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Abstract— Systems with impulse effects form a special class
of hybrid systems that consist of an ordinary, time-invariant
differential equation (ODE), a co-dimension one switching
surface, and a re-initialization rule. The exponential stability of
a periodic orbit in a C*-nonlinear system with impulse effects
can be studied by linearizing the Poincaé return map around a
fixed point and evaluating its eigenvalues. However, in feedback
design—where one may be employing an iterative technique
to shape the periodic orbit subject to it being exponentially
stable—recomputing and re-linearizing the Poincaé return
map at each iteration can be very cumbersome. For a non- o(t, x*)
linear system with impulse effects that possesses an invariant S
hybrid subsystem and the transversal dynamics is sufficiently
exponentially fast, it is shown that exponential stability of a Fig. 1. Geometric interpretation of a Poinéareturn mapP : § — S
periodic orbit can be determined on the basis of the restricted for an ordinary differential equation (non-hybrid) as evbased sampling
Poincaré map, that is, the Poincaé return map associated with ~ ©f the solution near a periodic orbit. The Poingaection s, may be any
the invariant subsystem. The result is illustrated on a walking co-dimension one (hypef)* -surface that is transversal to the periodic orbit.
gait for an underactuated planar bipedal robot.

initial conditions, then the equivalence extends to exptink
I. INTRODUCTION stability.

The method of Poincarsections and return maps is widely The conceptual advantage of the method of Polmcathat
used to determine the existence and stability of periodit reduces the study of periodic orbits to the study of equili
orbits in a broad range of system models, such as timeum points, with the latter being a more extensively stddie
invariant and periodically-time-varying ordinary difeertial problem. The analytical challenge when applying the method
equations [20], [13], hybrid systems consisting of severalf Poincag lies in calculating the return map, which, for a
time-invariant ordinary differential equations linked &yent- typical system, is impossible to do in closed form because
based switching mechanisms and re-initialization ruldg,[1 it requires the solution of a differential equation. Cerhgai
[19], [22], differential-algebraic equations [14], andlag numerical schemes can be used to compute the return map,
systems with hysteresis [9], to name just a few. Whildind its fixed points, and estimate eigenvalues for detemgini
the analytical details may vary significantly from one clasexponential stability. However, the numerical computadio
of models to another, on a conceptual level, the methaare usually time-intensive, and performing them iterdyizes
of Poincaé is consistent and straightforward: sample th@art of a system design process can be cumbersome. A more
solution of a system according to an event-based or tim@nportant drawback is that the numerical computations are
based rule, and then evaluate the stability properties obt insightful, in the sense that it is very diffictitb establish
equilibrium points (also called fixed points) of the sampleé direct relationship between the parameters that a designe
system, which is called the Poinéareturn map; see Fig. 1 may be able to vary in a system and the existence or stability
and Fig. 2. Fixed points of the Poinéamap corresporido  properties of a fixed point of the Poinéamap.
periodic orbitsof the underlying system. Roughly speaking, The objective of this paper is to augment the method of
if the solutions of the underlying system depend continuPoincaé with notions of invariance, attractivity, and time-
ously on the initial conditions, then equilibrium points ofscale separation in order to simplify its application to non
the Poincag map are stable (asymptotically stable) if, andinear systems with impulse effects, that is, systems neatlel
only if, the corresponding orbit is stable (asymptoticallyby an ordinary, time-invariant differential equation (OD&
stable), and if the solutions are Lipschitz continuous i@ thco-dimension one switching surface, and a re-initialorati

rule. Such models can be used to represent a wide range of
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{morrisbj, grizzlg @umich.edu. 20f course, difficult does not mean impossible. There has beecess
with numerical implementations of Poinéamethods in the passive-robot
IFixed points of P* = P o ... o P k-times also correspond to periodic community in terms of finding parameter values—masses, inetiigs,
orbits. The associated analysis problemskas 1 are essentially the same lengths—for a given robot that yield asymptotically staberipdic orbits

as fork = 1 and are not discussed further. [10], [23], [18], [8].



