/∂z, while all other eigenvalues go to
zero. The eigenvalue associated with the 1DOF HZD is0.567.
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Fig. 5. Theorem 1 links the stability of an orbit within the hybrid zero
dynamics to the stability of an orbit in the full system. The above shows
the system response to an initial condition (noted with an asterisk) within
the hybrid zero dynamics but not on the periodic orbit. The state converges
exponentially quickly back to the periodic orbit.


