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Abstract— Systems with impulse effects form a special class
of hybrid systems that consist of an ordinary, time-invariant
differential equation (ODE), a co-dimension one switching
surface, and a re-initialization rule. The exponential stability of
a periodic orbit in a C

1-nonlinear system with impulse effects
can be studied by linearizing the Poincaŕe return map around a
fixed point and evaluating its eigenvalues. However, in feedback
design—where one may be employing an iterative technique
to shape the periodic orbit subject to it being exponentially
stable—recomputing and re-linearizing the Poincaŕe return
map at each iteration can be very cumbersome. For a non-
linear system with impulse effects that possesses an invariant
hybrid subsystem and the transversal dynamics is sufficiently
exponentially fast, it is shown that exponential stability of a
periodic orbit can be determined on the basis of the restricted
Poincaré map, that is, the Poincaŕe return map associated with
the invariant subsystem. The result is illustrated on a walking
gait for an underactuated planar bipedal robot.

I. I NTRODUCTION

The method of Poincaré sections and return maps is widely
used to determine the existence and stability of periodic
orbits in a broad range of system models, such as time-
invariant and periodically-time-varying ordinary differential
equations [20], [13], hybrid systems consisting of several
time-invariant ordinary differential equations linked byevent-
based switching mechanisms and re-initialization rules [11],
[19], [22], differential-algebraic equations [14], and relay
systems with hysteresis [9], to name just a few. While
the analytical details may vary significantly from one class
of models to another, on a conceptual level, the method
of Poincaŕe is consistent and straightforward: sample the
solution of a system according to an event-based or time-
based rule, and then evaluate the stability properties of
equilibrium points (also called fixed points) of the sampled
system, which is called the Poincaré return map; see Fig. 1
and Fig. 2. Fixed points of the Poincaré map correspond1 to
periodic orbitsof the underlying system. Roughly speaking,
if the solutions of the underlying system depend continu-
ously on the initial conditions, then equilibrium points of
the Poincaŕe map are stable (asymptotically stable) if, and
only if, the corresponding orbit is stable (asymptotically
stable), and if the solutions are Lipschitz continuous in the
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1Fixed points ofP k = P ◦ · · · ◦ P k-times also correspond to periodic
orbits. The associated analysis problems fork > 1 are essentially the same
as fork = 1 and are not discussed further.
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Fig. 1. Geometric interpretation of a Poincaré return mapP : S → S
for an ordinary differential equation (non-hybrid) as event-based sampling
of the solution near a periodic orbit. The Poincaré section,S, may be any
co-dimension one (hyper)C1-surface that is transversal to the periodic orbit.

initial conditions, then the equivalence extends to exponential
stability.

The conceptual advantage of the method of Poincaré is that
it reduces the study of periodic orbits to the study of equilib-
rium points, with the latter being a more extensively studied
problem. The analytical challenge when applying the method
of Poincaŕe lies in calculating the return map, which, for a
typical system, is impossible to do in closed form because
it requires the solution of a differential equation. Certainly,
numerical schemes can be used to compute the return map,
find its fixed points, and estimate eigenvalues for determining
exponential stability. However, the numerical computations
are usually time-intensive, and performing them iteratively as
part of a system design process can be cumbersome. A more
important drawback is that the numerical computations are
not insightful, in the sense that it is very difficult2 to establish
a direct relationship between the parameters that a designer
may be able to vary in a system and the existence or stability
properties of a fixed point of the Poincaré map.

The objective of this paper is to augment the method of
Poincaŕe with notions of invariance, attractivity, and time-
scale separation in order to simplify its application to non-
linear systems with impulse effects, that is, systems modeled
by an ordinary, time-invariant differential equation (ODE), a
co-dimension one switching surface, and a re-initialization
rule. Such models can be used to represent a wide range of
systems with discontinuous or jump phenomena, including

2Of course, difficult does not mean impossible. There has been success
with numerical implementations of Poincaré methods in the passive-robot
community in terms of finding parameter values—masses, inertias,link
lengths—for a given robot that yield asymptotically stable periodic orbits
[10], [23], [18], [8].



walking and running gaits in legged robots. The experience
gained in [24] has proven that when stability analysis can
be rendered sufficiently simple, it becomes possible to effi-
ciently explore a large set of asymptotically-stable gaitsin or-
der to find one that meets additional performance objectives,
such as minimum energy consumption per distance traveled
for a given average speed, or minimum peak-actuator power
demand. The analytical results in [11] required that an in-
variant surface of the ODE portion of the model be rendered
finite-time attractive through a continuous, but not Lipschitz
continuous, feedback [3]. The result established in this paper
will weaken this requirement to attractivity at a sufficiently-
rapid exponential rate, thereby permitting the use of smooth
feedback laws.

