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Abstract— This paper presents a within-stride feedback con- which, in conjunction with the continuous-time controller
troller that achieves an exponentially stable, periodic, ad fast  yielded exponential stability of the periodic orbit.
walking gait for a 3D bipedal robot consisting of a torso, In the current paper, we provide a choice of outputs for
revolute knees, and passive (unactuated) point feet. The \king feedback desi that ' Its i tial stability of
surface is assumed to be rigid and flat; the contact between ee. 6.10 e,s'g,n al results In exponential stabiiity of a
the robot and the walking surface is assumed to inhibit yaw periodic orbit without recourse to event-based controle Th
rotation. The studied robot has 8 DOF in the single support advantages of this include a simpler overall feedback desig
phase and 6 actuators. In addition to the reduced number and animmediate reaction to perturbations instead of megiti
of actuators, the interest of studying robots with point fe¢  fqr the next impact. In a journal submission under review for

is that the feedback control solution must explicitly accont oL
for the robot’s natural dynamics in order to achieve balance IEEE-TRO, we compare both controllers [3] (a pre-print is

while walking. We use an extension of the method of virtual available at [8]).
constraints and hybrid zero dynamics (HZD), a very successi

method for planar bipeds, in order to determine a periodic otit m,
and an autonomous feedback controller that realizes the orilb,

for a 3D (spatial) bipedal walking robot. The effect of outpu

selection on the zero dynamics is highlighted and a pertingn
choice of outputs is proposed, leading to stabilization witout

the use of a supplemental event-based controller.

|I. INTRODUCTION

that the methods presented in [27] for underactuated planar
bipedal robots (i.e., bipeds constrained to the sagittahel

of motion) have a natural extension to underactuated $patia
(or 3D) bipedal robots. In particular, the work presented
here addresses the frontal plane dynamics (i.e., sid@&o-s Ko Yoo 2 Q05
motion) in addition to the sagittal plane dynamics treated

in [27]. We study a simple 5-link robot model with anrig 1. A five-link 3D biped with point feet in support on leg-There
unactuated point contact at the leg ends and seek a tinigno yaw motion about the stance leg end and the degrees emfoire at

; ; i~jthe leg end specified by; and g2 are unactuated. The remaining joints
invariant feedback controller that creates an eXponéymalare actuated. Consequently, in single support, the rob®t8hBOF and 6

stable, periodic walking motion. independent actuators. For simplicity, each link is modiéle a point mass
Our control design is based on the method of virtual corst its center.

straints and hybrid zero dynamics (HZD), which generalizes

the fundamental work of Byrnes and Isidori [11] to the hybrid Il. RELATED WORK

setting [26]. In our first attempt at applying these methods .
to a simple 3-link spatial model, we selected the actuated The work most closely related to ours IS [6], where the
joints as the outputs for the purpose of designing the \Airtugontrol_of a 3D walke_r was decomposed into the St“‘?'y of
constraints [19]. Optimization of the free parameters ia thItS motion in the sagittal plane and the frontal plane; see

virtual constraints was used to compute a periodic orbit, b Isot[}4]| for a_FEIatedt(:]e((:jorr;p(_)stltloln reSlilt or; control ie lt.h
unlike the planar designs in [27], the orbit was unstabl ontal piane. The method of virtual constraints was ap_xb '€
In [6] to regulate the sagittal plane motion of the biped,

under the nominal continuous-time controller used to Zergh'l . ted qul imati f the d .
the outputs. An event-based controller was then designe\?ﬁ, e an inverted penduium approximation of the gynamics

was used to design a controller for the frontal plane. An
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The primary objective of this paper is to demonstrate ))\\




A very interesting study of the feedback control of un-with revolute one DOF knees that are independently actuated
deractuated spatial robots has been given in [20], whereaad terminated with “point-feet”. Each hip consists of a
controller for a five-link 3D robot with unactuated point fee revolute joint with two degrees of freedom and each degree
has been designed on the basis of linearizing the robotd freedom (DOF) is independently actuated. The width of
dynamic model along a periodic orbit. So that the controllethe hips is nonzero. The stance leg is assumed to act as
would be time-invariant, the orbit was parameterized with a passive pivot in the sagittal and frontal planes, with no
configuration variable that is strictly monotonic througho rotation about the z-axis (i.e., no yaw motion), so the legj en
a normal gait, as in [9], [18], [2], [26], before linearizati is modeled as a point contact with two DOF and no actuation.
was applied. The (within-stride) control law is designed o his model corresponds to the limiting case of robot with fee
the basis of a discrete-time approximation of the linearizewhen the size of the feet decreases to zero. The unactuated
model, which makes stability of the closed-loop systenDOF at the leg ends correspond to the classical DOF of an
difficult to assess. ankle. The DOF corresponding to the swing-leg ankle are