walking and running gaits in legged robots. The experience
gained in [24] has proven that when stability analysis can
be rendered sufficiently simple, it becomes possible to effi-
ciently explore a large set of asymptotically-stable gitsr-

der to find one that meets additional performance objectives
such as minimum energy consumption per distance traveled
for a given average speed, or minimum peak-actuator power
demand. The analytical results in [11] required that an in- o(t, A(x7))
variant surface of the ODE portion of the model be renderelgig 2. Geometiic interpretation of a PoinéartLIN MARP < & — S
finite-time attractive through a continuous, but n(_)t '—iP"‘Eh for a éystem with impulse effects. The Poireaection is selected as the
continuous, feedback [3]. The result established in thigepa switching surfaces. A periodic orbit exists wherP(z~) = z~. Due to
will weaken this requirement to attractivity at a Sufﬁciem right-continuity of th_e solutioIlsx* is not an element of the orbit. \_Nith
rapid exponential rate, thereby permitting the use of Smoo{eft-contlnuous solutionsA (z~) would not be an element of the orbit.
feedback laws.

Section Il provides b_ack_ground information on Poirgar H1.4) S := {x € X | H(z) = 0} is non-empty and
meth.o.d for systems ywth |mpulse_effects._ Secnon 11 :>?tat.es Vo e S, %_H‘ £ 0 (that is, S is C' and has
conditions under which exponential stability of a periodic co-dimensioﬁ gne),
orbit in an invariant subsystem extends to exponentialilstab :
ity in the full system with impulse effects. The proof of this H15) A:8 — Xis ¢, and
result is detailed in Section IV. The results of the paper are H1.6) A(S)NS = 0.
illustrated on a mathematical model of bipedal walking inn simple terms, a solution of (2) is specified by the differen
Section V. A walking motion that was designed on the basiga| equation (1) until its state “impacts” the hyper sugiat
of a two-dimensional restriction dynamics is rendered expat some time ;. At ¢;, the impulse model\ compresses the
nentially stable in the full-order (ten-dimensional) mbHg  jmpact event into an instantaneous moment of time, resltin
use of a smooth feedback. A numerical investigation is pefn a discontinuity in the state trajectory. The impact model
formed to confirm the predictions of the theory. Conclusiongrovides the new initial condition from which the differéit
are given in Section VI. equation evolves until the next impact with In order to
avoid the state having to take on two values at the “impact
time” ¢y, the impact event is, roughly speaking, described in

This section reviews the method of Poiream the context terms of the values of the state “just prior to impact” at time
of systems with impulse effects. The primary objective is tét; ", and “just after impact” at time#;". These values are
state a theorem linking the stability of fixed points of theepresented by~ andz™, respectively.

Poincaé return map to the stability of periodic orbits of the From this description, a formal definition of a solution

Il. BACKGROUND

underlying system. is easily written down by piecing together appropriately
initialized solutions of (1); see [25], [11], [19], [4]. A dice
A. Systems with impulse effects must be made whether to take a solutipft) of (2) to be

An autonomous system with impulse effects consists & left- or a right-continuous function of time at each impact
an autonomous ordinary differential equation event; here, solutions are assumed to be right continuous

[11].
&= f(z), @) B, Periodic orbits

defined on some state spad&g a co-dimension one surface A solution ¢(¢) of (2) is periodic if there exists a finite

S C X at which solutions of the differential equationT > 0 such thatp(t + T') = »(t) for all ¢ € [ty,c0). A set
undergo a discrete transition that is modeled as an insta@» C X is aperiodic orbitof (2) if O = {¢(t) | t > to} for
taneous re-initialization of the differential equatiomdaa some periodic solutiorp(t). While a system with impulse
rule A : S — X that specifies the new initial condition aseffects may certainly have periodic solutions that do not
a function of the point at which the solution impadq1], involve impact events, they are not of interest here because

[25]. The system will be written as they could be studied more simply as solutions of (1). If a
. _ periodic solution has an impact event, then the correspondi
v. ) T fla) 2”8 (2) Periodic orbitO is not closed; see [11] and Fig. 2. Lét
et =A(@7) 27 €S8 denote its set closure.

