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Abstract— A planar bipedal robot with an impulsive actu-
ator at each foot is considered. The analysis extends previous
work on a model with unactuated point feet [1] to include the
actuator model of [2]. The impulsive actuator at each foot is
active only during the double support phase, which results in
the model being identical to the model with unactuated point
feet for the single support phase. However, the impulsive foot
actuation results in a different model for the double support
map. Conditions for the existence of a hybrid zero dynamics
for the robot with foot actuation are studied. A feedback design
method is proposed that integrates actuation in the single and
double support phases. A stability analysis is performed using
a Poincaré return map.

I. INTRODUCTION

In this paper, a planar bipedal robot with impulsive foot
action is studied. The impulsive foot actuator is assumed to
be active during double support phases. This is an approx-
imation of the toe-off action observed in double support
phases of human walking, [3]. Although the impulsive foot
action is not necessary for stable walking as shown in [4],
[5], and [1], having the impulsive foot action shows the
possibility of more efficient walking, [6] and [2].

Grizzle et al., for planar robot models with one degree
of underactuation in single support, introduced a feedback
method whereby existence and stability of periodic orbits
could be determined by a one-dimensional map. A key
aspect of the analysis uses the notion of virtual constraints,
that is, holonomic constraints that are asymptotically im-
posed on the robot’s motion via feedback control. Wester-
velt et al. introduced the notion of the hybrid zero dynamics,
which transformed the method of virtual constraints into a
practical design method, capable of treating N-link planar
bipedal robots with point feet and one degree of underactu-
ation. Extensive experiments have been reported in [7] and
[8].

Control approaches for robots vary with the character-
istics of the feet. McGeer analyzed a robot that had arc-
shaped unactuated feet in [6]. Yi studied a robot that had a
passive ankle, specifically, the ankle joints were connected
with springs in [9]. In [10], Linde investigated a 2-link robot
that had a variable spring and damper at each leg with arc-
shaped unactuated feet. Many papers in the literature have
considered actuated feet with nontrivial length. In [11], [12],
[13], the sole of the stance foot remains on the ground
during the single-support phase . Since keeping the support
sole on the ground limits the motion of the robot, it was
suggested to allow the foot to roll with respect to the stance
toe [14], [15]. Impulsive foot actuation was implemented in
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a passive robot with round feet. A motor to extend each
ankle was located at the ankles. The toe-off power was
applied right after the heel strike [16].

A model with impulsive point feet has been studied by
Kuo, who investigated the energetics of powered locomotion
using a robot with impulsive point feet [2]. The robot was
planar and consisted of 2 rigid massless links. An impulsive
foot actuator was attached at the end of the stance leg.
The impulsive toe-off actuation was applied just before heel
strike. Using the model, it was shown that applying toe-off
force is more energy efficient than using hip torque alone.

The model studied in this paper is extended from [1]
by adding at each foot the impulsive actuator of [2]. The
impulsive foot actuator is assumed to be active during the
double support phase. This results in the identical model of
[1] during the single support phase. However, due to the
impulsive foot actuator during the double support phase,
the double support map becomes a function of not only the
states before the double support phase but also the foot force
during the double support phase. The notion of the hybrid
zero dynamics is extended to accommodate the presence
of the foot force. A class of foot force control laws is
introduced to create the invariance of the zero dynamics.
The Poincaré map is also used to analyze the stability of
the robot’s motion.

II. ROBOT MODEL WITH IMPULSIVE FEET

The model considered in this paper is extended from the
model with unactuated point feet [1] by adding an impulsive
actuator at each foot. The robot is assumed to be planar,
bipedal, with N rigid links. Walking is assumed to consist
of two phases, which are single support and double support.
It is assumed that the impulsive actuator at the stance foot
is activated only in the double support phase. Therefore,
during the single support phase, the model is identical to a
robot with unactuated point feet. The detailed assumptions
for the single support phase are based on [1] and are listed
in Appendix A for the convenience of the readers.

During the single support phase, the robot is still underac-
tuated since the impulsive foot actuation occurs during the
double support phase. Therefore, the model for the single
support phase is identical to the one with unactuated point
feet, which is given as

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (1)

where q = (q1, · · · , qN )′ ∈ Q, a simply connected subset
of [0, 2π)N , are the configuration variables, q̇ are the
velocities, and u = (u1, · · · , uN−1)

′ are the inputs applied
at the joints. Let x = (q′, q̇′)′ ∈ TQ then the dynamic
equation in state-space form is given by ẋ = f(x)+g(x)u.
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Fig. 1. Diagram for the system, which combines the point foot model
[1] with the impulsive foot action [2].