Other important work includes [5] and references thereimot modelled. In total, the biped in the single support phase
where the analysis of passive spatial bipeds is presentédtas eight DOF, and there are two degrees of underactuation.
The emphasis in their work is on energy efficiency and The following assumptions are made in this study:
underactuation; the role of feedback control in achieving a , Each link is rigid and has mass.
wide range of behaviors is not emphasized. On the other, Wwalking consists of two alternating phases of motion:
hand, the work in [22], [1] seeks energy efficiency and a large  single support and double support.
basin of attraction under the assumption of full actuation; , The double support phase is instantaneous and occurs
in particular, full actuation between the leg and ground is  when the swing leg impacts the ground.
assumed (pitch, roll and yaw), as opposed to the unactuated, At impact, the swing leg neither slips nor rebounds.

assumption made here. Very careful stability analysis ef th , The swing and stance legs exchange their roles at each
closed-loop system is provided through geometric (Rouadhia impact.

reduction. This work is taken one step further in [7], where, , The gait is symmetric in steady state.

starting from a 2D (sagittal plane) passive limit cycle, the Walking takes place on a flat surface.

authors use geometric reduction to first achieve contrdi@f t o ,ore detailed list of hypotheses is given in [27, Chap. 3]
frontal plane motion and then a second stage of geometig hjanar robots, and with the obvious modifications for
reduction to achieve steering within the walking surface. spatial robots, those hypotheses apply equally well here.

To th_e best of our knowledge, other Work_on the control’ gjnce the gait is composed primarily of single support
of spatial robots either assumes full actuation or does nghases, the variables used to describe the robot are adapted
provide significant analysp of the closed-loop system.r'eb’het_O this phase of motion. The robot is represented as a tree
are many control strategies based on the zero moment PO ,ctyre. The stance foot, which is fixed on the ground, is
ZMP [24], with one of the more famous users being thene pase of the tree structure. A set of generalized coceina
robot ASIMO [23]. In this approach, a desired trajectory, _ [q1,...,qs]' is shown in Fig. 1. Absolute anglég; , ¢»)
of the ZMP is deflned_and successive inner control 100p§e roll and pitch angles of the stance leg, respectively.
are closed on the basis of the ZMP. In the work of [13]anglesy, andgs are the relative joint angles of the stance-leg
predictive control is performed on the basis of the positioRnee and swing-leg knee, respectively. Anglgsandgs are

of the center of mass and a simplified model of the robot igyg jgint angles of the stance leg relative to the torso along
order to achieve a desired ZMP trajectory. Recently, oe-ling,o y-axis and ther-axis, respectively, and angleg and

adjustment of the ZMP has been added [12]; this control re the joint angles of the swing leg relative to the torso
method is implemented on the robot HRP2. The control afjgng the;-axis and they-axis, respectively. The coordinates

the ZMP ensures that the supporting foot will not rotate abOquth) are unactuated (due to the passive contact), while
its extremities, but this does not ensure stability in thesse (¢s,-..,qs) are independently actuated.

of convergence toward a periodic motion, as proved in [4]. Thé position of the robot with respect to an iner-

tial frame is defined by adding the four variables =
I1l. M ODEL [, Tt Yst, Zsts Go.st) s Wherez,, ys, andz, are the Carte-
The model presented here was chosen to be complein coordinates of the stance fhoand ¢o . defines the
enough to capture interesting features of gait control th&etation along the z-axis of the stance leg. These variables
do not occur in planar robots, and simple enough that theye constant during each single support phase, but are dis-
presentation of the ideas will remain transparent. It is owgontinuous when the supporting leg changes (i.e., at each
expectation that the ideas presented here apply to a widerpact).
class of bipeds, but proving such a conjecture is not an We have chosen to define the generalized coordinates with
objective of this paper. respect to the contact point of the current stance foot. When
leg-2 is the supporting leg, the variables are defined as
shown in Fig. 2 and the same notation is employed as when

A. Description of the robot and the walking gait _ : i ; . .
) _ _ ) i . the supporting leg is leg-1, viz. Fig. 1. During each single
The 3D bipedal robot discussed in this work is depicted

in Fig. 1. It consists of five links: a torso and two legs !The leg ends are referred to as feet or point feet.



