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HZD-Based Control of a Five-Link Underactuated 3D Bipedal Robot

J.W. Grizzle, Christine Chevallereau, and Ching-Long Shih

Abstract— This paper presents a within-stride feedback con-
troller that achieves an exponentially stable, periodic, and fast
walking gait for a 3D bipedal robot consisting of a torso,
revolute knees, and passive (unactuated) point feet. The walking
surface is assumed to be rigid and flat; the contact between
the robot and the walking surface is assumed to inhibit yaw
rotation. The studied robot has 8 DOF in the single support
phase and 6 actuators. In addition to the reduced number
of actuators, the interest of studying robots with point feet
is that the feedback control solution must explicitly account
for the robot’s natural dynamics in order to achieve balance
while walking. We use an extension of the method of virtual
constraints and hybrid zero dynamics (HZD), a very successful
method for planar bipeds, in order to determine a periodic orbit
and an autonomous feedback controller that realizes the orbit,
for a 3D (spatial) bipedal walking robot. The effect of output
selection on the zero dynamics is highlighted and a pertinent
choice of outputs is proposed, leading to stabilization without
the use of a supplemental event-based controller.

I. I NTRODUCTION

The primary objective of this paper is to demonstrate
that the methods presented in [27] for underactuated planar
bipedal robots (i.e., bipeds constrained to the sagittal plane
of motion) have a natural extension to underactuated spatial
(or 3D) bipedal robots. In particular, the work presented
here addresses the frontal plane dynamics (i.e., side-to-side
motion) in addition to the sagittal plane dynamics treated
in [27]. We study a simple 5-link robot model with an
unactuated point contact at the leg ends and seek a time-
invariant feedback controller that creates an exponentially
stable, periodic walking motion.

Our control design is based on the method of virtual con-
straints and hybrid zero dynamics (HZD), which generalizes
the fundamental work of Byrnes and Isidori [11] to the hybrid
setting [26]. In our first attempt at applying these methods
to a simple 3-link spatial model, we selected the actuated
joints as the outputs for the purpose of designing the virtual
constraints [19]. Optimization of the free parameters in the
virtual constraints was used to compute a periodic orbit, but
unlike the planar designs in [27], the orbit was unstable
under the nominal continuous-time controller used to zero
the outputs. An event-based controller was then designed,
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which, in conjunction with the continuous-time controller,
yielded exponential stability of the periodic orbit.

In the current paper, we provide a choice of outputs for
feedback design that results in exponential stability of a
periodic orbit without recourse to event-based control. The
advantages of this include a simpler overall feedback design
and an immediate reaction to perturbations instead of waiting
for the next impact. In a journal submission under review for
IEEE-TRO, we compare both controllers [3] (a pre-print is
available at [8]).
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Fig. 1. A five-link 3D biped with point feet in support on leg-1. There
is no yaw motion about the stance leg end and the degrees of freedom at
the leg end specified byq1 and q2 are unactuated. The remaining joints
are actuated. Consequently, in single support, the robot has 8 DOF and 6
independent actuators. For simplicity, each link is modeled by a point mass
at its center.

II. RELATED WORK

The work most closely related to ours is [6], where the
control of a 3D walker was decomposed into the study of
its motion in the sagittal plane and the frontal plane; see
also [14] for a related decomposition result on control in the
frontal plane. The method of virtual constraints was applied
in [6] to regulate the sagittal plane motion of the biped,
while an inverted pendulum approximation of the dynamics
was used to design a controller for the frontal plane. An
event-based controller was then introduced to synchronize
the phasing of the independently designed sagittal and frontal
plane controllers. The overall closed-loop system was shown
to be stable through simulation and subsequently through
experimentation. In our approach, we do not decompose the
model into sagittal and frontal plane motions, and coupling
of the sagittal and frontal plane dynamics is introduced into
the controller from the very beginning.
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A very interesting study of the feedback control of un-
deractuated spatial robots has been given in [20], where a
controller for a five-link 3D robot with unactuated point feet
has been designed on the basis of linearizing the robot’s
dynamic model along a periodic orbit. So that the controller
would be time-invariant, the orbit was parameterized with a
configuration variable that is strictly monotonic throughout
a normal gait, as in [9], [18], [2], [26], before linearization
was applied. The (within-stride) control law is designed on
the basis of a discrete-time approximation of the linearized
model, which makes stability of the closed-loop system
difficult to assess.