Section II provides background information on Poincaré’s
method for systems with impulse effects. Section III states
conditions under which exponential stability of a periodic
orbit in an invariant subsystem extends to exponential stabil-
ity in the full system with impulse effects. The proof of this
result is detailed in Section IV. The results of the paper are
illustrated on a mathematical model of bipedal walking in
Section V. A walking motion that was designed on the basis
of a two-dimensional restriction dynamics is rendered expo-
nentially stable in the full-order (ten-dimensional) model by
use of a smooth feedback. A numerical investigation is per-
formed to confirm the predictions of the theory. Conclusions
are given in Section VI.

II. BACKGROUND

This section reviews the method of Poincaré in the context
of systems with impulse effects. The primary objective is to
state a theorem linking the stability of fixed points of the
Poincaŕe return map to the stability of periodic orbits of the
underlying system.

A. Systems with impulse effects

An autonomous system with impulse effects consists of
an autonomous ordinary differential equation,

ẋ = f(x), (1)

defined on some state spaceX , a co-dimension one surface
S ⊂ X at which solutions of the differential equation
undergo a discrete transition that is modeled as an instan-
taneous re-initialization of the differential equation, and a
rule ∆ : S → X that specifies the new initial condition as
a function of the point at which the solution impactsS [1],
[25]. The system will be written as

Σ :

{

ẋ = f(x) x− /∈ S

x+ = ∆(x−) x− ∈ S
(2)

and said to beC1 if the following conditions are satisfied:

H1.1) X ⊂ IRN is open and connected,

H1.2) f : X → IRN is C1

H1.3) H : X → IR is C1,

∆(x−)

x−

S∆(S)

x+

φ(t,∆(x−))

P (x−)

Fig. 2. Geometric interpretation of a Poincaré return mapP : S → S
for a system with impulse effects. The Poincaré section is selected as the
switching surface,S. A periodic orbit exists whenP (x−) = x−. Due to
right-continuity of the solutions,x− is not an element of the orbit. With
left-continuous solutions,∆(x−) would not be an element of the orbit.

H1.4) S := {x ∈ X | H(x) = 0} is non-empty and
∀x ∈ S, ∂H

∂x

∣

∣

x
6= 0 (that is, S is C1 and has

co-dimension one),

H1.5) ∆ : S → X is C1, and

H1.6) ∆(S) ∩ S = ∅.

In simple terms, a solution of (2) is specified by the differen-
tial equation (1) until its state “impacts” the hyper surface S
at some timetI . At tI , the impulse model∆ compresses the
impact event into an instantaneous moment of time, resulting
in a discontinuity in the state trajectory. The impact model
provides the new initial condition from which the differential
equation evolves until the next impact withS. In order to
avoid the state having to take on two values at the “impact
time” tI , the impact event is, roughly speaking, described in
terms of the values of the state “just prior to impact” at time
“ t−I ”, and “just after impact” at time “t+I ”. These values are
represented byx− andx+, respectively.

From this description, a formal definition of a solution
is easily written down by piecing together appropriately
initialized solutions of (1); see [25], [11], [19], [4]. A choice
must be made whether to take a solutionϕ(t) of (2) to be
a left- or a right-continuous function of time at each impact
event; here, solutions are assumed to be right continuous
[11].

B. Periodic orbits

A solution ϕ(t) of (2) is periodic if there exists a finite
T > 0 such thatϕ(t + T ) = ϕ(t) for all t ∈ [t0,∞). A set
O ⊂ X is a periodic orbit of (2) if O = {ϕ(t) | t ≥ t0} for
some periodic solutionϕ(t). While a system with impulse
effects may certainly have periodic solutions that do not
involve impact events, they are not of interest here because
they could be studied more simply as solutions of (1). If a
periodic solution has an impact event, then the corresponding
periodic orbitO is not closed; see [11] and Fig. 2. Let̄O
denote its set closure.

Notions of stability in the sense of Lyapunov, asymptotic
stability, and exponential stability of orbits follow the stan-
dard definitions; see [17, pp. 302], [11], [19]. For example,
exponential stability is defined as follows. Given a norm‖·‖
on X , define the distance between a pointx and a setC
to be dist(x, C) := infy∈C ‖x − y‖. A periodic orbitO is



exponentially stableif there existsδ > 0, N > 0 andγ > 0
such that,∀ t ≥ 0,

dist(ϕ(t, x0),O) ≤ Ne−γt dist(x0,O), (3)

whenever dist(x0,O) < δ.
Finally, a periodic orbitO is transversalto S if its closure

intersectsS in exactly one point, and for̄x := Ō ∩ S,
LfH(x̄) := ∂H

∂x
(x̄)f(x̄) 6= 0 (in words, at the intersection,

Ō is not tangent toS, whereŌ is the set closure ofO).

C. Poincaŕe return map

In the study of periodic orbits with impact events, it is
natural to selectS as the Poincaré section. To define the
return map, letφ(t, x0) denote the maximal solution of (1)
with initial condition x0 at time t0 = 0. The time-to-impact
function, TI : X → IR ∪ {∞}, is defined by

TI(x0) :=











inf{t ≥ 0|φ(t, x0) ∈ S} if ∃ t such that

φ(t, x0) ∈ S

∞ otherwise.
(4)

The Poincaŕe return map,P : S → S, is then given as (the
partial map)

P (x) := φ(TI ◦ ∆(x),∆(x)). (5)

Theorem 1: Under hypotheses H1, if the system with
impulse effects (2) has a periodic orbitO with x∗ := Ō ∩S
a singleton andLfH(x∗) 6= 0, then the following are
equivalent:

i) x∗ is an exponentially stable (resp., asymp. stable, or
stable i.s.L.) fixed point ofP ;

ii) O is an exponentially stable (resp., asymp. stable, or
stable i.s.L.) periodic orbit.