] L _ N o Notions of stability in the sense of Lyapunov, asymptotic
and said to be”" if the following conditions are satisfied: stability, and exponential stability of orbits follow théas-
H1.1) X ¢ IRY is open and connected, dard definitions; see [17, pp. 302], [11], [19]. For example,
H1.2) f: X — RN is O exponential stability is defined as follows. Given a ndrnj
. o on X, define the distance between a pointand a setC
H1.3) H: & — Itis C7, to be distz,C) := infyec |z — y]. A periodic orbitO is



exponentially stabléf there existsd > 0, N >0 and~ >0 dependence of the solution of (1) w.r.t. its initial conaii

such thaty ¢ > 0, [17, pp. 79], it follows that forz € Bs(z*) N S,
dist(p(t, 29), 0) < Ne 7 dist(zg, O), (3) sup  dist(¢(t, A(x)),0) <
0<t<TroA(x)
whenever digtrg, O) < 6. sup ||o(t, Ax)) — b(t, Alz))|| < (6)
Finally, a periodic orbitO is transversalto S if its closure 0<t<T* lo(t A@) = 0t Al <
intersectsS in exactly one point, and forz := O N S, L|z — z*].
LyH(Z) := %—f(f)f(:z) # 0 (in words, at the intersection,

From this inequality, it follows easily that* being an expo-
nentially stable fixed point of? implies the corresponding
C. Poincag return map orbit is exponentially stable. [ ]

In the study of periodic orbits with impact events, it is Rémark 1: Under the hypotheses of Theorem P, is
natural to selectS as the Poincér section. To define the differentiable atz”. Indeed, the differentiability off; is
return map, let (¢, z,) denote the maximal solution of (1) Proven in [20, App. D] at each point of := {z €
with initial condition =, at timeto = 0. Thetime-to-impact S | T1(z) < oo and LyH(P(z)) # 0}. From this, the
function, Ty : X — IR U {oo}, is defined by differentiability of A an_d f prove that P is differentiable

] on S. Hence, exponential stability of orbits can be checked

inf{t > 0|¢(t,z0) € S}  if It suchthat  py jinearizing P at z* and computing eigenvalues.
TI(xO) = ¢(t,$o) €S 11
00 otherwise. '

O is not tangent taS, where© is the set closure o).

M AIN RESULT

4 This section identifies a special structure for the system

he With impulse effects, (2), that will allow the exponential
stability of periodic orbits to be determined on the basis of
a restricted Poincarmap.

The Poincag return map,P : S — S, is then given as (t
partial map)

P(z) := ¢(T; o A(z), A(z)). (®)

Theorem 1: Under hypotheses H1, if the system with
impulse effects (2) has a periodic oridt with z* := ONS
a singleton andL;H(z*) # 0, then the following are
equivalent: - = fx) " ¢S @)
i) x* is an exponentially stable (resp., asymp. stable, or ' at= A(z7) z” €S,
stable i.s.L.) fixed point of; and suppose that for each value eof> 0, hypotheses H1

) Os an exponepha}ly sta}ble (resp., asymp. stable, Fold. For later use, a solution af = f<(z) is written as
stable i.s.L.) periodic orbit.

Proof: The equivalences for stability in the sense of’ (£, 20), the time-to-impact function i, and the Poincér

Lyapunov and asymptotic stability are proven in [11], [19]'2:i1pctljrl:1| Efp;h‘z.ség 2?3'210(;’_ suppose that the following

The equivalence for exponential stability is proven here. i )
Under hypotheses H1 and the transversality of the orbit, 12-1) thsre exist global ckoordlnates:n(j n) for X C
Ty o A is continuous in a neighborhood of [11, App. B. IR", such that € IR", andn € R"™", 1 <k <n,

A. System structure

Consider a system with impulse effects that depends on a
real parametee > 0,

From H1.6,77 o A(z*) > 0, and in combination with H1.2, in which f¢ has the form

it follows that there exists an open bdl.(z*), r > 0, and frk(z,m)

numbersT, and T* such that for everyyy € B,(z*) NS, [@) = fzm) = | ", ;

0< T, <TroA(zg) <T* < oo, andVz € A(B,(z*)), a Tisra ()

solution to (1) exists on0, 7*]. H2.2) ForZ :={(z,n) e X |n =0}, SNnZisa(k—1)-
Assume thatO is exponentially stable, as in (3). If dimensional C'-embedded submanifold &, and

necessary, shrinkk > 0 such thatNe""~§ < r. Let

xo € Bs(z*) NS and defineryy1 = P(zx), k > 1. Then, ASnz)cz; (8)

by induction, ||z, — z*|| < Ne~**7dist(xo, O). H2.3) (7) has a periodic orbi® that is contained inZ,
It is enough to show the converse for initial conditions and hence the orbit is independenteof

in S nearz™. Assume that:* is exponentially stable. Since H2.4) 2* .= ONSN Z is a singleton;
exponential stability ofc* implies stability i.s.L., by [11], . )

O is also stable i.s.L. Hence, there exists> 0 such that H2.5) Ly H(2") #0;

dist(zo, ©) < § implies disto(t,z0),0) < r, ¢t > 0. Let H2.6) ffy1.,(n) = A(e)n, andlime g e = 0.