. . . Zsw (q) =0& l’sw(‘l) >0
support phase, only one set of coordinates is used, deggendin

on which leg is the supporting leg. In double support, either
set of coordinates may be used. The transformation from o
set of coordinates to the other is nonlinear [20], but it ca
be computed in closed form by standard means.

zsw(q) = 0 & Tsw(q) >0

of = Aa(z3)

my

Fig. 3. Bipedal robot's dynamic model as a hybrid system.

nor rebounding at impact yield

F AR A
' st a Esw 04><4 04><1 ’
where g, and ¢ are the extended velocities before and
after the impact, respectively;y,, is the reaction force at
the contact pointD, is the extend mass-inertia matrix, and
E.p = aie [Zsw, Ysws Zsws Q0.sw) 1S the Jacobian matrix for
the position of the swing foot and its orientation in the y-

plane. Analogously to [9], the overall impact model is venitt

Fig. 2. A five-link 3D point-feet biped in support on leg-2. §IDOF at as
the leg end (foot) are not actuated.

Xst Ystr Zsts do,st

" = Dgla) 4
The legs exchange roles from one step to the next. ig it = Ayg,47), (5)
the duration of a step, on a periodic walking cycle, due t

the choice of coordinates in Figs. 1 and 2, we must have &nd is obtained from solving (3) and projecting down to the

generalized coordinates for support on &g

@(t+T)=—q(t) qt+T)=q(t) Define state variables as; = { ; ] and letz! =
Q3(t + T) = q?,(t) Q4(t + T) = Q4(t) I _ q

g EL‘ + Tg = —%5)(75) 6 EL‘ + T% = —%G)U) 1) Z+ andz; = | ?_ |, where the subscrigtdenotes the
@t +T)=q:(t) qe(t+T)=gqs(l ' - -

and Go.st(t +T) = —qo.st (). stance leg number. Then a complete walking motion of the

robot can be expressed as a nonlinear system with impulse
The last condition yields a motion without yaw rotation.  effects, as shown in Fig. 3 and written as

t1 = fi(z1) +gi(z)ur zy ¢S

B. Dynamic model w. ) 73 =Mi(ay) x; €51 6)
: . . . iy = fa(w2) + g2(w2) uz x5 €52
The dynamic models_for single suppqrt and impact (i.e., o} = Ao(ay) vy €55
double support) are derived here assuming support of.leg . )
The models for support on legjcan be written in a similar Where S; = {(¢,d)|zsw(q) = 0, zsw(g) > 0} is the
way. The Euler-Lagrange equations yield the dynamic mod&Witching surface, where the subscript= 1,2 denotes the
for the robot in the single support phase as stance leg number,
] 0
) . 0 (z) = 9 |, @) =] ,
D(q)j+ H(q,q) = Bu = [ o ] u, @ i [ ~D~Nq)H(q,4) ] 9(7) { D™'(q) B }
and

where D(q) is the positive-definite(8 x 8) mass-inertia
matrix, H (q, ¢) is the (8 x 1) vector of Coriolis and gravity
terms, B is an (8 x 6) full-rank, constant matrix indicating
whether a joint is actuated or not, ands the (6 x 1) vector IV. VIRTUAL CONSTRAINTS

of input torques. Following standard practice in the litera, The method of virtual constraints, which has proven

the double support phase is assumed to be instantaneous. . .
However, it actually consists of two distinct subphases: thvery.suc-cessful n QeS|gn|ng feedback contrgllers forlgtab
' * ~walking in planar bipeds [9], [18], [2], [26], will be applie

impact, during which a rigid impact takes place betwee?o the 3D biped of the previous section. In this method, one

the swing foot and the ground, and coordinate relabeling]. . : . .
. . o , : . olonomic constraint per actuator is proposed in the form
During the impact, the biped’s configuration variables dg

not change, but the generalized velocities undergo a jumof an output that, when zeroed by a feedback controller, en-