Proof: The equivalences for stability in the sense of
Lyapunov and asymptotic stability are proven in [11], [19].
The equivalence for exponential stability is proven here.
Under hypotheses H1 and the transversality of the orbit,
TI ◦∆ is continuous in a neighborhood ofx∗ [11, App. B].
From H1.6,TI ◦∆(x∗) > 0, and in combination with H1.2,
it follows that there exists an open ballBr(x

∗), r > 0, and
numbersT∗ and T ∗ such that for everyx0 ∈ Br(x

∗) ∩ S,
0 < T∗ ≤ TI ◦ ∆(x0) ≤ T ∗ < ∞, and∀x ∈ ∆(Br(x

∗)), a
solution to (1) exists on[0, T ∗].

Assume thatO is exponentially stable, as in (3). If
necessary, shrinkδ > 0 such thatNe−γT∗δ < r. Let
x0 ∈ Bδ(x

∗) ∩ S and definexk+1 = P (xk), k ≥ 1. Then,
by induction,‖xk − x∗‖ ≤ Ne−kT∗γdist(x0,O).

It is enough to show the converse for initial conditions
in S nearx∗. Assume thatx∗ is exponentially stable. Since
exponential stability ofx∗ implies stability i.s.L., by [11],
O is also stable i.s.L. Hence, there existsδ > 0 such that
dist(x0,O) < δ implies dist(ϕ(t, x0),O) ≤ r, t ≥ 0. Let
K := {x ∈ X | dist(x,O) ≤ r}. SinceK is compact and
f and ∆ are differentiable, there exists a constantL̄ < ∞
such that‖f(x) − f(x̄)‖ ≤ L̄‖x − x̄‖, for all x, x̄ ∈ K,
and‖∆(x) − ∆(x̄)‖ ≤ L̄‖x − x̄‖, for all x, x̄ ∈ K ∩ S. Let
L := L̄eL̄T∗

. Then, using standard bounds for the Lipschitz

dependence of the solution of (1) w.r.t. its initial condition
[17, pp. 79], it follows that forx ∈ Bδ(x

∗) ∩ S,

sup
0≤t≤TI◦∆(x)

dist(φ(t,∆(x)),O) ≤

sup
0≤t≤T∗

‖φ(t,∆(x)) − φ(t,∆(x∗))‖ ≤

L‖x − x∗‖.

(6)

From this inequality, it follows easily thatx∗ being an expo-
nentially stable fixed point ofP implies the corresponding
orbit is exponentially stable.

Remark 1: Under the hypotheses of Theorem 1,P is
differentiable atx∗. Indeed, the differentiability ofTI is
proven in [20, App. D] at each point of̃S := {x ∈
S | TI(x) < ∞ and LfH(P (x)) 6= 0}. From this, the
differentiability of ∆ and f prove thatP is differentiable
on S̃. Hence, exponential stability of orbits can be checked
by linearizingP at x∗ and computing eigenvalues.

III. M AIN RESULT

This section identifies a special structure for the system
with impulse effects, (2), that will allow the exponential
stability of periodic orbits to be determined on the basis of
a restricted Poincaré map.

A. System structure

Consider a system with impulse effects that depends on a
real parameterǫ > 0,

Σǫ :

{

ẋ = f ǫ(x) x− /∈ S

x+ = ∆(x−) x− ∈ S,
(7)

and suppose that for each value ofǫ > 0, hypotheses H1
hold. For later use, a solution oḟx = f ǫ(x) is written as
φǫ(t, x0), the time-to-impact function isT ǫ

I , and the Poincaré
map isP ǫ : S → S. In addition, suppose that the following
structural hypotheses are met:

H2.1) there exist global coordinatesx = (z, η) for X ⊂
IRn, such thatz ∈ IRk, andη ∈ IRn−k, 1 < k < n,
in which f ǫ has the form

f ǫ(x) := f ǫ(z, η) :=

[

f1:k(z, η)

f ǫ
k+1:n(η)

]

;

H2.2) ForZ := {(z, η) ∈ X | η = 0}, S∩Z is a (k−1)-
dimensional,C1-embedded submanifold ofZ, and

∆(S ∩ Z) ⊂ Z; (8)

H2.3) (7) has a periodic orbitO that is contained inZ,
and hence the orbit is independent ofǫ;

H2.4) x∗ := Ō ∩ S ∩ Z is a singleton;

H2.5) LfǫH(x∗) 6= 0;

H2.6) f ǫ
k+1:n(η) = A(ǫ)η, and limǫց0 eA(ǫ) = 0.