Other important work includes [5] and references therein,
where the analysis of passive spatial bipeds is presented.
The emphasis in their work is on energy efficiency and
underactuation; the role of feedback control in achieving a
wide range of behaviors is not emphasized. On the other
hand, the work in [22], [1] seeks energy efficiency and a large
basin of attraction under the assumption of full actuation;
in particular, full actuation between the leg and ground is
assumed (pitch, roll and yaw), as opposed to the unactuated
assumption made here. Very careful stability analysis of the
closed-loop system is provided through geometric (Routhian)
reduction. This work is taken one step further in [7], where,
starting from a 2D (sagittal plane) passive limit cycle, the
authors use geometric reduction to first achieve control of the
frontal plane motion and then a second stage of geometric
reduction to achieve steering within the walking surface.

To the best of our knowledge, other work on the control
of spatial robots either assumes full actuation or does not
provide significant analysis of the closed-loop system. There
are many control strategies based on the zero moment point
ZMP [24], with one of the more famous users being the
robot ASIMO [23]. In this approach, a desired trajectory
of the ZMP is defined and successive inner control loops
are closed on the basis of the ZMP. In the work of [13],
predictive control is performed on the basis of the position
of the center of mass and a simplified model of the robot in
order to achieve a desired ZMP trajectory. Recently, on-line
adjustment of the ZMP has been added [12]; this control
method is implemented on the robot HRP2. The control of
the ZMP ensures that the supporting foot will not rotate about
its extremities, but this does not ensure stability in the sense
of convergence toward a periodic motion, as proved in [4].

III. M ODEL

The model presented here was chosen to be complex
enough to capture interesting features of gait control that
do not occur in planar robots, and simple enough that the
presentation of the ideas will remain transparent. It is our
expectation that the ideas presented here apply to a wider
class of bipeds, but proving such a conjecture is not an
objective of this paper.

A. Description of the robot and the walking gait

The 3D bipedal robot discussed in this work is depicted
in Fig. 1. It consists of five links: a torso and two legs

with revolute one DOF knees that are independently actuated
and terminated with “point-feet”. Each hip consists of a
revolute joint with two degrees of freedom and each degree
of freedom (DOF) is independently actuated. The width of
the hips is nonzero. The stance leg is assumed to act as
a passive pivot in the sagittal and frontal planes, with no
rotation about the z-axis (i.e., no yaw motion), so the leg end
is modeled as a point contact with two DOF and no actuation.
This model corresponds to the limiting case of robot with feet
when the size of the feet decreases to zero. The unactuated
DOF at the leg ends correspond to the classical DOF of an
ankle. The DOF corresponding to the swing-leg ankle are
not modelled. In total, the biped in the single support phase
has eight DOF, and there are two degrees of underactuation.

The following assumptions are made in this study:

• Each link is rigid and has mass.
• Walking consists of two alternating phases of motion:

single support and double support.
• The double support phase is instantaneous and occurs

when the swing leg impacts the ground.
• At impact, the swing leg neither slips nor rebounds.
• The swing and stance legs exchange their roles at each

impact.
• The gait is symmetric in steady state.
• Walking takes place on a flat surface.

A more detailed list of hypotheses is given in [27, Chap. 3]
for planar robots, and with the obvious modifications for
spatial robots, those hypotheses apply equally well here.

Since the gait is composed primarily of single support
phases, the variables used to describe the robot are adapted
to this phase of motion. The robot is represented as a tree
structure. The stance foot, which is fixed on the ground, is
the base of the tree structure. A set of generalized coordinates
q = [q1, . . . , q8]

′ is shown in Fig. 1. Absolute angles(q1, q2)
are roll and pitch angles of the stance leg, respectively.
Anglesq3 andq8 are the relative joint angles of the stance-leg
knee and swing-leg knee, respectively. Anglesq4 andq5 are
the joint angles of the stance leg relative to the torso along
the y-axis and thex-axis, respectively, and anglesq6 and
q7 are the joint angles of the swing leg relative to the torso
along thex-axis and they-axis, respectively. The coordinates
(q1, q2) are unactuated (due to the passive contact), while
(q3, . . . , q8) are independently actuated.

The position of the robot with respect to an iner-
tial frame is defined by adding the four variablesqe =
[q′, xst, yst, zst, q0,st]

′, wherexst, yst andzst are the Carte-
sian coordinates of the stance foot1, and q0,st defines the
rotation along the z-axis of the stance leg. These variables
are constant during each single support phase, but are dis-
continuous when the supporting leg changes (i.e., at each
impact).