K = {z € X | dist(z,0) < r}. SinceK is compact and  Hypotheses H2.1 and H2.6 imply that the Seis invariant

f and A are differentiable, there exists a constdnk oo under the continuous part of the modgl= f¢(z), so that
such that||f(z) — f(z)|| < L||= — z||, for all z,z € K, if o € Z thenV ¢ in its maximal domain of existence,
and |A(z) — A(Z)|| < ||z — z||, for all 2,7 € KNS. Let  ¢¢(t,m9) € Z. Hypothesis H2.2 implies thag remains

L := Le™". Then, using standard bounds for the Lipschitinvariant across the impact event, and hence the solution of



(7) satisfieszg € Z implies p(t,z9) € Z on its domain A. Preliminaries
of existence. Together, Hypotheses H2.1 and H2.2 imply The usual approach to evaluatifiP (z*) is to view P¢

that the restriction ofS* to the manifold 2 is a well- a5 3 map from an open subsetif to Ir". The linearization
defined system with impulse effects, which will be calleds then ann x n matrix and it must subsequently be shown

the restriction dynamicsYz, that one of its eigenvalues is always one and the remaining
2= fz(z) 2~ ¢SNZ n — 1 eigenvalues are those @P¢(z*) : Tp,+S — Ty« S;
Y20\ = As(z) —esnz O see[20] [14]. Here, local coordinates Snwill be used so

that DP<(x*) is computed directly as afn — 1) x (n — 1)
where fz(z) = f°(z,0), and Az = A(z,0). Whenever matrix.

convenientz will also be viewed as an element af by the In the coordinatess = (z,n), H2.4 implies thatr* =
identificationz = (z,0). The invariance ofZ also yields (2*,0). Since f{,,.,(0) = 0, H2.5 is equivalent to
P(SNZ)cSnZ. (10)  %2(2%,0)fux(2*,0) # 0, which, writing z = (21, - , z),

is equivalent tto:1 %(2*, 0)f:(2*,0) # 0. If necessary,

From Hypothesis H2.30 is a periodic orbit of the the components of can always be re-ordered so that

restriction dynamics. The restriction gf¢ to Z removes

any dependence on This fact may be used to show that 3_H % * . 14
¢z = ¢|z, Tr.z := T1|z, and P¢| z are also independent 0z (" 0)A("0) £ 0 (14)
of ¢, and hence, this will allow (zo.4,7), Where zox = (2o, ,zx), 10

t* = Tf(A(x")) (11) be used as coordinates fd. Indeed, (14) implies that

— Ty z(Az(zY)) (12) g%(z*, 0) # 0, and hence by the Implicit Function Theorem,
o ' ’ there exists a continuously differentiable scalar functicon
is independent o¢. _ o an open neighborhood af* such that
On the basis of (10), theestricted Poincag map p: SN
Z — 8N Z, may be defined ag := P¢|z, or equivalently, (21, 22:6,m) € S & 21 = T'(22, 7).
p(2) = ¢z(Trz 0 Az(2),Az(2)), (13) It follows that

and is independent of. From H2.4, it follows thatr* is (21,22:6,m) € SN Z & 21 = '(224,0) andn = 0.
a fixed point of P¢ and p, and from H2.5, the orbit is )
transversal taS, and hence also t8 N Z. Letting A be the representation & in local coordinates