Hypotheses H2.1 and H2.6 imply that the setZ is invariant
under the continuous part of the model,ẋ = f ǫ(x), so that
if x0 ∈ Z then ∀ t in its maximal domain of existence,
φǫ(t, x0) ∈ Z. Hypothesis H2.2 implies thatZ remains
invariant across the impact event, and hence the solution of



(7) satisfiesx0 ∈ Z implies ϕ(t, x0) ∈ Z on its domain
of existence. Together, Hypotheses H2.1 and H2.2 imply
that the restriction ofΣǫ to the manifoldZ is a well-
defined system with impulse effects, which will be called
the restriction dynamics, ΣZ ,

ΣZ :

{

ż = fZ(z) z− /∈ S ∩ Z

z+ = ∆Z(z−) z− ∈ S ∩ Z
, (9)

where fZ(z) := f ǫ(z, 0), and ∆Z = ∆(z, 0). Whenever
convenient,z will also be viewed as an element ofX by the
identificationz = (z, 0). The invariance ofZ also yields

P ǫ(S ∩ Z) ⊂ S ∩ Z. (10)

From Hypothesis H2.3,O is a periodic orbit of the
restriction dynamics. The restriction off ǫ to Z removes
any dependence onǫ. This fact may be used to show that
φZ := φǫ|Z , TI,Z := TI |Z , andP ǫ|Z are also independent
of ǫ, and hence,

t∗ := T ǫ
I (∆(x∗)) (11)

= TI,Z(∆Z(x∗)), (12)

is independent ofǫ.
On the basis of (10), therestricted Poincaŕe map, ρ : S ∩

Z → S ∩ Z, may be defined asρ := P ǫ|Z , or equivalently,

ρ(z) := φZ(TI,Z ◦ ∆Z(z),∆Z(z)), (13)

and is independent ofǫ. From H2.4, it follows thatx∗ is
a fixed point of P ǫ and ρ, and from H2.5, the orbit is
transversal toS, and hence also toS ∩ Z.

Hypothesis H2.6 says that the dynamics transversal toZ
is “strongly” exponentially contracting. When the solutionof
(7) is not on the periodic orbit,η(t) 6= 0. In many situations,
such as bipedal walking, the impact map increases the norm
of η at each impact; see Fig. 5. Hypothesis H2.6 provides
control over the speed with whichη(t) converges to zero
during the continuous phase, so that, over a cycle consisting
of an impact event followed by continuous flow, the solution
may converge to the orbit.

B. Main theorem

Theorem 2 (Main Theorem): Under Hypotheses H1
and H2, there exists̄ǫ > 0 such that for0 < ǫ < ǭ, the
following are equivalent:

i. x∗ is an exponentially stable fixed point ofρ;
ii. x∗ is an exponentially stable fixed point ofP ǫ.

�

In other words, forǫ > 0 sufficiently small, an exponentially
stable periodic orbit of the restriction dynamics is also an
exponentially stable periodic orbit of the full-order model.

IV. PROOF OF THEMAIN THEOREM

Throughout this section, Hypotheses H1 and H2 are as-
sumed to hold. The proof is based upon evaluatingDP ǫ(x∗),
the linearization of the Poincaré map about the fixed point,
in a set of local coordinates. This is a commonly employed
technique even for system with impulse effects [10], [23],
[18], [8]. The new result here will be an expression for
DP ǫ(x∗) that brings out its structure due to Hypotheses H2.

A. Preliminaries

The usual approach to evaluatingDP ǫ(x∗) is to view P ǫ

as a map from an open subset ofIRn to IRn. The linearization
is then ann × n matrix and it must subsequently be shown
that one of its eigenvalues is always one and the remaining
n − 1 eigenvalues are those ofDP ǫ(x∗) : Tx∗S → Tx∗S;
see [20], [14]. Here, local coordinates onS will be used so
thatDP ǫ(x∗) is computed directly as an(n − 1) × (n − 1)
matrix.

In the coordinatesx = (z, η), H2.4 implies thatx∗ =
(z∗, 0). Since f ǫ

k+1:n(0) = 0, H2.5 is equivalent to
∂H
∂z

(z∗, 0)f1:k(z∗, 0) 6= 0, which, writing z = (z1, · · · , zk),
is equivalent to

∑k
i=1

∂H
∂zi

(z∗, 0)fi(z
∗, 0) 6= 0. If necessary,

the components ofz can always be re-ordered so that

∂H

∂z1
(z∗, 0)f1(z

∗, 0) 6= 0; (14)

this will allow (z2:k, η), where z2:k = (z2, · · · , zk), to
be used as coordinates forS. Indeed, (14) implies that
∂H
∂z1

(z∗, 0) 6= 0, and hence by the Implicit Function Theorem,
there exists a continuously differentiable scalar function Γ on
an open neighborhood ofx∗ such that

(z1, z2:k, η) ∈ S ⇔ z1 = Γ(z2:k, η).

It follows that

(z1, z2:k, η) ∈ S ∩ Z ⇔ z1 = Γ(z2:k, 0) andη = 0.