We have chosen to define the generalized coordinates with
respect to the contact point of the current stance foot. When
leg-2 is the supporting leg, the variables are defined as
shown in Fig. 2 and the same notation is employed as when
the supporting leg is leg-1, viz. Fig. 1. During each single

1The leg ends are referred to as feet or point feet.
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support phase, only one set of coordinates is used, depending
on which leg is the supporting leg. In double support, either
set of coordinates may be used. The transformation from one
set of coordinates to the other is nonlinear [20], but it can
be computed in closed form by standard means.
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Fig. 2. A five-link 3D point-feet biped in support on leg-2. The DOF at
the leg end (foot) are not actuated.

The legs exchange roles from one step to the next. IfT is
the duration of a step, on a periodic walking cycle, due to
the choice of coordinates in Figs. 1 and 2, we must have

q1(t + T ) = −q1(t) q2(t + T ) = q2(t)
q3(t + T ) = q3(t) q4(t + T ) = q4(t)
q5(t + T ) = −q5(t) q6(t + T ) = −q6(t)
q7(t + T ) = q7(t) q8(t + T ) = q8(t)
and q0,st(t + T ) = −q0,st(t).

(1)

The last condition yields a motion without yaw rotation.

B. Dynamic model

The dynamic models for single support and impact (i.e.,
double support) are derived here assuming support on leg1.
The models for support on leg2 can be written in a similar
way. The Euler-Lagrange equations yield the dynamic model
for the robot in the single support phase as

D(q)q̈ + H(q, q̇) = B u =

[
02×6

I6×6

]

u, (2)

where D(q) is the positive-definite(8 × 8) mass-inertia
matrix, H(q, q̇) is the(8 × 1) vector of Coriolis and gravity
terms,B is an (8 × 6) full-rank, constant matrix indicating
whether a joint is actuated or not, andu is the(6 × 1) vector
of input torques. Following standard practice in the literature,
the double support phase is assumed to be instantaneous.
However, it actually consists of two distinct subphases: the
impact, during which a rigid impact takes place between
the swing foot and the ground, and coordinate relabeling.
During the impact, the biped’s configuration variables do
not change, but the generalized velocities undergo a jump.
The derivation of the impact model in double support phase
requires the use of the vectorqe. Conservation of momentum
during the impact process and the swing leg neither slipping

zsw(q) = 0 & xsw(q) > 0

ẋ1 = f1(x1) + g1(x1)u1

x
+

2
= ∆1(x

−

1
)

zsw(q) = 0 & xsw(q) > 0

ẋ2 = f2(x2) + g2(x2)u2

x
+

1
= ∆2(x

−

2
)

Fig. 3. Bipedal robot’s dynamic model as a hybrid system.

nor rebounding at impact yield
[

q̇+
e

Fsw

]

=

[
De −E′

sw

Esw 04×4

]
−1 [

Deq̇
−

e

04×1

]

, (3)

where q̇−e and q̇+
e are the extended velocities before and

after the impact, respectively,Fsw is the reaction force at
the contact point,De is the extend mass-inertia matrix, and
Esw = ∂

∂qe
[xsw , ysw, zsw, q0,sw]

′ is the Jacobian matrix for
the position of the swing foot and its orientation in thex−y-
plane. Analogously to [9], the overall impact model is written
as

q+ = ∆q(q
−) (4)

q̇+ = ∆q̇(q
−, q̇−), (5)

and is obtained from solving (3) and projecting down to the
generalized coordinates for support on leg2.

Define state variables asxj =

[
q
q̇

]

, and let x+
j =

[
q+

q̇+

]

andx−

j =

[
q−

q̇−

]

, where the subscriptj denotes the

stance leg number. Then a complete walking motion of the
robot can be expressed as a nonlinear system with impulse
effects, as shown in Fig. 3 and written as

Σ :







ẋ1 = f1(x1) + g1(x1)u1 x−

1 /∈ S1

x+
2 = ∆1(x

−

1 ) x−

1 ∈ S1

ẋ2 = f2(x2) + g2(x2)u2 x−

2 /∈ S2

x+
1 = ∆2(x

−

2 ) x−

2 ∈ S2

, (6)

where Sj = {(q, q̇)|zsw(q) = 0, xsw(q) > 0} is the
switching surface, where the subscriptj = 1, 2 denotes the
stance leg number,

fj(x) =

[
q̇

−D−1(q)H(q, q̇)

]

, gj(x) =

[
0

D−1(q)B

]

,

and

x+
k = ∆j(x

−

j ) =

[
∆q(q

−)
∆q̇(q

−, q̇−)

]

, k 6= j.