Property 1: Under hypothesis RH5 in Appendix A, that
is the coordinates of the robot consist of N − 1 relative
angles, q1, · · · , qN−1, and one absolute angle qN , the an-
gular momentum of the robot about the stance foot during
the single support phase is dN (q)q̇, where dN (q) is the last
row of D in (1).

Proof: See Appendix B.
During the double support phase, the foot actuation

subphase and the impact subphase occur successively with
an infinitesimally small time interval. The foot actuation
subphase is when the actuator at the stance foot is active.
It applies an impulsive force to the robot in the direction
of the stance tibia, which causes a discontinuous change in
the velocity states. The impact subphase is when the swing
leg touches the ground after the foot actuation. The impact
also causes an impulsive reaction force to the robot, which
results in another discontinuous change in the velocity
states. In both cases the position states remain continuous.
The overall double support phase becomes an algebraic
mapping that maps the states just before the foot actuation
to the states right after the impact. The double support map
depends not only on the states before the foot actuation but
also on the applied foot force.

Based on Kuo, [2], the necessary hypotheses for the
impulsive foot action are :

IFH1) The double support phase lasts for an infinitesimally
small period of time;

IFH2) The double support phase has two sequential sub-
phases, which are the foot actuation subphase and the
impact subphase;

IFH3) The foot actuation subphase occurs just before the
impact subphase, with the time interval between the
two subphases being infinitesimally small;

IFH4) There is an impulsive foot actuator at the end of each
tibia, which is activated only during the foot actuation
subphase;

IFH5) Impulsive foot force causes discontinuous changes
in the velocity states but the position states remain
continuous;

IFH6) The foot force is applied along the stance tibia, that
is, the direction of the force is the same as the stance
tibia;
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Fig. 2. 5-link robot with impulsive feet during the double support phase
and the single support phase. F1 and F2 represent the impulsive foot force
and the impulsive reaction force due to impacts, respectively.

IFH7) The applied foot force is unilateral, in other words,
it cannot pull the robot down to the ground.

To describe the double support phase, it is necessary to
use an N+2 DOF model (e.g. N DOF for the joints and 2
DOF for the position of the stance end). Adding Cartesian
coordinates, (ph1 , p

v
1), to the end of the stance leg gives qe =

(q′, ph1 , p
v
1)
′ and q̇e = (q̇′, ṗh1 , ṗ

v
1)
′, see Fig. 2. Let Υ1(qe)

and Υ2(qe) denote the Cartesian coordinates of the stance
foot and the swing foot. Let φ1 and φ2 be the angles of the
foot actuation force and the impulsive ground reaction force,
computed with respect to the vertical. Using the method
of Lagrange, one can obtain the dynamics for the double
support phase as follows:

De(qe)q̈e+Ce(qe, q̇e)q̇e+Ge(qe) = Beu+E
1
eδF1+E

2
eδF2,

(2)

where E1e =
(

∂Υ1(qe)
∂qe

)T

, E2e =
(

∂Υ2(qe)
∂qe

)T

, and δF1
and δF2 denote the impulsive foot force and the impulsive
ground reaction force, respectively.

During the foot actuation subphase, F1 = T δFf =
[

sinφ1
cosφ1

]

δFf and δF2 = 0. Let q1e be the state vector for

the foot actuation subphase. Then, following the procedure
in [5], (2) becomes

De(q̇
1+
e − q̇1−e ) = EeT Ff , (3)

where Ff =
∫

δFf dt, q̇1+e is the velocity just after the
foot actuation, and q̇1−e is the velocity just before the foot
actuation. Since the stance foot acts as a pivot before the
double support phase, q̇1−e = (q̇−

′

, 0, 0)′.
Property 2: Under hypotheses RH5 and GH2 in Ap-

pendix A, dN (q−)q̇− = de,N (q−e )q̇
−
e , where de,N (qe) is

the N th row of De in (2).
Proof: Let L and Le denote the Lagrangians for

the single support phase and double support phase, re-
spectively. Define L = K − V and Le = Ke − Ve,
where K and Ke are the kinetic energies and V and
Ve are the potential energies. By the hypothesis GH2,
L = Le|(ph1 ,pv1 ,ṗh1 ,ṗv1) = (c, 0, 0, 0), where c is constant.