Letting ∆̂ be the representation of∆ in local coordinates
on S gives

∆̂(z2:k, η) := ∆(Γ(z2:k, η), z2:k, η). (15)

Defining the projectionπ by

π(z1, z2:k, η) = (z2:k, η), (16)

then allowsP ǫ to be expressed in local coordinates(z2:k, η)
on S by

P̂ ǫ(z2:k, η) := π ◦ φǫ
(

T ǫ
I ◦ ∆̂(z2:k, η), ∆̂(z2:k, η)

)

. (17)

Similarly, the restricted Poincaré map in local coordinates
z2:k on S ∩ Z is given by

ρ̂ (z2:k) := π2 ◦ P̂ ǫ ◦ I (z2:k) , (18)

where

π2(z2:k, η) = z2:k, andI (z2:k) = (z2:k, 0). (19)

B. Application of the chain rule

The proof is broken down into three lemmas which
together prove the Main Theorem. The first involves the
trajectory sensitivity matrixof ẋ = f ǫ(x), which is defined
by3

Φǫ(t, x0) := D2φ
ǫ(t, x0) (20)

3For a differentiable function g(x1, x2, ..., xp), the notation
Dig(y1, y2, ..., yp) refers to ∂g/∂xi evaluated at(x1, x2, ..., xp) =
(y1, y2, ..., yp). The argumentxi may be a vector.Dg(y1, ..., yp) is
(∂g/∂x1, . . . , ∂g/∂xp) evaluated at(x1, ..., xp) = (y1, ..., yp).



for t in the maximal domain of existence ofφǫ(t, x0).
PartitionΦǫ(t, x0) compatible with(z1, z2:k, η), viz

Φǫ(t, x0) =







Φǫ
11(t, x0) Φǫ

12(t, x0) Φǫ
13(t, x0)

Φǫ
21(t, x0) Φǫ

22(t, x0) Φǫ
23(t, x0)

Φǫ
31(t, x0) Φǫ

32(t, x0) Φǫ
33(t, x0)






.

Lemma 1: For all x0 ∈ Z, the entries of the sensitivity
matrix Φǫ(t, x0) satisfy:

i. Φǫ
31(t, x0) = Φǫ

32(t, x0) = 0.
ii. Φǫ

11(t, x0), Φǫ
21(t, x0), Φǫ

12(t, x0), andΦǫ
22(t, x0)

are independent ofǫ.
iii. Φǫ

33(t, x0) = eA(ǫ)t

Proof:
The trajectory sensitivity matrix may be calculated as follows
[20]:

{

ẋ

Φ̇

}

=

{

f ǫ(x)

Df ǫ(x)Φ

}

with i.c.

{

x0

I

}

. (21)

Hypothesis H2.1 implies that fori ∈ {1, 2, 3},
Dif

ǫ
1:k(z1, z2:k, η) is independent of ǫ and that

D1f
ǫ
k+1:n(z1, z2:k, η) = 0, D2f

ǫ
k+1:n(z1, z2:k, η) = 0,

and D3f
ǫ
k+1:n(z1, z2:k, η) = A(ǫ). By the Peano-Baker

formula, the trajectory sensitivity matrix satisfies

Φǫ(t, x0) = I +
∫ t

0
Kǫ(τ1, x0) dτ1+

∫ t

0

∫ τ1

0
Kǫ(τ1, x0)K

ǫ(τ2, x0) dτ2dτ1+

+
∫ t

0

∫ τ1

0

∫ τ2

0
Kǫ(τ1, x0)K

ǫ(τ2, x0)K
ǫ(τ3, x0) dτ3dτ2dτ1

+ · · ·

where, sincex0 ∈ Z, andZ is invariant under the solution
of ẋ = f ǫ(x),

Kǫ(t, x0) := Df ǫ(x)|x=φZ(t,x0). (22)

Evaluating the expansion term-by-term then verifies the
lemma.

Lemma 2: Let (z∗1 , z∗2:k, η∗) = x∗ represent the fixed
point andt∗ = T ǫ

I ◦ ∆̂(z∗2:k, η∗) be the fundamental period
of the periodic orbitO. Then,

DP̂ ǫ(z∗2:k, η∗) = C(FT + Q)R, (23)

with matricesC,F,T,Q, andR as defined in (24); moreover,
when partitioned compatibly with(z1, z2:k, η), these matrices
have the indicated structure4:

C := Dπ(z∗1 , z∗2:k, η∗) =

[

0 I 0

0 0 I

]

(24a)

F := D1φ
ǫ(t∗, ∆̂(z∗2:k, η∗)) =







F1

F2

0






(24b)

T := DT ǫ
I (∆̂(z∗2:k, η∗)) =

[

T1 T2 Tǫ
3

]

(24c)

4For a related decomposition, using a slightly different structure, see [7].