IV. V IRTUAL CONSTRAINTS

The method of virtual constraints, which has proven
very successful in designing feedback controllers for stable
walking in planar bipeds [9], [18], [2], [26], will be applied
to the 3D biped of the previous section. In this method, one
holonomic constraint per actuator is proposed in the form
of an output that, when zeroed by a feedback controller, en-
forces the constraint. The most direct form of the constraint
is [27, Chap. 6.4]

y = h(q) = qa − hd(θ), (7)



4

whereqa = [q3, q4, q5, q6, q7, q8]
′ is the 6-vector of actuated

coordinates,θ = θ(q) is a quantity that is strictly monotonic
(i.e., strictly increasing or decreasing) along a typical walk-
ing gait, andhd(θ) is the desired evolution of the actuated
variables as a function ofθ. Roughly speaking,θ is used
to replace time in parameterizing a periodic motion of the
biped. In a forward walking motion, the speed of the biped
is roughly proportional to the angle of the virtual stance leg
in the sagittal plane, where the virtual stance leg is given by
the line that connects the stance foot to the stance hip. When
the shin and the thigh have the same length, the angle of the
virtual leg is

θ = −q2 − q3/2 (8)

(the minus sign is used to makeθ strictly increasing over a
step).

The outputs (7) are easily checked to have uniform relative
degree 2 (i.e., relative degree two and an invertible decou-
pling matrix). The torqueu∗ required to enforce the virtual
constraint corresponding toqa = hd(θ) can be computed as2

u∗ = (
∂h(q)

∂q
D−1B)−1

(
∂2hd(θ)

∂θ2
θ̇2(t) +

∂h(q)

∂q
D−1H(q, q̇)

)

(9)
This leads to an input-output linearizing controller to asymp-
totically enforce the constraints [15] [27, Chap. 5],

u = u∗ −

(
∂h

∂q
D−1B

)
−1

(
Kp

ε2
y +

Kd

ε
ẏ), (10)

which results in

ÿ +
Kd

ε
ẏ +

Kp

ε2
y = 0. (11)

In other words, determining the constraints is equivalent to
the design of a feedback controller in the single support
phase, up to the choice of the gainsKp > 0, Kd > 0, and
ǫ > 0 such that (11) is exponentially stable and converges
sufficiently rapidly with respect to the duration of a single
support phase; see [27, Chap. 4].

The swing phase zero dynamics is easily computed and
has dimension 4 (the robot’s model has dimension 16 (8
DOF) and the 6 outputs (7) have uniform relative degree
2). Let qu = [q1, θ]

′ denote the unactuated joints andqa =
[q3, q4, q5, q6, q7, q8]

′ denote the controlled joints, which are
selected here to be the actuated joints. A linear relation exist
betweenq, qu andqa,

q = T

[
qu

qa

]

, (12)

whereT is an (8 × 8) invertible matrix. Then (2) can be
rewritten as

T ′D(q)T

[
q̈u

q̈a

]

+ T ′H(q, q̇) = T ′B u =

[
02×6

I6×6

]

u,

(13)
The first two lines of the RHS of this equation are zero,
yielding

D11(q)q̈u + D12(q)q̈a + H1(q, q̇) = 02×1, (14)

2As shown in [21], [27, pp. 60], an expression foru∗ can be obtained
without inverting of the(8 × 8) mass-inertia matrixD is also possible.

whereD11 is the(2×2) upper left sub-matrix ofT ′D(q)T ,
D12 is the (2 × 6) upper right sub-matrix ofT ′D(q)T
and H1(q, q̇) consists of the first two lines ofT ′H(q, q̇).
Substituting the expressions ofqa, q̇a and q̈a corresponding
to the virtual constraints, the dynamic model of the single
support phase is now reduced to a low-dimensional, 2 DOF,
autonomous system,

D11(qu)

[
q̈1

θ̈

]

+ D12(qu)
(

∂ hd

∂ θ
θ̈ + ∂2hd

∂ θ2 θ̇2
)

+H1(qu, q̇u) = 0,
(15)

namely the swing phase zero dynamics [10], [27, Chap. 5].
One can clearly see that the dynamic properties of the

swing phase zero dynamics depend on the particular choice
of the virtual constraint0 = y = qa − hd(θ). How to
determine a choice forhd(θ) that results in a periodic
walking motion is summarized in the next section.