Since dN (q)q̇ = ∂L/∂q̇N , dN (q−)q̇− = ∂L/∂q̇N =
∂Le/∂q̇N |(ph1 ,pv1 ,ṗh1 ,ṗv1)=(c,0,0,0) = de,N (q−e )q̇

−
e

Property 3: Assume the hypothesis RH5 in Appendix
A, then in the coordinates q1e = (q1, · · · , qN , p

h
1 , p

v
1),

de,N (q1−e )q̇1−e = de,N (q1+e )q̇1+e , where q1−e , q̇1−e are the
states before the foot actuation and q1+e , q̇1+e are the states
after the foot actuation.

Proof: In the given coordinate, the Cartesian coor-
dinate of the stance foot is given by Υ1(qe) = (ph1 , p

v
1).

Therefore, EN = (∂Υ1/∂qN )T = 0. Thus, de,N (q1+e )q̇1+e −
de,N (q1−e )q̇1−e = 0.
Properties 2 and 3 imply the angular momentum about the
stance foot is conserved even with foot actuation at the
stance foot.

Property 4: Let ~P+, ~P−c be the linear momentum of the
robot after and before foot actuation. Then ~P+− ~P−c = T Ff

Proof: See Appendix C
Since De in (3) is positive definite, it is always possible

to calculate the velocity states after the foot actuation. The
velocity states after the foot actuation are given as

q̇1+e = q̇1−e + (De)
−1E1eT Ff . (4)

Right after the foot force is applied to the stance leg,
the swing leg makes contact with the ground, which is the
impact subphase. During the impact subphase, δF1 = 0

and δF2 =

[

δFT
2

δFN
2

]

, where δF T
2 and δFN

2 denote the

tangential and normal components of the impulsive reaction
force. Following the procedure in [5] again, (2) becomes

De(q̇
2+
e − q̇2−e ) = E2eF2, (5)

where F2 =
∫

δF2 dt, q̇2+e is the velocity just after the
impact, and q̇2−e is the velocity just before the impact.

Property 5: Under hypotheses RH5 and GH2 in Ap-
pendix A, dN (q2+)q̇2+ = de,N (q2−e )q̇2−e .

Proof: The proof is analogous to the proof of property
2.

Property 6: Assume the hypothesis RH5 in Appendix
A. Then in the coordinate q2e = (q1, · · · , qN , p

h
2 , p

v
2),

de,N (q2−e )q̇2−e = de,N (q2+e )q̇2+e , where q2−e , q̇2−e are the
states before impact and q2+e , q̇2+e are the states after impact.

Proof: The proof is analogous to the proof of property
3.
Properties 5 and 6 imply the angular momentum about the
swing leg end is conserved during the impact of the swing
leg end.

By the assumption that the swing leg does not slip after
the impact,

∂Υ2
∂qe

q̇2+e = (E2e )
T q̇2+e = 0. (6)

Augmenting (5) and (6) yields
[

q̇2+

F2

]

=

[

De −E2e
(E2e )

T 0

]−1 [
Deq̇

2−
e

0

]

. (7)

By assumption IFH3, there is an infinitesimally small
time interval between the foot actuation and the impact,

which implies that q1+e = q2−e and q̇1+e = q̇2−e . Then
the velocity states after the impact can be expressed as a
function of the states before the foot actuation and the foot
force. After the impact, the states need to be relabeled since
the swing leg and the stance leg switch their roles for the
next step. The overall mapping from the velocity states just
before the foot actuation to the velocity states right after
the impact is given as follows:

q̇+ =
[

R 0
]

[

De −E2e
(E2e )

T 0

]−1 [
De

0

] [

I
0

]

q̇−

+
[

R 0
]

[

De −E2e
(E2e )

T 0

]−1 [
E1eT
0

]

Ff

= ∆q̇2(q
−)q̇− +∆q̇1(q

−)Ff , (8)

where q̇−, q̇+ are the velocity states just before the foot
action and right after the impact, respectively, and R is a
relabeling matrix. Since the position states remain contin-
uous during the double support phase, the position states
only need to be relabeled for the next step, q+ = ∆q(q

−) =
Rq−. The double support map is given as

x+ =

[

q+

q̇+

]

=

[

∆qq
−

∆q̇2(q
−)q̇− +∆q̇1(q

−)Ff

]

= ∆(x−, Ff ). (9)

Note that ∆q̇2 = ∆q̇ in [1] and ∆q̇1(q
−), ∆q̇2(q

−) are
functions of the position states only.