Hypothesis H2.6 says that the dynamics transversa to 0N S gives

is “strongly” exponentially contracting. When the solutioh A A

. . . . . : = A(['(z0. . . 15
(7) is not on the periodic orbi(¢) # 0. In many situations, (z2:0,7) (I G ), 2220 m) (15)
such as bipedal walking, the impact map increases the noibefining the projectionr by
of n at each impact; see Fig. 5. Hypothesis H2.6 provides
control over the speed with which(t) converges to zero (21, 2205 10) = (2238, 1), (16)
during the continuous phase, so that, over a cycle congistighen allowsP* to be expressed in local coordinates., n)
of an impact event followed by continuous flow, the solutiorpn s by
may converge to the orbit. . . .
B. Main theorem Pe(zgpsm) i= 70 0 (T 0 Az ), Az m) ) - (17)

Theorem 2 (Main Theorem): Under Hypotheses H1 Similarly, the restricted Poincarmap in local coordinates
and H2, there exist§ > 0 such that for0 < ¢ < €, the 25, on SN Z is given by
following are equivalent:

i. z* is an exponentially stable fixed point pf p(z2i) 1= ma 0 P o (z2:1), (18)
ii. z*is an exponentially stable fixed point &f. where
O
In other words, for > 0 sufficiently small, an exponentially T2 (22:k,M) = 22:6, ANAZ (22.%) = (22:%,0). (19)

stable periodic orbit of the restriction dynamics is also ag Application of the chain rule

exponentially stable periodic orbit of the full-order made The proof is broken down into three lemmas which

IV. PROOF OF THEMAIN THEOREM together prove the Main Theorem. The first involves the
Throughout this section, Hypotheses H1 and H2 are atajectory sensitivity matrvof & = f<(x), which is defined
sumed to hold. The proof is based upon evalualiif (z*),  by®
the linearization of the Poincarmap about the fixed point, DE(t, xg) := Dag (t, z0) (20)
in a set of local coordinates. This is a commonly employed
technique even for system with impulse effects [10], [23], *For a differentiable function g(w1,,...,p), the notation

big(’yl,yg,...,yp) refers to 9g/0z; evaluated at(zy,z2,...,zp) =

[18], [8]. The new result here will be an expression for, " """ Y "rhe arguments; may be a vectorDy(y1, .. up) is

DP<(z*) that brings out its structure due to Hypotheses H29g/dz1,...,8g/dx,) evaluated ala1, ..., zp) = (Y1, -y Yp)-



for ¢ in the maximal domain of existence af(¢,x).

Partition ®¢(¢, z¢) compatible with(z1, z2.1, ), Viz Qu Q. Q%
Oy (tw0)  Pia(t,mo) Pt o) Q=@ (", A(z5n)) = | Qu Qa2 Qs
O (t, ) = | D5,(t,x0) PS¢, x0) PS3(t,m0) | - 0 0 At
S, (t,x0)  B5y(tmo)  By(t o) 24d)
Lemma 1: For all zy € Z, the entries of the sensitivity Ri; Ry
ma'tnx D (¢, zp) satisfy: R:=DA(z%,,n") = | Rat Ran | . (24e)
. DE, (K, 1) = PGy (t, 19) = 0. 0 Rs
1. (I)il(t,xo), @51(75,560), @52(25,5(10), and‘bgg(t,a:o) Proof:

are independent of.

i, @5 (t, o) A Equation (23) follows from the chain rule, using
. ®55(t, xg) = '€

Proof: (2T7Z§;ka77*) = ¢€(TI€OA('Z;:kan*)’A(z;:k’n*))
The.trajectory sensitivity matrix may be calculated asoiol = ¢z(T1z0 A(Z;;kan*) A(ZS:km*)%
[20]:

_ A (25a)

{ N }={ Dfe(x)q) } with i.c. { 3‘;0 } (21) tr = TioAl(z.n") 25b)

@ (@) = Trzo0A(2,,n"), and
Hypothesis H2.1 implies that fori e {1,2,3},
D;ffp(#1,22:6,m) is independent of ¢ and that ¢E(t*7A(25;kﬂ7*)) = Dyo¢ (t*,A(zg:k,n*)). (25c¢)
le]:+1:n(zl722!k?7n) = 0’ D2f]§+1;n(zl7z2:k)n) = 07
and Dsfy,.,(21,22.,m) = A(e). By the Peano-Baker The structure ofC is immediate from the definition of in
formula, the trajectory sensitivity matrix satisfies (16). From [20, App. D].F' = f€(z7,z25.,,n*), leading to

F3 = 0 becausey* = 0. Also from [20, App. D], T¢ is

(L, mo) =1+ fO “(m1,%0) dmat differentiable due to the transversality condition H2.5hwi

Jo Jor Ke(r1,00) K (2, 20) dradri+ DTf(A(23,m)) = (26)

+f0 o7 K (1, w0) K€ (12, 0) K€(73, o) drsdradm —(LygeH(x*))™" (%—5(%*))T@E(t*,A(z;k,n*)).