V. DESIGN FOR ASYMMETRIC PERIODIC GAIT

The objective of this section is to design virtual constraints
qa = hd(θ) that correspond to a periodic motion of the
robot. The gait considered is composed of single support
phases separated by impacts as described in Fig. 3. The legs
exchange roles from one step to next, and due to symmetry,
the study of a gait can be limited to a single step and the
use of the symmetry relation (1).

A. Virtual constraints and Bezier polynomials

The problem of designing the virtual constraints will be
transformed into a parameter optimization problem as in [27,
Chap. 6]. Here, our main goal is to obtain a periodic motion;
optimality is not so crucial. To simplify the optimization
process, the number of variables used in the optimization
problem is first reduced. This is accomplished by exploit-
ing boundary conditions that arise from periodicity. Bezier
polynomials are parametric functions that allow one to easily
take into account boundary conditions on the configuration
and velocity at the beginning and end of a step.

The initial and final configuration and velocity of the
robot for a single support phase are important for defining
the passage between the single and double support phases.
Because the terminal configuration of the robot is chosen
to be the instant before the double support configuration,
both legs are in contact with the ground and therefore
only seven independent variables are needed to describe this
configuration (a closed kinematic chain). These variables
parameterize the final configuration of the first step denoted
qf . The eight joint velocitieṡqf are independent and are also
added.

Knowing the final state of the single support phase, the
impact model (4) and (5) determines the initial state of the
ensuing single support phase. The symmetry condition (1)
then gives the initial state of the first step:qi, q̇i. The initial
orientation(qi)0,st of the robot is calculated such that the
orientation for the second step is symmetric to the orientation
for the first step in order that no yaw rotation is observed
during the nominal (periodic) gait.
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To obtain a periodic gait, the single support must be such
that the state of the robot evolves fromqi, q̇i to qf , q̇f . For
given desired initial and final state values, virtual constraint
can be easily deduced to join the desired values for the
actuated and controlled variables. However, the evolution
of the unactuated variables is known only by integration of
the dynamics (15); a desirable dynamic behavior is imposed
on these variables by the use of equality and inequality
constraints in the optimization process.

B. Specifics

Here, Bezier polynomials of degree3 are chosen to define
the virtual constraints3. The virtual constraints are expressed
as functions of the variableθ; see (8). Fromqi and qf ,
the initial and final values ofθ, denotedθi and θf , can be
calculated. Let

hd(θ) =
3∑

k=0

αk

3!

k!(3 − k)!
sk(1 − s)3−k, (16)

where
s =

θ − θi

θf − θi

(17)

is the normalized independent variable. The coefficients of
the Bezier polynomials,αk, are (6 × 1) vectors of real
numbers. They must be determined so as to join(qi)a

to (qf )a and (q̇i)a to (q̇f )a, (the additional subscript “a”
denotes the actuated variables) whenθ varies fromθi to θf ,
yielding

α0 = hd(θi) = (qi)a

α1 = (qi)a +
θf−θi

3
∂hd

∂θ
(θi) = (qi)a +

θf−θi

3
(q̇i)a

θ̇i

α2 = (qf )a −
θf−θi

3
∂hd

∂θ
(θf ) = (qf )a −

θf−θi

3
(q̇f )a

θ̇f

α3 = hd(θf ) = (qf )a.
(18)

The evolution of the unactuated variables is calculated by
integration of the dynamic subsystem (15), that is, the stance
phase zero dynamics, starting from the initial state(qi)u =
[(qi)1, θi]

′ and terminating atθ = θf , where(qi)1 denotes
the initial value ofq1 for the first step.

When the evolution of the unactuated variables is calcu-
lated, because the evolution of the actuated variable is given
by (7) and (16), the required torque can be calculated by the
second line of equation (13), and the ground reaction force
Fst expressed in the inertial reference frame (see Fig. 1) can
be calculated as well.

The search for a periodic walking motion can now be cast
as a constrained nonlinear optimization problem: Find the 15
optimization parameters prescribing(qf , q̇f ) that minimize
the integral-squared torque per step length,

J =
1

L

∫ T

0

u∗
′

u∗dt, (19)

whereT is the walking period andL is the step length, while
satisfying symmetry (1), and subject to the following:
inequality constraints

3A degree greater than3 can also be chosen, in which case the number
of optimization variables increases [25].