Following the method in [17] gives the overall system
description. Let S = {x ∈ TQ|ph2 > 0, pv2 = 0} be a set
of states satisfying the conditions for the double support
phase, where (ph2 , p

v
2) represents the Cartesian coordinates

of the swing foot (see Fig. 2).
{

ẋ = f(x) + g(x)u, x 6∈ S
x+ = ∆(x−, Ff ), x− ∈ S, Ff ∈ IR+ ∪ {0} (10)

Note that the dynamics for the single support phase is
identical to the model with unactuated point feet and the
double support map becomes identical when the foot force
Ff is zero.

III. EXISTENCE OF HYBRID ZERO DYNAMICS

In this section, the existence of a zero dynamics for the
hybrid model (10) is studied. With the foot actuation, the
hybrid zero dynamics manifold is determined by not only
the choice of the output function but also the foot force
applied during the double support phase.

Let y = h(x) be a vector of N − 1 functions, satisfying
HH1-HH5 of [1] (see Appendix A), which essentially
means that h depends only on the configuration variables
during the single support phase, the associated decoupling
matrix, LgLfh(x), is full rank, and h can be completed to
a local diffieomorphism on the configuration space. Then
there exists a smooth manifold Z = {x ∈ TQ|h(x) =
0, Lfh(x) = 0}, called the zero dynamics manifold, and
S ∩ Z is smooth. S ∩ Z is one-dimensional if S ∩ Z 6= ∅.
In addition to the hypotheses HH1–HH5, if the hypothesis



RH5 is also satisfied, then the single support phase zero
dynamics can be written as

ξ̇1 = κ1(ξ1)ξ2 (11)
ξ̇2 = κ2(ξ1), (12)

where ξ1 = θ(q), ξ2 = dN (q)q̇, [1]. By Property 1, ξ2 is
the angular momentum about the stance foot, σ.

Definition 1: Let Z and ż = fzero(z) be the zero
dynamics manifold of the single support phase and the
associated zero dynamics, respectively. Z is a hybrid zero
dynamics manifold if ∀z− ∈ S ∩Z, ∃Ff ∈ IR+ ∪ {0} such
that ∆(z−, Ff ) ∈ Z. The nonlinear system

ż = fzero(z), z− 6∈ S ∩ Z
z+ = ∆(z−, Ff ), z− ∈ S ∩ Z, Ff ∈ IR+ ∪ {0} (13)

with z ∈ Z is called the hybrid zero dynamics of (10).
Remark 1: By the definition, Z is a hybrid zero dynamic

manifold if, and only if, ∀z− ∈ S ∩ Z, ∃Ff ∈ IR+ ∪ {0}
such that

h ◦∆(z−, Ff ) = 0, (14)
Lfh ◦∆(z−, Ff ) = 0. (15)

¤

Let x(t) be a solution of the system (10) for the single
support phase with the output y = h(x) being zero. If the
trajectory of the solution contains an impact with S then the
impact time tI exists and is finite. Then x− := limt↗tI x(t)
exists and x− = (q−, q̇−)′ ∈ S∩Z. By HH5, q− is a unique
point in Q̃ defined as in HH2. Define Φ : IR → S ∩ Z as

Φ =

[

Φq
Φq̇

]

, (16)

where Φq = q− and

Φq̇(q
−) =

[

∂h
∂q

(q−)

dN (q−)

]−1 [
0
1

]

, (17)

then Φ is a diffeomorphism, [1]. Define z− = (θ−, σ−) =
(θ(q−), dN (q−)q̇−) then the double support map for the
velocity states (8) becomes

q̇+ = ∆q̇1(q
−)Ff +∆q̇2(q

−)Φq̇(q
−)σ−

= w1Ff + w2σ
−, (18)

where w1 = ∆q̇1(q
−) and w2 = ∆q̇2(q

−)Φq̇(q
−) . Note

that w1, w2 are uniquely defined N × 1 vectors.
Let Z be the hybrid zero dynamics manifold. The double

support map for θ restricted to Z is given by

θ+ = θ ◦∆q(q
−). (19)

The double support map of σ restricted to Z is given by

σ+ = dN (q+)q̇+

= dN (q+)(∆q̇2(q
−)Φq̇σ

− +∆q̇1(q
−)Ff ). (20)

Using Properties 1 to 6, it follows that (20) is equivalent to

σ+ = σ− + l(Mvv−c + cosφ1Ff ), (21)

where l is the step length, M is the total mass, and vv−c is
the vertical component of the velocity of the center of mass
just before the impact.