The derivation of the impact model in double support phas%rces the constraint. The most direct form of the constrain

e
requires the use of the vect@r. Conservation of momentum IS [27, Chap. 6.4]
during the impact process and the swing leg neither slipping y = h(q) = qa — ha(0), (7

T = Al) = { ﬁZEZ??m } k7



whereq, = [gs, g4, g5, g6, g7, gs]’ i the 6-vector of actuated whereD1; is the(2 x 2) upper left sub-matrix o7 ' D(q)7,
coordinatesf = 6(q) is a quantity that is strictly monotonic D2 is the (2 x 6) upper right sub-matrix of7'D(q)T
(i.e., strictly increasing or decreasing) along a typicalkw and H;(q,¢) consists of the first two lines of 'H(q, ¢).
ing gait, andh4(0) is the desired evolution of the actuatedSubstituting the expressions @f, ¢, andg, corresponding
variables as a function of. Roughly speakingd is used to the virtual constraints, the dynamic model of the single
to replace time in parameterizing a periodic motion of theupport phase is now reduced to a low-dimensional, 2 DOF,
biped. In a forward walking motion, the speed of the bipe@dutonomous system,
is roughly proportional to the angle of the virtual stanag le i L
in thg sagittal plane, where the virtual stance leg is given b D11(qu) [ 91 ] + Dia(qu) (aaf;dg + %92)
the line that connects the stance foot to the stance hip. When .
the shin and the thigh have the same length, the angle of the +H1(qu, qu) =0,
virtual leg is namely the swing phase zero dynamics [10], [27, Chap. 5].
0=—q2—qs3/2 (8) One can clearly see that the dynamic properties of the
(the minus sign is used to malkestrictly increasing over a (S)\;VIS]% p\t}?tizzig?]sggﬁrgci dyepiniaon_tzj(g;rt:g\ll\?rtghmce

step). : . . o
The outputs (7) are easily checked to have uniform relativ%etermlne a choice for,(6) that results in a periodic

degree 2 (i.e., relative degree two and an invertible deco&v_alkmg motion is summarized in the next section.
pling matrix). The torque:* required to enforce the virtual V. D s P G
constraint corresponding tg, = h4(6) can be computed &s - DESIGN FOR ASYMMETRIC PERIODIC GAIT
The objective of this section is to design virtual constisin
2
ut = (8h—(q)D—13)—1 (6117,12(9)92(75) 4 8h—(Q)D—1H(q7q')) qga = hq(f) that correspond to a periodic motion of the
9q 90 9q ©) robot. The gait considered is composed of single support
This leads to an input-output linearizing controller to mgy phases sepalratid by |mpa(t:ts a:s desi:rlbe((j:i (|jn F'?' 3. The Itegs
totically enforce the constraints [15] [27, Chap. 5], eéxchange roles from one step 1o next, and due to symmetry,
the study of a gait can be limited to a single step and the

oh 1K K, use of the symmetry relation (1).
—(FpE) (e T ao) ymmety relation (1)

(15)

uUu=u —

dq €2
which results in A. Virtual constraints and Bezier polynomials
. Kq. K, The problem of designing the virtual constraints will be
i+ —y+—y=0. (11) . L .
€ € transformed into a parameter optimization problem as in [27

In other words, determining the constraints is equivalent tChap. 6]. Here, our main goal is to obtain a periodic motion;
the design of a feedback controller in the single suppo@ptimality is not so crucial. To simplify the optimization
phase, up to the choice of the gaif$ > 0, K; > 0, and Process, the number of variables used in the optimization
e > 0 such that (11) is exponentially stable and convergggoblem is first reduced. This is accomplished by exploit-
sufficiently rapidly with respect to the duration of a singldng boundary conditions that arise from periodicity. Bezie
support phase; see [27, Chap. 4]. polynomials are parametric functions that allow one tolgasi
The swing phase zero dynamics is easily computed ar@ke into account boundary conditions on the configuration
has dimension 4 (the robot's model has dimension 16 @d velocity at the beginning and end of a step.
DOF) and the 6 outputs (7) have uniform relative degree The initial and final configuration and velocity of the
2). Let ¢, = [q1,6]’ denote the unactuated joints angd = robot for a single support phase are important for defining
(43, a4, a5, g6, g7, g8]’ denote the controlled joints, which arethe passage betwgen the sjngle_and double support phases.
selected here to be the actuated joints. A linear relatidgst ex Because the terminal configuration of the robot is chosen