• θ is strictly increasing (i.e,̇θ > 0 along the solution);
• the swing foot is positioned above the ground (zsw ≥

0);
• a no-take-off constraint,Fst(3) > 0;

• a friction constraint,
√

Fst(1)2 + Fst(2)2 ≤ µ Fst(3);
equality constraints
and a set of conditions imposing periodicity,

q1(T ) = (qf )1

q̇1(T ) = (q̇f )1

θ̇(T ) = θ̇f ,

whereq1(t) andθ(t) result from the integration of the zero
dynamics and the walking periodT is such thatθ(T ) = θf .

The above procedure can be performed in MATLAB with
theFMINCON function of the optimization toolbox. A fixed-
point solutionx∗ = [q∗f , q̇∗f ]′ minimizing J defines a desired
periodic walking cycle (or nominal orbit). The criterion being
optimized (19) has many local minima and the optimization
technique used is local. Thus, the obtained optimal periodic
motion depends on the initial set of optimization parameters.
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Fig. 4. Stick-diagram of the optimal motion with respect to the torque
criterion.

C. An example periodic motion minimizing integral-squared
torque

The physical parameters of the 3D biped studied here are
given in Table I. For these parameters, a periodic orbit was
computed following the technique presented in the previous
subsection. We obtained a periodic motion defined byx∗ =
(q∗f , q̇∗f ), where

q∗f = [−0.0174,−0.34038, 0.3820,−0.2940, 0.0602, 0.0487,

−0.5077, 0.1688]′,
q̇∗f = [−0.4759,−1.1825, 0.0997, 0.2785,−0.1000, 0.1000,

1.398, 0]′.

A stick-figure diagram for the first step of the periodic
walking gait is presented in Fig. 4. The walking gait has
a period ofT = 0.39 seconds, a step size ofL = 0.176m,
and an average walking speed of0.447 m/sec, or0.745 body
lengths per second. The step width is0.156m, close to the
hip width. The peak torque required to produce the periodic
motion is less than10Nm for each joint.
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g W L1 L2 L3 m1 m2 m3
9.81 0.15 0.275 0.275 0.05 0.875 0.875 5.5

TABLE I

PARAMETERS FOR THE3D BIPEDAL ROBOT (IN MKS).

VI. CREATING A HYBRID ZERO DYNAMICS

The stability of a fixed-pointx∗ can be tested numerically
by linearizing the Poincaré map about the fixed-point as
presented in [19]. This numerical stability test has a high
computational cost, however, because it requires the esti-
mation of the Jacobian of the Poincaré map, in a space of
dimension2n-1, wheren is the number of independent joint
coordinates; heren = 8. We propose a slight modification
of the control law in order to be able to study the stability of
the closed-loop system in a reduced-dimensional state space.

A. Hybrid zero dynamics (HZD) and a stability test in a
reduced space

The control law (10) is such that, on the periodic orbit, the
virtual constraints (7) are identically satisfied. However, off
the periodic orbit, even if the virtual constraints are satisfied
at the end of given step, they will not in general be satisfied4

at the beginning of the next step. Consequently, the behavior
of the robot cannot be deduced from the behavior of the
uncontrolled variablesqu and the simulation of the complete
model is required to predict the behavior of the robot. In the
language of [25], [27, Chap. 5], while the feedback control
law (10) has created a zero dynamics of the stance phase
dynamics, it has not created ahybrid zero dynamics, that is,
a zero dynamics of the full hybrid model (6).

If the control law could be modified so as to create a
hybrid zero dynamics, then the study of the swing phase zero
dynamics (15) and the impact model would be sufficient to
determine the stability of the complete closed-loop behavior
of the robot, thereby leading to a reduced-dimension stability
test. A modification of the control law to achieve a hybrid
zero dynamics was first proposed in [17]; a second more
easily implementable method has been given in [16], along
with a complete stability analysis.