Theorem 1: Suppose there exists at least one point z− ∈
S ∩ Z and Ff such that σ− 6= 0, h ◦ ∆(z−, Ff ) =
0, and Lfh ◦ ∆(z−, Ff ) = 0. Then ∀z− ∈ S ∩ Z,
Lfh ◦∆(z−, Ff ) = 0 if, and only if, one of the following
is satisfied.

1) Ff = rfσ
− for rf a constant;

2) ∂h
∂q

(∆q(q
−))w1 = 0 and ∂h

∂q
(∆q(q

−))w2 = 0, where
w1, w2 are the vectors defined in (18).

Proof: Proof follows from the fact the null space of
∂h
∂q

(∆q(q
−)) is one dimensional and the vector w1Ff +

w2σ
− is in the null space.

Although having an output function satisfying the second
condition in Theorem 1 enables us to use an arbitrary foot
force to achieve the hybrid zero dynamics, designing such
an output function is too restrictive. So the foot force during
the double support phase is chosen as

Ff = rfσ
− (22)

to create the hybrid zero dynamics. Then the double support
map (20) becomes

σ+ = dN (q+)(∆q̇1rf +∆q̇2)σ
−

= δzσ
−, (23)

where δz = dN (q+)(∆q̇1rf + ∆q̇2). In general, designing
the output function for kth step to achieve the hybrid zero
dynamics requires knowledge of the foot force applied
during the prior double support phase. In this paper, the
foot force is chosen in such a way that we can design the
output function a priori so that it is identical for each step.

IV. STABILITY ANALYSIS

Using Poincaré map, the stability of the robot restricted
to the hybrid zero dynamics manifold is analyzed. Then the
stability of the full model is addressed.

In [1], it was shown that if the robot completes a step with
the zero dynamics, σ is not zero during the single support
phase. Since σ 6= 0 during the step, ζ = σ2

2 is a valid
coordinate transformation. Then, (11) and (12) become

dζ = σdσ =
κ2(θ)

κ1(θ)
dθ. (24)

Let z− = (θ−, σ−) ∈ S ∩ Z and θ+ be defined as in (19).
For θ+ ≤ θ ≤ θ−, define

Vzero(θ) = −

∫ θ

θ+

κ2(ξ)

κ1(ξ)
dξ, (25)

V max
zero = max

θ+≤θ≤θ−
Vzero(θ). (26)

If δ2zζ
− − V max

zero > 0, then (24) can be integrated over a
step, which results in

1

2
(σ−)2 −

1

2
(σ+)2 = ζ− − ζ+ = −Vzero(θ

−). (27)



From (23), ζ+ = δ2zζ
−. Hence, the reduced Poincaré map

in (θ, ζ) coordinates, ρ(ζ−) : S ∩Z → S ∩Z, is defined as
follows

ρ(ζ−) = δ2zζ
− − Vzero(θ

−) (28)

with domain of definition

D = {ζ− > 0|δ2zζ
− − V max

zero > 0}. (29)

Theorem 2: Under the hypotheses RH1–RH5, GH1–
GH5, IH1–IH6, and HH1–HH5 in Appendix A and IFH1–
IFH7,

ζ∗ = −
Vzero(θ

−)

1− δ2z
(30)

is an exponentially stable fixed point of (28) if, and only if,

0 < δ2z < 1 (31)
δ2z

1− δ2z
Vzero(θ

−) + V max
zero < 0. (32)

Proof: D is non-empty if, and only if, δ2z > 0. If there
exists ζ∗ ∈ D satisfying ρ(ζ∗) = δ2zζ

∗−Vzero, then ζ∗ is an
exponentially stable fixed point if, and only if, 0 < δ2z < 1,
and in this case, (30) is the value of ζ∗. Finally, (32) is the
necessary and sufficient condition for (30) to be in D.

Note that this is identical to the result of [1] if rf is set to
be zero. Using (21), the condition (31) can be interpreted as
Mvv−c , the value of the vertical component of the robot’s
linear momentum, should be negative just before impact,
and for stability, cosφ1Ff , the intensity of the vertical
component of the foot force, should not exceed |Mvv−c |.

Differentiating the output y = h(x) twice gives

ÿ := v (33)
= L2fh(x) + LgLfh(x)u. (34)

Let v be any control input satisfying controller hypotheses
CH2–CH5 in [1], (see Appendix A). Then the zero dynam-
ics manifold for the single support phase is invariant. In this
paper, the controller by Bhat and Bernstein, [18] is used,
see Appendix D. The feedback for the full-model (10) is
given as follows,

u = (LgLfh(x))
−1(v(h(x), Lfh(x))− L

2
fh(x)). (35)

By Theorem 2 in [5], the full state model is asymptotically
stable if and only if the reduced Poincaré map (28) has an
exponentially stable fixed point. Therefore, the full system
is asymptotically stable.