betweeny, ¢, andq,, to be the instant before the double support configuration,
both legs are in contact with the ground and therefore
q=T { Z“ } , (12) only seven independent variables are needed to describe thi

configuration (a closed kinematic chain). These variables
where7 is an (8 x 8) invertible matrix. Then (2) can be parameterize the final configuration of the first step denoted
rewritten as gr. The eight joint velocitieg; are independent and are also
added.
] u, Knowing the final state of the single support phase, the
(13) impact model (4) and (5) determines the initial state of the
The first two lines of the RHS of this equation are zerognsuing single support phase. The symmetry condition (1)
yielding then gives the initial state of the first step; ¢;. The initial
. . . orientation(g;)o,s¢+ Of the robot is calculated such that the
D11(a)du + D12(9)da + Hi(g,4) = O2x1, (14)  yrientation for the second step is symmetric to the oriéomiat
2As shown in [21], [27, pp. 60], an expression fot can be obtained fOF the first step in order that no yaw rotation is observed
without inverting of the(8 x 8) mass-inertia matrixD is also possible. during the nominal (periodic) gait.

T’D(q)T{ T ] +T'H(q,§) = T'Bu= [ O2x6

a



To obtain a periodic gait, the single support must be such « 6 is strictly increasing (i.ed > 0 along the solution);
that the state of the robot evolves fram ¢; to gf, ¢¢. For « the swing foot is positioned above the ground,( >
given desired initial and final state values, virtual cosisir 0);
can be easily deduced to join the desired values for the« a no-take-off constraintf’s;(3) > 0;
actuated and controlled variables. However, the evolution , 3 friction constraint,/Fu (1)2 + Fur(2)2 < 1 Fur (3);
of the unactuated variables is known only by integration Oéquality constraints

the dynamics (15); a desirable dynamic behavior is imposeg,q 5 set of conditions imposing periodicity
on these variables by the use of equality and inequality

constraints in the optimization process. () = (gh
() = (grh
B. Specifics é(T) — 9'.,«,

Here, Bezier polynomials of degraeare chosen to define \yhereq, () andd(t) result from the integration of the zero
the virtual constrainfs The virtual constraints are eXpreSSEddynamics and the walking peridH is such that(T) = 6;.

as functions of the variablé; see (8). Fromg; and ¢y, The above procedure can be performed in MATLAB with
the initial and final values of, denotedd; andfy, can be  nhe FM NCON function of the optimization toolbox. A fixed-
calculated. Let point solutionz* = [q%, ¢;]’ minimizing J defines a desired

3 31 N sk periodic walking cycle (or nominal orbit). The criterionibg

ha(6) = G (1—s)"77, (16)  optimized (19) has many local minima and the optimization

k=0 ' ' technique used is local. Thus, the obtained optimal periodi

where 0_ 0. motion depends on the initial set of optimization paranseter

s = 6, =0, a7

is the normalized independent variable. The coefficients of «
the Bezier polynomialsqy, are (6 x 1) vectors of real
numbers. They must be determined so as to jojn,
to (gf)e and (¢i;)s t0 (ds)a, (the additional subscripta” 05 -
denotes the actuated variables) witevaries fromd; to 6.,
yielding

@0 = hal®) :e(qie)g 676 (4
ar = (gi)a + U520 (9,) = (gi)q + g2 e

0;
05—0i dhy _ 05=0: (4f)a

Qg = (qf)a - T3 96 (91‘) = (Qf)a 3 0; 17

as = ha(0f) = (a7)a- P
(19) °

05 05

3
|

0.4+

0.3+

The evolution of the unactuated variables is calculated by o _ o

integration of the dynamic subsystem (15), that is, thecgtan E:gérzil(.)n Stick-diagram of the optimal motion with respect ke torque

phase zero dynamics, starting from the initial statg, = '