Q := Φǫ(t∗, ∆̂(z∗2:k, η∗)) =







Q11 Q12 Qǫ
13

Q21 Q22 Qǫ
23

0 0 eA(ǫ)t∗







(24d)

R := D∆̂(z∗2:k, η∗) =







R11 R12

R21 R22

0 R32






. (24e)

Proof:
Equation (23) follows from the chain rule, using

(z∗1 , z∗2:k, η∗) = φǫ(T ǫ
I ◦ ∆̂(z∗2:k, η∗), ∆̂(z∗2:k, η∗))

= φZ(TI,Z ◦ ∆̂(z∗2:k, η∗), ∆̂(z∗2:k, η∗)),

(25a)
t∗ = T ǫ

I ◦ ∆̂(z∗2:k, η∗)

= TI,Z ◦ ∆̂(z∗2:k, η∗), and
(25b)

Φǫ(t∗, ∆̂(z∗2:k, η∗)) = D2φ
ǫ
(

t∗, ∆̂(z∗2:k, η∗)
)

. (25c)

The structure ofC is immediate from the definition ofπ in
(16). From [20, App. D],F = f ǫ(z∗1 , z∗2:k, η∗), leading to
F3 = 0 becauseη∗ = 0. Also from [20, App. D], T ǫ

I is
differentiable due to the transversality condition H2.5 with

DT ǫ
I (∆̂(z∗2:k, η∗)) =

−(LfǫH(x∗))−1
(

∂H
∂x

(x∗)
)T

Φǫ(t∗, ∆̂(z∗2:k, η∗)).
(26)

The structure ofQ is given by Lemma 1, and the form ofR
follows from H2.2, namely, (8).

Lemma 3: At the fixed pointx∗, the linearization of the
Poincaŕe map is

DP̂ ǫ(z∗2:k, η∗) =

[

M11 M ǫ
12

0 M ǫ
22

]

, (27)

and the linearization of the restricted Poincaré map is

Dρ̂(z∗2:k) = M11, (28)

where

M11 = (F2T1 + Q21)R11 + (F2T2 + Q22)R21,

M ǫ
12 = (F2T1 + Q21)R12 + (F2T2 + Q22)R22

+(F2T
ǫ
3 + Qǫ

23)R32, and

M ǫ
22 = eA(ǫ)t∗R32.

(29)

Proof: Multiplying out (23) and using the structure
in (24) proves (27). The second part follows because the
Poincaŕe map leavesS ∩ Z invariant. In local coordinates,
direct calculation yields

Dρ̂(z∗2:k) = Dπ2(z
∗
2:k, η∗) DP̂ ǫ(z∗2:k, η∗) DI(z∗2:k)

=
[

I 0
]

[

M11 M ǫ
12

0 M ǫ
22

][

I

0

]

= M11. (30)
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Fig. 3. Coordinate system for the planar bipedal robot RABBIT. The
world frame is assumed attached at the base of the stance foot. There are
four actuators, two at the knees at two at the hips. The contact point with the
ground is unactuated. RABBIT was developed as part of the French National
Project, ROBEA, and is housed at LAG (Grenoble) [21]. Eric Westervelt is
in the background.

C. Proof of Theorem 2

Suppose thatx∗ is an exponentially stable fixed point
of ρ. Then by (28), the eigenvalues ofM11 have mag-
nitude less than one. By H2.6 and (29),limǫց0 M ǫ

22 =
limǫց0 eA(ǫ)t∗R32 = 0, and therefore, because eigenvalues
depend continuously on the entries of the matrix, there
exists ǭ > 0 such that for0 < ǫ < ǭ, the eigenvalues of
M ǫ

22 all have magnitude less than one, and hence,x∗ is an
exponentially stable fixed point ofP ǫ.

The other direction is trivial.

V. A PPLICATION TO A BIPEDAL ROBOT

This section studies the exponential stability of a periodic
walking motion in an underactuated, planar bipedal robot;
see Fig. 3-(b). The model is naturally represented as a
system with impulse effects. Prior to the result of Section III,
stability of a walking gait was analyzed with a result proven
in [11] that differed from Theorem 2 in two respects: (a) it
required that the surfaceZ be invariant under the differential
equation part of the system with impulse effects andfinite-
time attractive (the latter property was achieved with a
continuous, but not Lipschitz-continuous feedback control
law [3], [2]); (b) the result did not require thatZ be invariant
under the impact map. However, after [11], feedback designs
that systematically createZ so as to be invariant under
the impact map have been presented in [24], [5], [12], [6],
for example. The objective of this section is to show that
by exploiting this additional invariance property, namely,
∆(S ∩ Z) ⊂ Z, exponentially stable walking gaits can be
created with a smooth feedback controller.

A. Open-loop model

A model of RABBIT with coordinatesq = (q1, . . . , q5) ∈
Q as shown in Fig. 3-(a) is briefly summarized. Following
[5], the method of Lagrange leads to the standard mechanical
model

D(q)q̈ + C(q, q̇)q̇ + G(q) = Bu, with B =

[

I

0

]

. (31)

Femur Tibia Torso

Length (m) 0.4 0.4 0.625

Mass (kg) 6.8 3.2 17.0

Inertia (kg-m2) 0.47 0.20 1.33

TABLE I

EXPERIMENTALLY MEASURED PARAMETERS FORRABBIT.