V. PARAMETERIZATION AND OPTIMIZATION
OF THE HYBRID ZERO DYNAMICS

In this section, output functions and foot actuation are
designed so as to create a hybrid zero dynamics for the
system (10). As in [1], the fundamental idea is to design
a zero dynamics of the single support phase model that is
also invariant under the double support map. Controlling
the robot is realized by imposing constraints as an output
function, which is driven to zero using feedback. Therefore
the feedback is determined by the choice of the output

function h(q). Thus, designing an optimal feedback u is
equivalent to designing an optimal output h(q).

The output y = h(q) is defined as

y = h(q) = H0q − h
d(θ(q)), (36)

where H0 is a (N − 1)×N constant matrix and hd(θ(q))
is a desired function for H0q to track and θ(q) = cq
satisfies HH3 so that [H ′0 c

′]′ has full rank. The desired
function hd(θ(q)) = hd(s) ◦ θ(q) is a (N − 1) × 1 vector
whose elements are Bézier polynomials. Let bi(s) be Bézier
polynomial with order M ≥ 3 as

bi(s) :=
M
∑

k=0

αik
M !

k!(M − k)!
sk(1− s)M−k, (37)

then hd(θ(q)) = [bi(s), · · · , bN−1(s)]
′ and

s(θ(q)) =
θ(q)− θ+

θ− − θ+
. (38)

Let αk = [α1k, · · · , α
N−1
k ]′ where the constants αik are

the coefficients of the Bézier polynomials in (37). Let the
foot force be defined as in (22). Then (14) and (15) are
satisfied when

[

α0
θ+

]

= HRH−1
[

αM
θ−

]

, (39)

and

α1 =
H0(θ

− − θ+)(∆q̇2Φq̇(q
−) + ∆q̇1rf )

Mc(∆q̇2Φq̇(q−) + ∆q̇1rf )
+ α0. (40)

Note that since the foot actuation does not affect the position
states, the condition for α0 to satisfy (14) is identical to
the model of unactuated point feet. The condition for α1
to satisfy (15) implies that, with Ff defined as in (22),
the output function y = h(q) can be determined a priori.
An optimal control can be found by optimizing the output
parameters. The cost function to be optimized is defined as

J =
1

Ls
(Wj +Wf ) , (41)

where Ls is the step length, Wj is the sum of the work done
by the joints, and Wf is the work done by foot actuation.

The work done by each joint is defined as

Wj =

N−1
∑

i=1

∫ T−s

T
+
s

q̇iui dt, (42)

where T+s , T−s represent the time of beginning and end of
a step.

The work done by the impulsive foot action is defined
as follows. Let tI be the impact time and τ = E1eδF1 =
E1eF1δ(t − tI) from (2) be the effective impulsive torque
of the foot. Then the work by the impulsive foot actuation
is given by

Wf =

∫ t
+
I

t
−

I

τT q̇e dt =

∫ t
+
I

t
−

I

(E1eF1δ(t− tI))
T q̇e dt. (43)



Due to the impulsive foot actuation, there exists a discon-
tinuous change in the velocity states. Let ∆q̇e = q̇+e − q̇−e
then the velocity states can be written as

q̇e = ∆q̇eu(t− tI) + ˙̄qe, (44)

where u(t−tI) is a step function. Note that ˙̄qe is continuous
and ∆q̇e can be obtained from (3) as

∆q̇e = (De)
−1E1eF1. (45)

From (43) and (44), the work done by foot actuation can
be obtained as

Wf = (E1eF1)
T∆q̇e

∫ t
+
I

t
−

I

δ(t− tI)u(t− tI) dt

+(E1eF1)
T q̇−e . (46)

By Hypothesis GH2 in Appendix A, which is the stance leg
acting as a pivot during the single support phase,

∂Υ1(qe)

∂qe
q̇−e = (E1e )

T q̇−e = 0, (47)

where Υ1(qe) is the Cartesian coordinates of the stance leg.
With (47) and (45), the work by the foot becomes

Wf = (E1eF1)
T (De)

−1E1eF1

∫ t
+
I

t
−

I

δ(t− tI)u(t− tI) dt.

(48)
For the work by the foot to be calculated, it is required to
determine the value of

∫ t
+
I

t
−

I

δ(t− tI)u(t− tI) dt. Although
the integration is not defined at t = tI in general, in this
paper it is taken to be

∫ t
+
I

t
−

I

δ(t− tI)u(t− tI) dt =
1
2 .