[(¢:)1,6:] and terminating at = 6, where(g;); denotes

the initial value ofg; for the first step. C. An example periodic motion minimizing integral-squared
When the evolution of the unactuated variables is calcdorque

lated, because the evoluf[ion of the actuated variable BgiV 110 physical parameters of the 3D biped studied here are
by (7) and (16), the required torque can be calculated by thg e, in Table I. For these parameters, a periodic orbit was
second line of equation (13), and the ground reaction forgg,m, ted following the technique presented in the previous

F; expressed in the inertial reference frame (see Fig. 1) Clbsection. We obtained a periodic motion definedrby=
be calculated as well. (tq* q%), where
frAfh

The search for a periodic walking motion can now be cas
as a constrained nonlinear optimization problem: Find the 1 ¢; = [—0.0174, —0.34038, 0.3820, —0.2940, 0.0602, 0.0487,

optimization parameters prescribirigy, ¢¢) that minimize —0.5077,0.1688]’,
the integral-squared torque per step length, ¢ = [-0.4759, —1.1825,0.0997, 0.2785, —0.1000, 0.1000,
LT 1.398,0]".
J = Z/o u” utdt, (19) A stick-figure diagram for the first step of the periodic

walking gait is presented in Fig. 4. The walking gait has
a period of 7" = 0.39 seconds, a step size &f = 0.176m,
and an average walking speedoi47 m/sec, 010.745 body
lengths per second. The step width0id56m, close to the

3A degree greater thah can also be chosen, in which case the numbehip Widt.h' The peak torque requ"?d. to prOduce the periodic
of optimization variables increases [25]. motion is less thartONm for each joint.

whereT is the walking period and is the step length, while
satisfying symmetry (1), and subject to the following:
inequality constraints



g w L1 L2 L3 ml m2 m3
981 ] 0.15 | 0.275| 0.275| 0.05 | 0.875] 0.875| 55
TABLE |

PARAMETERS FOR THE3D BIPEDAL ROBOT (IN MKS). hc(ei, Yi, y'i) = Y
Ge0:) = & 21)
he(O,yi,5) = 0, 25 <0<6;.
With h. designed in this way, the initial errors of the output
and its derivative are smoothly joined to the original vadtu
The stability of a fixed-point* can be tested numerically constraint at the middle of the step. In particular, for any
by linearizing the Poincaré map about the fixed-point aitial error, the initial virtual constraint, is exactly satisfied
presented in [19]. This numerical stability test has a higby the end of the step.
computational cost, however, because it requires the esti-Under the new control law defined by (20), the behavior
mation of the Jacobian of the Poincaré map, in a space of the robot is completely defined by the impact map and
dimension2n-1, wheren is the number of independent joint the swing phase zero dynamics (15), whéggeis replaced
coordinates; here = 8. We propose a slight modification by hy + h.. The stability of a fixed-point:* can now be
of the control law in order to be able to study the stability otested numerically using a restricted Poincaré map defined
the closed-loop system in a reduced-dimensional stateespaffom p : SN Z — SN Z, where Z = {(q,¢)|y.(q) =
0, y.(¢) =0} and S is the switching surface. The key point
A. Hybrid zero dynamics (HZD) and a stability test in aiS .that inSnZz _the state of the.robot can bg rep/)resented
reduced space using only three |_ndependent vgnables,_: [ql,,ql, 0])’, and
hence the Jacobian of the restricted Poincaré map evdluate
The control law (10) is such that, on the periodic orbit, theyt a fixed point is & x 3 matrix. From [16], fore sufficiently
virtual constraints (7) are identically satisfied. Howe\&f  small in (10),the exponential stability of a fixed-point of the

the periodic orbit, even if the virtual constraints aresfé&t restricted Poincaé map determines exponential stability of
at the end of given step, they will not in general be satiéfiedne full-order closed-loop robot model.

at the beginning of the next step. Consequently, the behavio
of the robot cannot be deduced from the behavior of th
uncontrolled variablesg, and the simulation of the complete
model is required to predict the behavior of the robot. In th
language of [25], [27, Chap. 5], while the feedback control We consider the virtual constraints corresponding to the
law (10) has created a zero dynamics of the stance phaa@timal periodic motion obtained in Section V-C, and the

dynamics, it has not createdhgbrid zero dynamicghat is, ~control law defined in (20) is used.