The impact (i.e., switching) surface isS = {(q, q̇) ∈
TQ | y2(q) = 0, x2(q) > 0}, the set of points where
the swing leg height is zero and in front of the stance leg.
When the swing leg contacts the ground, an inelastic impact
is assumed, giving rise to a jump in the velocity coordinates5.
An impact map∆ : S → TQ can be computed as in [15],
[11], [5]. Defining x := (q; q̇), the mechanical model is
expressed in state variable form as a controlled system with
impulse effects:

Σol :

{

ẋ = fol(x) + g(x)u x− /∈ S

x+ = ∆(x−) x− ∈ S,
(32)

where the vector of control torques isu ∈ IR4.

B. Feedback controller

The feedback designs developed in [24] are based on
virtual constraints, which are holonomic constraints on
the robot’s configuration that are asymptotically imposed
through feedback control. Their function is to coordinate
the evolution of the various links throughout a step. Since
RABBIT has four independent actuators (two at the hips
and two and the knees), four virtual constraints may be
imposed. Following [24], sinceq5 is naturally monotonic
as the robot advances from left to right in a step, the four
virtual constraints are written as

y = h(q) := qb − hd(q5), (33)

where qb = (q1, . . . , q4) is the vector of actuated (body)
coordinates, andhd(q5) gives the desired configuration of
the actuated joints as the robot advances in a step. Here,hd

is chosen as in the example in [24, Sect. VII].
Becausey = h(q) depends only on the configuration

variables, its relative degree is at least two. Differentiating
the output twice gives

ÿ = L2
fh(q, q̇) + LgLfh(q)u. (34)

Suppose for the moment that the decoupling matrixLgLfh
is invertible. LetKD = kDI4×4 andKP = kP I4×4, where

λ2 + kDλ + kP = 0 (35)

5So that the same mechanical model can be used independent of which
leg is the stance leg, the coordinates must also be relabeled,giving rise to
a jump in the configuration variables as well; see[11], [24], [5]. The impact
map satisfies∆(S) ∩ S = ∅.
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Fig. 4. A stick-figure animation of the walking motion used in the example.

has distinct roots with negative real parts, and letǫ > 0.
Then the feedback law

u(x) = − (LgLfh(x))−1

(

L2
fh(x)+

1

ǫ
KDLfh(x) +

1

ǫ2
KP h(x)

) (36)

applied toẋ = fol(x) + g(x)u results in [16]

ÿ = −
1

ǫ
KDẏ −

1

ǫ2
KP y. (37)

Moreover,

Z := {x ∈ TQ | h(x) = 0, Lfh(x) = 0}

is a smooth two-dimensional submanifold ofTQ and is
invariant under the closed-loop dynamics

f ǫ(x) := fol(x) + g(x)u(x).

In [24, Sect. V-VII], it is shown how to designhd using
Bézier polynomials and sequential numerical optimization so
that the decoupling matrixLgLfh is invertible,∆(S ∩Z) ⊂
Z, the restricted Poincaré map has an exponentially stable
fixed point, and the orbit is transversal toS∩Z, while meet-
ing other performance objectives involving walking speed,
actuator power, and the contact forces at the leg ends. Since
RABBIT has five degrees of freedom in the stance phase
and four independent actuators, the restricted Poincaré map
is scalar valued, and henceM11 in (29) is a scalar. For the
choice of virtual constraints used here (i.e.,hd), M11 = 0.58;
a stick-figure animation of the walking motion is shown in
Fig. 4.

C. Closed-loop analysis

The objective is to understand when the exponentially
stable orbit inZ is also exponentially stable in the full-order
model (32) with feedback law (36). Based on Theorem 2 and
Lemma 3, the objective is to putf ǫ in the proper coordinates
so that the Hypotheses H2 can be checked. Note that because
h(q) = qb − hd(q5),

Ψ(q) =

[

h(q)

q5

]

(38)

is a global diffeomorphism onQ. It follows that











z1

z2

η1:4

η5:8











=











q5

D5(q)q̇

h(q)
∂h
∂q

(q)q̇











(39)

is a global diffeomorphism onTQ, whereD5 is the last row
of D in (31) andσ := D5(q)q̇ is the angular momentum
of the biped about the end of the stance leg [5]. In these
coordinates [16, pp. 224],

f ǫ(z, η) =

[

f1:2(z, η)

A(ǫ)η

]

, (40)

where

A(ǫ) =

[

0 I4×4

−kP

ǫ2
I4×4

−kD

ǫ
I4×4

]

. (41)

To verify limǫց0 eA(ǫ) = 0 as required in H2.6, note that

A(ǫ) = Π(ǫ)
1

ǫ
A0Π

−1(ǫ), (42)

where

A0 =

[

0 I4×4

−kP I4×4 −kDI4×4

]

(43)

and

Π(ǫ) =

[

ǫI4×4 0

0 I4×4

]

. (44)

Since (35) is a Hurwitz polynomial,e
1

ǫ
A0 goes to zero

exponentially fast asǫ → 0, and hencelimǫց0 eA(ǫ) = 0.
In conclusion, forǫ > 0 sufficiently small, the feedback

law (36) exponentially stabilizes in the full-order model a
periodic orbit that is exponentially stable in the restriction
dynamics. This is investigated numerically in the next sub-
section.