Following [16], the virtual constraints are modified stride
to stride so that they are compatible with the initial state of
the robot at the beginning of each step. The new output for
the feedback control design is

yc = h(q, yi, ẏi) = qa − hd(θ) − hc(θ, yi, ẏi). (20)

This output consists of the previous output (7), and a
correction termhc that depends on (7) evaluated at the
beginning of the step, specifically,yi = qa,i − hd(θi) and
ẏi = q̇a,i −

∂hd(θ)
∂θ

θ̇i, where the subscript “i” denotes the
initial value for the current step. The values ofyi, ẏi are
updated at the beginning of each step and held constant

4This may be true for several reasons, one of which is that the virtual
constraints may not have been chosen to be compatible with the impact
map.

throughout the step. The functionhc is taken to be a three-
times continuously differentiable function ofθ such that5







hc(θi, yi, ẏi) = yi
∂hc

∂θ
(θi) = ẏi

θ̇i

hc(θ, yi, ẏi) ≡ 0,
θi+θf

2 ≤ θ ≤ θf .

(21)

With hc designed in this way, the initial errors of the output
and its derivative are smoothly joined to the original virtual
constraint at the middle of the step. In particular, for any
initial error, the initial virtual constrainthd is exactly satisfied
by the end of the step.

Under the new control law defined by (20), the behavior
of the robot is completely defined by the impact map and
the swing phase zero dynamics (15), wherehd is replaced
by hd + hc. The stability of a fixed-pointx∗ can now be
tested numerically using a restricted Poincaré map defined
from ρ : S ∩ Z → S ∩ Z, where Z = {(q, q̇)|yc(q) =
0, ẏc(q) = 0} andS is the switching surface. The key point
is that in S ∩ Z, the state of the robot can be represented
using only three independent variables,xz = [q1, q̇1, θ̇]′, and
hence the Jacobian of the restricted Poincaré map evaluated
at a fixed point is a3×3 matrix. From [16], forǫ sufficiently
small in (10),the exponential stability of a fixed-point of the
restricted Poincaŕe map determines exponential stability of
the full-order closed-loop robot model.

B. Example of the periodic motion minimizing integral-
squared torque

We consider the virtual constraints corresponding to the
optimal periodic motion obtained in Section V-C, and the
control law defined in (20) is used.

To study the stability of this control law around the
periodic motion, the eigenvalues of the linearized restricted
Poincaré map are computed yielding

λ1 = 0.8878

λ2 = −0.6951

λ3 = −2.0891

One eigenvalue has magnitude greater than one and hence
the gait is unstable under this controller.

We have found that for most periodic motions optimized
with respect to integral-squared torque per step length, (19),
the obtained gait is unstable under the control law defined
by (20). In the next section, freedom in the selection of the
controlled outputs6 is used to obtain a stable walking cycle
using only within-stride control.

VII. I MPROVED OUTPUT SELECTION

In the previous sections, the controlled variables driven
by the virtual constraints are simply the actuated variables,

5In our specific application, we used a fifth order polynomial for θi ≤

θ ≤
θi+θf

2
; continuity of position, velocity and acceleration is ensured at

θ =
θi+θf

2
.

6The controlled outputs are no longer the actuated variablesas in (10),
but a judiciously chosen linear combination ofq. A convenient choice of
outputs is given.
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qa; see (7). The choice of the controlled variables directly
affects the zero dynamics in (15). It is shown here that for the
same desired periodic motion, the stability of the closed-loop
system can be dramatically improved through a judicious
choice of the controlled variables.

A. Effect on the swing phase zero dynamics

For simplicity, we limit our analysis to the case of con-
trolled variables that are linear with respect to the configu-
ration variables. Thus the controlled variables are

qc = M





q1

θ
qa



 =
[

M1 Mθ Ma

]





q1

θ
qa



 , (22)

whereM is a (6 × 8) constant matrix withMa invertible.
A known periodic motionq∗(t) can be reparameterized7

as function of the variableθ, yielding q∗(θ). The virtual
constraint for the new controlled variables then yields the
output

y = M





q1

θ
qa





︸ ︷︷ ︸

h0(q)

−M





q∗1(θ)
θ

q∗a(θ)



 .

︸ ︷︷ ︸

hd(θ)

(23)

When the constraint is satisfied,y ≡ 0, equation (23)
allows us to solve forqa, giving

qa = q∗a(θ) + M−1
a M1 (q∗1(θ) − q1) . (24)

Substituting this equation into (14), we obtain for the swing
phase zero dynamics

D11(qu)

[
q̈1

θ̈

]

+ D12(qu)
(

∂ q∗

a

∂ θ
θ̈ +

∂2q∗

a

∂ θ2 θ̇2
)

+

D12(qu)M−1
a M1

(
∂ q∗

1

∂ θ
θ̈ +

∂2q∗

1

∂ θ2 θ̇2 − q̈1

)

+ H1(qu, q̇u) = 0.