If the control law could be modified so as to create geriodic motion, the eigenvalues of the linearized retdc

hybrid zero dynamics, then the study of the swing phase zef@incaré map are computed yielding

dynamics (15) and the impact model would be sufficient to A = 0.8878

determine the stability of the complete closed-loop bebravi N = 0.6951

of the robot, thereby leading to a reduced-dimension stabil 2 = 7

test. A modification of the control law to achieve a hybrid Az = —2.0891

Z€ro dynam|cs was first proposed in [17_]; a ;econd MO§pe eigenvalue has magnitude greater than one and hence

easily implementable method has been given in [16], along . gait is unstable under this controller

with a cqmplete stab|I|t.y analysis. . . , We have found that for most periodic motions optimized
FoIllowmg [16], the virtual cons?ralnts_ are mp@ﬁed stndeWith respect to integral-squared torque per step leng®), (1

to stride so that they are compatible with the initial state Qe gptained gait is unstable under the control law defined

the robot at the begmmn_g Of_ each step. The new output f%ry (20). In the next section, freedom in the selection of the

the feedback control design is controlled outputsis used to obtain a stable walking cycle

Yo = h(q Yir Ui) = qa — ha(0) — he(6,yi, 9i)- (20) using only within-stride control.

throughout the step. The functidn is taken to be a three-
times continuously differentiable function éfsuch that

VI. CREATING A HYBRID ZERO DYNAMICS

g. Example of the periodic motion minimizing integral-
gquared torque

This output consists of the previous output (7), and a VIIl. | MPROVED OUTPUT SELECTION
correction termh. that depends on (7) evaluated at the

beginning of the step, specifically; = ¢.; — hq(6;) and
i = da;i — 2496, where the subscripti* denotes the

initial value for the current step. The values ¢f y; are 5Ineoug specific application, we used a fifth order polynomiad 6; <
updated at the beginning of each step and held constant % continuity of position, velocity and acceleration is erelat
0,160
0=-L.

In the previous sections, the controlled variables driven
by the virtual constraints are simply the actuated vargble

2
4This may be true for several reasons, one of which is that theaV 6The controlled outputs are no longer the actuated variaddem (10),
constraints may not have been chosen to be compatible wéthintipact but a judiciously chosen linear combination @f A convenient choice of

map. outputs is given.



qa; See (7). The choice of the controlled variables directlyhe swing leg end and the center of mass along the frontal
affects the zero dynamics in (15). It is shown here that fer thdirection. To obtain a linear output, this function is liniead
same desired periodic motion, the stability of the closmspl around the touchdown configuration to defibgin (23).
system can be dramatically improved through a judicious

choice of the controlled variables. B. Example of the periodic motion minimizing integral-

squared torque

T o0 _ The periodic motion described in Section V-C can be
For simplicity, we limit our analysis to the case of con-stabilized using the new controlled output. As mentioned in
trolled variables that are linear with respect to the configuhe previous subsection, the actuated joipts g4, g5, q7,

A. Effect on the swing phase zero dynamics

ration variables. Thus the controlled variables are and ¢s are controlled via virtual constraints just as in the
¢ ¢ original control law. A new outpuk, 4 is considered, with
G=M]| 6 — [ M, My M, ] 6 |, (22) this output no longer based o but instead on distance
da Ta between the swing leg end and the center of mass along the

frontal direction.
For this trajectory, for support on leg 1, the linearization

A kfnowr_1 per:codrllc mOt.'Oglfé (t). Tgn be* reepa_lr_(;\]met_erlzéld aroundg of the distance between the swing leg end and the
as unc_tlon of the variabld, yie ng q (0). The v!rtua center of mass along the frontal direction yields
constraint for the new controlled variables then yields the

where M is a (6 x 8) constant matrix with}M, invertible.