Since the hybrid zero dynamics needs to be achieved
during walking, (39) and (40) should be satisfied. Therefore,
only (N − 1) × (M − 1) coefficients of (37) need to be
determined. The detailed constraints for optimization are
given in [1], which ensure a valid stable walking motion.
IMPULSIVE FOOT CONSTRAINT: An additional con-
straint on foot actuation is necessary to ensure the applied
foot force is unilateral.
IFC1) Foot force, δFf , is unilateral.

VI. EXAMPLE

This section illustrates the above results on a robot with
impulsive foot action. The robot is a 5-link planar bipedal
robot [19] with an impulsive actuator at each foot. For
the output function, the order of the Bézier polynomials
is set to be M = 6. The constraint on the average walking
speed is 0.95(m/s). For optimization, the fmincon function
in MATLAB, which utilizes SQP, was used. Table I shows
the work done by the joint actuators and the foot actuator.
The work is normalized by the distance traveled during one
step (41). The normalized work done by the robot with foot
actuation is less than the robot without foot actuation, which
implies that having foot actuation helps to reduce the work
required to walk.

Ff (N) Ls(m) Wtotal(J/m) Wj(J/m) Wf (J/m)

0 0.45 38.32 38.32 0
11.53 0.58 28.79 24.74 4.05

TABLE I
WORK DONE BY THE JOINTS AND THE FOOT PER DISTANCE TRAVELED.
Ff , Ls REPRESENT THE FOOT FORCE AND STEP LENGTH, Wtotal , Wj ,
AND Wf REPRESENT TOTAL WORK, WORK BY JOINTS, AND WORK BY

FOOT PER DISTANCE TRAVELED, RESPECTIVELY.

Fig. 3 and Fig. 4 show the applied torque at each joint.
u1, u2, u3, and u4 represent the torques applied at the
stance hip, the swing hip, the stance knee, and the swing
knee, respectively. Fig. 3 is the plot of torques of the
robot without foot actuation and Fig. 4 is the plot of
torques of the robot with foot actuation. The robot with
foot actuation requires smaller torques during walking. In
particular, smaller torques between the torso and two femurs
of the robot with foot actuation are applied.
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Fig. 3. Torques of the robot without foot actuation. Dashed lines are
torques of the swing leg joints and solid lines are torques of the stance
leg joints.
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Fig. 4. Torques of the robot with foot actuation. Dashed lines are torques
of the swing leg joints and solid lines are torques of the stance leg joints.



VII. CONCLUSION
A robot model with impulsive foot actuation was in-

troduced. The model was developed from a model with
unactuated point feet [1] and the work in [2]. The impulsive
actuator at the end of the stance foot was assumed to be
active only in the double support phase, which resulted in
the identical model to the robot with unactuated point feet
for the single support phase. However, the double support
map depends on the foot force, which results in changes in
the zero dynamics. In general, the output function cannot
be designed to achieve the hybrid zero dynamics without
knowing the foot force a priori. A method to design output
functions to achieve the hybrid zero dynamics was given
for a class of foot actuation control policies. The stability
of the resulting walking was shown with a Poincaré map.

APPENDIX

A. Hypotheses

The following hypotheses are based on the hypotheses in
[1]. The hypotheses for the robot are:
RH1) The robot consists of N rigid links with revolue joint;
RH2) The robot is planar;
RH3) The robot is bipedal with identical legs connected at

hips;
RH4) The joints are actuated;
RH5) The coordinate of the robot consists of N−1 relative

angles, q1, · · · , qN−1, and one absolute angle, qN .
The hypotheses for gait are:

GH1) Walking consists of two alternating phases, single
support phase and double support phase;

GH2) The stance feet acts as a pivot during the single
support phase;

GH3) The swing leg has neither slipping nor rebounding at
impact;

GH4) Successive single support phases are identical with
respect to the two legs in steady state;

GH5) Walking is from left to right, so that the swing leg
moves from behind the stance leg and touches the
ground in front of the stance leg at impact.