(25)
The nominal periodic motion satisfies both equations (25)

and (15), but the two equations produce different solutions
away from the periodic motion. When the principle of virtual
constraints is applied to a system with only one degree of
underactuation, namelyθ, which is common for example in
planar bipeds, the swing phase zero dynamic is not affected
by the choice of the output, and therefore the stability of a
periodic orbit (i.e., walking motion) is not modified; only the
transient motion can be different. In the case of a system with
two degrees of underactuation, the choice of the controlled
output can affect the stability of the gait via the choice of
M−1

a M1.
In order to illustrate this property, a new choice of output

is proposed. This choice is based on the following physical
reasoning: The motion in the frontal direction is difficult to
stabilize. The position of the center of mass in the frontal
direction is important. If, at touchdown, the center of mass
is not between the feet, but outside the position of the next
supporting foot, the robot will topple sideways. Thus, the
control of the variableq6 (which regulates step width on the
swing leg) is replaced by the control of the distance between

7This assumes thatθ is monotonic.

the swing leg end and the center of mass along the frontal
direction. To obtain a linear output, this function is linearized
around the touchdown configuration to defineM in (23).

B. Example of the periodic motion minimizing integral-
squared torque

The periodic motion described in Section V-C can be
stabilized using the new controlled output. As mentioned in
the previous subsection, the actuated jointsq3, q4, q5, q7,
and q8 are controlled via virtual constraints just as in the
original control law. A new outputhd,4 is considered, with
this output no longer based onq6 but instead on distance
between the swing leg end and the center of mass along the
frontal direction.

For this trajectory, for support on leg 1, the linearization
aroundqf of the distance between the swing leg end and the
center of mass along the frontal direction yields

d = −0.457q1 − 0.020q2 − 0.018q3 − 0.020q4 − 0.489q5

+0.461q6 − 0.056q7 − 0.022q8.

On the periodic orbit, this distance is evaluated and approxi-
mated by a function ofθ, denotedd∗(θ). The new controlled
output is then

y4 = −0.457q1 − 0.020q2 − 0.018q3 − 0.020q4 − 0.489q5

+0.461q6 − 0.056q7 − 0.022q8 − d∗(θ).
(26)

When the control law is defined using this new output, the
walking gait is stable, as can be shown via the calculation of
the eigenvalues of the linearization of the restricted Poincaré
map:

λ1 = 0.7846

λ2,3 = −0.028± 0.250i

|λ2,3| = 0.2512.

To illustrate the orbit’s local exponential stability, the3D
biped’s model in closed-loop is simulated with the initial
state perturbed from the fixed-pointx∗. An initial error of
−1◦ is introduced on each joint and a velocity error of
−5◦s−1 is introduced on each joint velocity. Fig. 5 shows
phase-plane plots of the first four variables. The convergence
towards a periodic motion is clear for the controlled and
uncontrolled variables.

VIII. C ONCLUSIONS

An underactuated 3D bipedal model has been studied, with
the objective of developing a time-invariant feedback control
law that induces asymptotically stable walking, without rely-
ing on the use of large feet. The method of virtual constraints
and hybrid zero dynamics was applied to the 3D robot, with
the virtual constraints chosen via optimization as suggested
in [26]. The main contributions of the paper are:

1) The computation of human-like periodic walking mo-
tions that can be stable or unstable, depending on the
choice of actuated variables and corresponding virtual
constraints.
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Fig. 5. Phase-plane plots forqi, i = 1, . . . , 4. The straight lines correspond
to the impact phase, where the state of the robot changes instantaneously.
The initial state is represented by a (red) star. Each variable converges to a
periodic motion.

2) The numerical study of stability on the basis of a low-
dimensional subsystem corresponding to the hybrid
zero dynamics. The Poincaré return map was computed
in a space of dimension three for a robot with two
degrees of underactuation.

3) The discovery of the importance of the selection of the
controlled outputs on the stability of a given periodic
motion.

When the method of virtual constraints is applied to
a bipedal model with only one degree of underactuation,
which is common for example in planar bipeds, the swing
phase zero dynamic is not affected by the choice of the
output, and therefore the stability of a periodic orbit (i.e.,
walking motion) is unaffected by the choice of the controlled
output; only the transient motion can be different. In the
case of a biped with two degrees of underactuation, as in an
underactuated 3D biped, the choice of the controlled output
can affect the stability of the hybrid zero dynamics. A more
systematic study of this property is needed.
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