+ The structure of) is given by Lemma 1, and the form &
where, sincer, € Z, and Z is invariant under the solution follows from H2.2, namely, (8). L
of & = f<(x), Lemma 3: At the fixed pointz*, the linearization of the

Poincaé map is
K* (t l‘o) Df( )lz:¢z(t@o)' (22 €
N My M,
Evaluating the expansion term-by-term then verifies the DP(23.4,m") = [ 0 Me 1» (27)
lemma. ] 22
Lemma 2: Let (z},z5,,n*) = z* represent the fixed and the linearization of the restricted Poirzanap is
point andt* = T o A(z3,,,n*) be the fundamental period Al oy
of the periodic orbit®. Then, Dp(zae) = M, (28)
where
DPe(z5,,n") = C(FT + Q)R, (23)
(2o 7) ( ) My = (FoT1+ Qo1)Rig + (F2T2 + Qo2)Roan,
with matricesC, F, T, Q, andR as defined in (24); moreover, ¢
when partitioned compatibly witte;, z2.%, 1), these matrices Miy = (F2T1+ Qa1)Riz + (F2T2 + Q22)Rao (29)
have the indicated structdre +(F2T§ + Q55)Raz, and
01 0 Msy, = ARy,
C:=Dn(z],25.4,m") = 00 I (24a) Proof: Mul'uplylng out (23) and using the structure
in (24) proves (27). The second part follows because the

Poincaé map leavesS N Z invariant. In local coordinates,

N F direct calculation yields
F =D (t", A(z3,m")) = | Fo (24b) . . . .
0 DP(%:k) = DW?(ZQ:kv ) DP« (23, kT n*) DI(ZQ:k)
. [ I O } Mll M12 I
T:= DTE(A T, T, TS 24 . O M Lo
T I( (ZQ o T )) - [ 1 2 3 ] ( C) — Mll- (30)

4For a related decomposition, using a slightly differentatuite, see [7]. |



Femur | Tibia | Torso
Length (m) 0.4 0.4 0.625
Mass (kg) 6.8 3.2 17.0

Inertia (kg-n?) | 0.47 | 0.20 | 1.33

TABLE |
EXPERIMENTALLY MEASURED PARAMETERS FORRABBIT.

( b The impact (i.e., switching) surface i§ = {(q,q) €
a) (b) .

TQ | ya2(q) = 0, x2(q) > 0}, the set of points where
Fig. 3. Coordinate system for the planar bipedal robot RABBIhe the swing leg height is zero and in front of the stance leg.
world frame is assumed attached at the base of the stance foate Bre  \When the swing leg contacts the ground, an inelastic impact

four actuators, two at the knees at two at the hips. The coptact with the  ; . ; ; ; ; ;
ground is unactuated. RABBIT was developed as part of thedfrélational is assumed, giving rise to a jump In the VEIOCIty coordinfates

Project, ROBEA, and is housed at LAG (Grenoble) [21]. Ericstileveltis AN impact mapA : S — T'Q can be computed as in [15],
in the background. [11], [5]. Defining = := (¢;¢), the mechanical model is
expressed in state variable form as a controlled system with

C. Proof of Theorem 2 impulse effects:

Suppose thatr* is an exponentially stable fixed point t= folx)+glx)u = ¢S

of p. Then by (28), the eigenvalues dif,; have mag- ol : zt = Alz7) = €8, (32)

nitude less than one. By H2.6 and (29m. o M5, =

lime o 49" Raz = 0, and therefore, because eigenvaluegyhere the vector of control torques ise IR".