output d = —0.457¢q; — 0.020¢2 — 0.018¢3 — 0.020¢4 — 0.489¢5
g HO! +0.461¢6 — 0.056¢7 — 0.022¢s.
y=M\ 0 1-M *?9) ' (23) On the periodic orbit, this distance is evaluated and approx
da Y mated by a function of, denotedi* (#). The new controlled
ho(q) ha(6) output is then
When the constraint is satisfieg, = 0, equation (23) , — —0.457¢, — 0.020gs — 0.018¢3 — 0.020g4 — 0.489¢5
allows us to solve for,, giving +0.461g¢ — 0.056g7 — 0.022gs — d*(0).
% —1 * _ (26)

Ga = a(0) + My M1 (g1(0) — 1) (24) " \When the control law is defined using this new output, the
Substituting this equation into (14), we obtain for the syvin walking gait is stable, as can be shown via the calculation of
phase zero dynamics the eigenvalues of the linearization of the restricted Pai@

i , map:
1 94,4 4 9745 2
Dulan) [ 0 } + Dualan) (550 + 50°) + A= 0.7846
* e 2 k.
Do (qu) M M, (%—%9 + 3542 — c_'z'l) + Hi(qu, Gu) = 0. Ao = —0.028 4 0.250
(25) [A2,3] = 0.2512.

The nominal periodic motion satisfies both equations (25)
and (15), but the two equations produce different solutionk0 illustrate the orbit's local exponential stability, trgD
away from the periodic motion. When the principle of virtualbiped’s model in closed-loop is simulated with the initial
constraints is app“ed to a system with 0n|y one degree Sfate perturbed from the fixed—poimt. An initial error of
underactuation, namelj, which is common for example in —1° is introduced on each joint and a velocity error of
planar bipeds, the swing phase zero dynamic is not affectecp®s ' is introduced on each joint velocity. Fig. 5 shows
by the choice of the output, and therefore the stability of &hase-plane plots of the first four variables. The convergen
periodic orbit (i.e., walking motion) is not modified; onlge  towards a periodic motion is clear for the controlled and
transient motion can be different. In the case of a systeim witincontrolled variables.
two degrees of underactuation, the choice of the controlled
output can affect the stability of the gait via the choice of VIIl. CONCLUSIONS

—1
M, "M An underactuated 3D bipedal model has been studied, with

: In order to |IIu_strate_th|s_ property, a new ch0|c_e of OUtp%he objective of developing a time-invariant feedback oaint

is proposed. This choice is based on the following phy5|czfll ; ; . .
S L S aw that induces asymptotically stable walking, withouy+e

reasoning: The motion in the frontal direction is difficudt t ing on the use of large feet. The method of viriual constsaint

stabilize. The position of the center of mass in the frontaand hybrid zero dynamics was applied to the 3D robot, with

direction is important. If, at touchdown, the center of Mass. ' \irtual constraints chosen via optimization as suggest
is not between the feet, but outside the position of the next P

. : : IN [26]. The main contributions of the paper are:
supporting foot, the robot will topple sideways. Thus, the i ) o )
control of the variable (which regulates step width on the 1) The computation of human-like periodic walking mo-

swing leg) is replaced by the control of the distance between  tions that can be stable or unstable, depending on the
choice of actuated variables and corresponding virtual

"This assumes that is monotonic. constraints.
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Fig. 5. Phase-plane plots fgf, 7 = 1, ..., 4. The straight lines correspond
to the impact phase, where the state of the robot changemtastously. [13]

The initial state is represented by a (red) star. Each Jariabnverges to a
periodic motion.

2) The numerical study of stability on the basis of a low{14]
dimensional subsystem corresponding to the hybrid
zero dynamics. The Poincaré return map was computérs)

3)

in a space of dimension three for a robot with two
degrees of underactuation.

controlled outputs on the stability of a given periodic
motion.

The discovery of the importance of the selection of theie]

When the method of virtual constraints is applied td17]
a bipedal model with only one degree of underactuation,

which is common for example in planar bipeds, the swing

phase zero dynamic is not affected by the choice of the

output, and therefore the stability of a periodic orbit.(i.e [t

walking motion) is unaffected by the choice of the contrdlle
output; only the transient motion can be different. In thél9]
case of a biped with two degrees of underactuation, as in an
underactuated 3D biped, the choice of the controlled output

can affect the stability of the hybrid zero dynamics. A moré20]
systematic study of this property is needed.
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