The hypotheses for impact are:
IH1) The swing leg has neither rebound nor slipping during

impact;
IH2) After impact, the stance leg leaves the ground without

any interaction with the ground;
IH3) The impact is instantaneous;
IH4) The reaction force due to the impact can be modeled

as an impulse;
IH5) The impulsive force results in discontinous changes

in the velocities while the position states remain con-
tinuous;

IH6) The actuators at joints are not impulsive.
Let the output y be y = h(x) then the hypotheses are:

HH1) The output function h(x) being a function of only
the configuration coordinates during the single support
phase;

phc

pvc

qN

~r3ψ

Ψ

~r2

~r1

Center of Mass

Fig. 5. Coordinates of the center of mass

HH2) The decoupling matrix LgLfh being invertible for
an open set Q̃ ⊂ Q;

HH3) Existence of θ(q) such that [h(q); θ(q)] is diffeo-
morphism;

HH4) h vanishing at least one point.
HH5) Existence of an unique point q− ∈ Q̃ such that

(h(q−), pv2(q
−)) = (0, 0), ph2 (q

−) > 0 and the rank
of [h′ pv2]

′ at q− equals to N .
The hypotheses for the closed-loop chain of double

integrators, ÿ = v, are:
CH1) Global invertibility of the decoupling matrix.
CH2) Existence of solutions on IR2N−2 and uniqueness;
CH3) Solutions depending continuously on the initial con-

ditions;
CH4) The origin being globally asymptotically stable and

the convergence being achieved in finite time;
CH5) The settling time depending continuously on the

initial condition.

B. Proof of property 1

Proof: Let (phc , p
v
c ) be the Cartesian coordinates of

the center of mass of the robot. Let ~r1 be a vector from the
stance foot to the center of mass and let ~r2 be the vector
from the stance foot to the swing foot. Let Ψ and ψ be the
angle between ~r1 and the ground, and the angle between
~r1 and ~r2, respectively. Let qN be the absolute angle of ~r3
calculated from the ground, see Fig. 5.

Then |~r1| and ψ are independent from qN and Ψ = ψ+
qN . Therefore, the coordinate of the center of mass is

phc = |~r1| cos(ψ + qN ) (49)
pvc = |~r1| sin(ψ + qN ). (50)

The partial derivatives of (49) and (50) with respect to qN
are given as

∂phc
∂qN

= −|~r1| sin(ψ + qN ) = −pvc (51)

∂pvc
∂qN

= |~r1| cos(ψ + qN ) = phc . (52)



The Lagrangian is defined as L = K − V , where K is the
kinetic energy and V is the potential energy of the robot.
Since K does not depend on qN and V = Mgpvc with g
being gravitational acceleration and M being total mass,

d

dt

∂L

∂q̇N
=

∂L

∂qN
= −

∂V

∂qN
= −Mgphc . (53)

Let σ be the angular momentum about the stance foot. Then,

dσ

dt
= (~r1 × ~Fc) · ~e3, (54)

where ~Fc is the force acting on the center of mass. Since
~r1 = phc~e1 + pvc~e2 and ~Fc = −Mg~e2,

dσ

dt
= −Mgphc . (55)

From (53) and (55), we can deduce that ∂L/∂q̇N = σ+C,
with some constant C. Since ∂L/∂q̇N and σ are zero if
(q̇1, · · · , q̇N ) = 0, C = 0. Therefore

∂L

∂q̇N
= σ. (56)

Since dN (q)q̇ = ∂L/∂q̇N , dN (q)q̇ is the angular momen-
tum of the robot.

C. Proof of property 4

Proof: Let qc = (q1, · · · , qN , p
h
c , p

v
c ) be the coor-

dinates of the robot, where phc , p
v
c denote the Cartesian

coordinates of the center of mass, see Fig. 5. Then the
kinetic energy Ke does not depend on phc , p

v
c and the

potential energy is given by Ve = Mgpvc . Since the force
acting on the center of mass is Fh = 0, Fv = −Mg,

d

dt

∂Le
∂ṗhc

= 0 = Fh (57)

d

dt

∂Le
∂ṗvc

= −Mg = Fv. (58)

Therefore, ∂Le
∂ṗhc

, ∂Le
∂ṗvc

are the linear momentum. In the coor-
dinates qc, let Υ1(qc) be the Cartesian coordinates of the
stance foot. Then, ~P+c − ~P−c = T Ff .

D. Finite settling time controller for double integrators

The following controller is the finite-settling time con-
troller for a double integrator developed by Bhat and
Bernstein, [18]. Consider the double integrator

ẋ = y

ẏ = u. (59)

The double integrator (59) is globally finite-time stabilizable
with continuous feedback control

u = −sign(y)|y|α − sign(φα(x, y))|φα(x, y)|
α
2−α , (60)

where φα(x, y) := x + 1
2−α sign(y)|y|2−α and 0 < α < 1.

The settling time, Tset, depends continuously on the initial
condition.
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