depend continuously on the entries of the matrix, there

existsé > 0 such that for0 < € < €, the eigenvalues of g Feedback controller

M, all have magnitude less than one, and henceis an ) ]

exponentially stable fixed point dPe. ~The feedback designs developed in [24] are based on
The other direction is trivial. virtual constraints, which are holonomic constraints on

the robot’s configuration that are asymptotically imposed
V. APPLICATION TO A BIPEDAL ROBOT through feedback control. Their function is to coordinate
This section studies the exponential stability of a pedodithe evolution of the various links throughout a step. Since
walking motion in an underactuated, planar bipedal roboRABBIT has four independent actuators (two at the hips
see Fig. 3-(b). The model is naturally represented as and two and the knees), four virtual constraints may be
system with impulse effects. Prior to the result of Sectibn | imposed. Following [24], sinces is naturally monotonic
stability of a walking gait was analyzed with a result proveras the robot advances from left to right in a step, the four
in [11] that differed from Theorem 2 in two respects: (a) itvirtual constraints are written as
required that the surfacg be invariant under the differential

equation part of the system with impulse effects dinite- y = h(q) == q — ha(gs), (33)
time attractive (the latter property was achieved with a .
continuous, but not Lipschitz-continuous feedback cdntrd"N€€ @ = (a1,...,q4) is the vector of actuated (body)

law [3], [2]): (b) the result did not require tha be invariant coordinates, andii(gs) gives the desired configuration of
under the impact map. However, after [11], feedback desighd€ actuated joints as the robot advances in a step. Hgre,
that systematically creat€ so as to be invariant under IS chosen as in the example in [24, Sect. VII. _
the impact map have been presented in [24], [5], [12], [6], Becausey = h(q) depends only on the configuration
for example. The objective of this section is to show thayariables, its relative degree is at least two. Differdm@
by exploiting this additional invariance property, nan;lelythe output twice gives

A(SN Z) C Z, exponentially stable walking gaits can be .. 2 .

cr<(aated vzlith a smooth feedback controller. 4= Lih(g,q) + LgLsh(q)u. (34)

A. Open-loop model Suppose for the moment that the decoupling matrpyL 1

A model of RABBIT with coordinateg = (q1,...,¢5) € is invertible. LetKp = kplixs and Kp = kplixs, where

Q as shown in Fig. 3-(a) is briefly summarized. Following
[5], the method of Lagrange leads to the standard mechanical
model

N4+ EkpA+kp=0 (35)

5So that the same mechanical model can be used independent &f whic
leg is the stance leg, the coordinates must also be relatggiédg rise to
. (31) a jump in the configuration variables as well; see[11], [28], The impact
0 map satisfiesA (S) NS = 0.

D(q)i§+ C(q,¢)q + G(q) = Bu, with B =
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Fig. 4. A stick-figure animation of the walking motion used ie gtxample.

has distinct roots with negative real parts, and det 0.
Then the feedback law

u(e) = — (LoLgh(z) ™ <L§h<x>+

1 1 (36)
—KpLsh(z)+ —2Kph(13)>
€ €
applied toz = f,;(z) + g(z)u results in [16]
. 1 o1
Y= _EKDy - G—QKP?J- (37)

Moreover,
Z:={2xeTQ|h(x)=0, Lyh(z) =0}

is a smooth two-dimensional submanifold @fQ and is
invariant under the closed-loop dynamics

[(x) == fa(z) + g(z)u(z).
In [24, Sect. V-VII], it is shown how to desigh, using

Bézier polynomials and sequential numerical optimization s

that the decoupling matriX, L ¢/ is invertible, A(SN Z) C

Z, the restricted Poincarmap has an exponentially stable

is a global diffeomorphism o®. It follows that

21 g5
Ds(q)q
22 _ (Q)C] (39)
M4 h(q)
M5:8 ar(a)d

is a global diffeomorphism off'Q, where Dj is the last row

of D in (31) ando := Ds5(q)q is the angular momentum
of the biped about the end of the stance leg [5]. In these
coordinates [16, pp. 224],

f1:2(2'777)
“(2,m) = : 40
f(zm) A(e)n (40)
where
Ae) ’ s (41)
= ey FOVREEY PRV
To verify lim o e4(9) = 0 as required in H2.6, note that
1
A(e) = H(e)—AOH_l(e), (42)
€
where
I " (43)
07 | —kplixa —kplixa
and
I a0 44
(6)_ 0 I4><4 . ( )

Since (35) is a Hurwitz polynomiale%“0 goes to zero
exponentially fast as — 0, and hencéim, o e4(© = 0.