D. Simulation: walking on flat ground

The eigenvalues ofDP ǫ were computed at the fixed point
for various values ofǫ > 0. Table II shows that the eigenvalue
associated with the restricted Poincaré map (shown in bold)
is indeed constant for varying values ofǫ. This table indicates
that for ǫ ≤ 0.17, the periodic motion is exponentially stable
in the full-order model, but forǫ = 0.20, it is unstable. Note
that due to the impact map,DP ǫ may have negative real
eigenvalues; see (29).

Figure 5 shows that decreasingǫ causes‖η(t)‖2 to con-
verge to zero more quickly. Discontinuities inη(t) occur
at each impact event, with the impact tending to increase
‖η(t)‖2 rather than decrease it. From Lemma 3 and (41),
it follows that log(det(DP ǫ)) should be affine in1/ǫ. This
is confirmed in Fig. 6, lending credibility to the numerical
computations.



TABLE II

EIGENVALUES OFDP ǫ FOR THREE VALUES OFǫ, RANKED BY

MAGNITUDE . THE EIGENVALUE OFDρ IS SHOWN IN BOLD.

ǫ = 0.12 ǫ = 0.17 ǫ = 0.20

0.58 −0.62 −1.91

0.48 0.58 0.58
−0.12 + 4.4 × 10−2 i −0.19 + 0.14 i −0.12 + 0.27 i
−0.12 − 4.4 × 10−2 i −0.19 − 0.14 i −0.12 + 0.27 i
−0.11 − 5.4 × 10−2 i −0.17 + 0.16 i −0.15 + 0.25 i
−0.11 + 5.4 × 10−2 i −0.17 − 0.16 i −0.15 + 0.25 i

2.5 × 102 0.14 0.21
9.2 × 10−3 − 1.8 × 10−2 i −8.2 × 10−2 −4.2 × 10−2

9.2 × 10−3 + 1.8 × 10−2 i 8.0 × 10−3 7.6 × 10−3
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Fig. 5. Evolution of‖η(t)‖2 for three values ofǫ. The restricted system
corresponds toη ≡ 0. As ǫ decreases to zero,η(t) converges more quickly
to zero. Note that the orbit is unstable forǫ = 0.2 even though it is
exponentially stable in the restricted dynamics and the “transversal part”
of the closed-loop ODE is decoupled, linear, and exponentially stable.
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Fig. 6. The graph oflog(det(DP ǫ)) versus1/ǫ should be affine when
the controller (36) is used.

VI. CONCLUSION

This paper has established conditions under which a peri-
odic orbit in a system with impulse effects is exponentially
stable, if, and only if, the orbit is exponentially stable ina
hybrid restriction dynamics. In a case study, the utility of
this result was highlighted: a periodic orbit whose design
was carried out on the basis of a two-dimensional restriction
dynamics (i.e., the hybrid zero dynamics of walking) could
be systematically rendered exponentially stable in the full-
order model by using a smooth state-variable feedback.
The improvement over previous work is that finite-time
attractivity of an invariant surface could be replaced by
sufficiently fast exponential attractivity, and a wider class
of feedback control laws can be applied.

There are numerous ways to extend the basic result. For
example the transversal dynamics do not need to be linear,
and the Hypotheses H2 can be stated in more geometric
terms.
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Poincaŕe’s theorem to hybrid and impulsive dynamical systems,”Int.
J. Hybrid Systems, vol. 2, pp. 35–51, 2002.

[20] T. Parker and L. Chua,Practical Numerical Algorithms for Chaotic
Systems. New York: Springer-Verlag, 1989.

[21] ROBEA: Robotics and Artificial Entities, “robot-
rabbit.lag.ensieg.inpg.fr/index.php (in French; for an English
version, click on the British flag),” March 2005.

[22] A. V. Roup, D. S. Bernstein, S. G. Nersesov, W. M. Haddad,and
V. Chellaboina, “Limit cycle analysis of the verge and foliotclock
escapement using impulsive differential equations and Poincare maps,”
Int. J. Control, vol. 76, no. 17, pp. 1685–1698, 2003.

[23] B. Thuilot, A. Goswami, and B. Espiau, “Bifurcation and chaos in
a simple passive bipedal gait,” inProc. of the IEEE International
Conference on Robotics and Automation, Albuquerque, N.M., April
1997, pp. 792–798.

[24] E. Westervelt, J. Grizzle, and D. Koditschek, “Hybrid zero dynamics
of planar biped walkers,”IEEE Transactions on Automatic Control,
vol. 48, no. 1, pp. 42–56, January 2003.

[25] H. Ye, A. Michel, and L. Hou, “Stability theory for hybrid dynamical
systems,”IEEE Transactions on Automatic Control, vol. 43, no. 4, pp.
461–474, April 1998.