In conclusion, fore > 0 sufficiently small, the feedback
law (36) exponentially stabilizes in the full-order model a
periodic orbit that is exponentially stable in the restaot

fixed point, and the orbit is transversal$o Z, while meet- ) o X i .
. L : : ; ynamics. This is investigated numerically in the next sub-
ing other performance objectives involving walking Speedgection

actuator power, and the contact forces at the leg ends. Sincé
RABBIT has five degrees of freedom in the stance pha
and four independent actuators, the restricted Poinoaap
is scalar valued, and hendd,; in (29) is a scalar. For the  The eigenvalues dbP¢ were computed at the fixed point
choice of virtual constraints used here (i/e;), M1 = 0.58;  for various values of > 0. Table Il shows that the eigenvalue
a stick-figure animation of the walking motion is shown inassociated with the restricted Poingamap (shown in bold)

55' Simulation: walking on flat ground

Fig. 4.

C. Closed-loop analysis

is indeed constant for varying valueseofThis table indicates
that fore < 0.17, the periodic motion is exponentially stable
in the full-order model, but foe = 0.20, it is unstable. Note

The objective is to understand when the exponentiallthat due to the impact ma@ P may have negative real
stable orbit inZ is also exponentially stable in the full-order eigenvalues; see (29).
model (32) with feedback law (36). Based on Theorem 2 and Figure 5 shows that decreasiagcauses|n(¢)||2 to con-
Lemma 3, the objective is to pyt in the proper coordinates verge to zero more quickly. Discontinuities if(¢) occur
so that the Hypotheses H2 can be checked. Note that becaaseeach impact event, with the impact tending to increase

h(q) = q — ha(gs),

¥(q) = (38)

h(q)
qs

|[n(t)||2 rather than decrease it. From Lemma 3 and (41),
it follows thatlog(det(DP¢)) should be affine inl/e. This

is confirmed in Fig. 6, lending credibility to the numerical
computations.



EIGENVALUES OF DP€ FOR THREE VALUES OF¢, RANKED BY
MAGNITUDE. THE EIGENVALUE OF Dp IS SHOWN IN BOLD.

TABLE I

€e=0.12 e=0.17 e=0.20
0.58 —0.62 —1.91
0.48 0.58 0.58
—0.12+4.4x10724 —0.19+0.14% —0.1240.274
—0.12—-4.4x10724 —0.19-0.147¢ —0.12+0.27 4
—0.11 -5.4x 10724 —0.174+0.167 —0.154+0.254
—0.11+5.4x1072 4 —0.17—-0.16 i —0.15+0.251
2.5 x 102 0.14 0.21
92x1073-18x1072¢ —8.2x107? —4.2 x 1072
92x10734+1.8x 10724 8.0 x 10~3 7.6 x 1073
0.4 T
P € =0.121
[n[l2 2 1
—
0 0.5 1 1.5 2
0.4 T T T
H H e =0.17
|2 02 \\ 1
OO 0.5 1 15
4 r T T
€e=0.20
Inll2 2 —
O0 0.5 1 15 2

Fig. 5. Evolution of||n(t)||2 for three values ot. The restricted system
corresponds t@ = 0. As e decreases to zerg(t) converges more quickly
to zero. Note that the orbit is unstable fer= 0.2 even though it is
exponentially stable in the restricted dynamics and then&varsal part”
of the closed-loop ODE is decoupled, linear, and exponigntsable.

Time (sec.)

log(det(DP€))

Fig. 6. The graph ofog(det(DP€)) versusl/e should be affine when

the controller (36) is used.
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This paper has established conditions under which a peH—g]
odic orbit in a system with impulse effects is exponentially
stable, if, and only if, the orbit is exponentially stablean [20]

hybrid restriction dynamics. In a case study, the utility 0{21

this result was highlighted: a periodic orbit whose design
was carried out on the basis of a two-dimensional restrictio

dynamics (i.e., the hybrid zero dynamics of walking) could?
be systematically rendered exponentially stable in the ful

order model by using a smooth state-variable feedback2.3
The improvement over previous work is that finite-time 2]
attractivity of an invariant surface could be replaced by

sufficiently fast exponential attractivity, and a wider sda

of feedback control laws can be applied.

There are numerous ways to extend the basic result. For
example the transversal dynamics do not need to be line&?®l
and the Hypotheses H2 can be stated in more geometric

terms.

[24]
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