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Common Control Approaches to
Biped Walking

Tracking trajectories and modifications thereof

» Algorithms: PID, Computed torque, Sliding modes
* Modifications:

Zero moment point [Honda], Intuitive control [Pratt et al. '01] Track center of mass
location[Kajita et al. '96, Mitobe et al.’95, Fujimoto and Kawamura '98,,.Use of

angular momenturfSano and Furusho '90, Aoustin and Formal’sky '99, Furusho and

Masubuchi '86]

» Trajectories obtained via:
Analogy with biological systems [Honda, VVukobratovic '90], Analogy with simpler
(passive) robotiMicGeer '90, Thuilot et al. ‘97, Linde '98] van der Pol, et¢Katoh and
Mori '84], Optimization[Cabodevilla et al. '96, Cheallereau et al. '01, Rostami and
Bessonnet '01, Hasegawa et al. ‘00, Hardt '99, ...]

None of these has led to a stability proof!
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Control Presentation Highlights

Introduce a common framework for the systematic
design, analysis, and performance enhancement
of controllers that induce stable walking motions.

Outline of Presentation

— Feedback design approach
* walking at afixed rate
* walking at multiple rates
— Experiments
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The Model:
System with Impulse Effects

z(t) = f(=z(t)) «@)¢gS
z (1) Az (1)) =z~ () e s

et () = lim ¢ z(7) (1) :==1im, »yz(7)

S = {z € X | swing leg contacts the ground}

Stable walking
&
Asymptotically stable limit cycle (transversa to )
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A Stability Analysis

(Poincare)
P:S—S

/A

2N -1 2N -1

stable unstable

1 1
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Recall Standard Feedback Design

e = yq(t) —y(t) robot state slaved to time
e=0 = y(t) =yu(t)

Y 1
Tragglory | ya() e u .
G%or + I " Jg > y(t)
A x |
Remove time
dependence
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Virtual Constraints

|dea:
dave the actuated variables to the unactuated variable
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Virtual Constraints

|dea:
slave theactuated variable® theunactuated variable

Impose virtual constraints—replacetime with 8(q)

—

reduction of dimensior
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(do virtual constraint demo now)

17 Eric Westervelt (The Ohio State University) and Jessy Grizzle (University of Michigan)

Recall Standard Feedback Design

e = yq(t) —y(t) robot state slaved to time
e=0 = y(t) =yu(t)

Y 1
Tragglory | ya() e u .
G%or + r " Jg > y(t)
A x |
Remove time
dependence
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Our Approach to Feedback Design

(controlling for analytical tractability)

y = ho(q) — hq(0(q)) robot state slaved to the robot state
y=0 = holq) = hy(6(q))

hq(0(q)) |e
0(q)
Traggfory oY Y >
GaX()r - ] ” A > ho(9)
+
A z |
Remove time
dependence

ldeaalso present in [Kgjitaet al., '92; Hurmuzlu, '93; Ono ‘01]
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Our Approach to Feedback Design

(controlling for analytical tractabilitv)

y = ho(q) — hq(0(q)) robot 9
y=0 = holq) = hq(0(q))

hy (0

Tragglory
Ge tor

Removetime
dependence

Idea also presen ‘01
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Choosing what to Control?

angular VS. “Cartesian”
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Control Design Summary:
Imposing Constraints via Feedback

¢ = f(z)+g(@)u y = Lgsh
y = h(q) = ho(q) — hg(8(q)) j = L3h+ LyLshu

decoupling matrix

Design: y = h(q) such thaty =0
encodes the desired posture as a
function of 46(q) ...

Thm: L,L,n invertibleD can
use computed torque control

...AND so that the decoupling | |« = (Lgth)_l (v—L3n)

matrix is invertible. 5=
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(back to demo, now restriction dynamics)
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Constraints Yield
Single Support Zero Dynamics

o - 1(¢)
achieving control objective
y=0 = holq) = hq(6(q)) 1
- ‘| o 1 dof
imposing VIRTUAL constraints &
1
reduction of dimension T TTTTZTTT7777

Working definition of Isidori-Moog 1988
“Largest internal dynamics compatible witfft) = 0”

Z = {zg€TQ | Ju such that y(t, zg,u) =0}

= {20 cTQ | h(z) =0, Lsh(z) =i =0,
LyL¢h invertible}
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The Geometry

Problem 1: Zero-
dynamics manifold
iISNOT invariant for
the hybrid model.

Problem 2:
Return map is
hard to compute!

Z =2dim. surface
SNz

_ _ 1 dim. surface
Swing Foot Height =0

(2N - 1) dim. surface
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Analytical Development: Zero Dynamics Form
[Westervelt et al. TAC Jan. '03]

. __ Lagrangian of the swing
L=K-V= phase model

-1

Theorem: £1(z1) and x5(z;) havethefollowing forms

z = f(z)+g9(=@)u
y = h(z)=0

k1(z1)22

atod 00

) ro(z1)

ov
ko(z1) '= ———

8027110
q | Yo z N
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Hybrid Zero Dynamics

& = [f(z)+g(@)u P,
ot = g —
y = h(z)=0 + Al -

Working definition of Isidori-Moog 1988
“Largest internal dynamics compatible witft) = 0”

Zeroing the output should lead to a zero dynamics.

How does the impact map show up?
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Stability Analysis with Invariance
[Westervelt et al. TAC Jan. '03]

Key 1: Zero-dynamics
manifold isinvariant
for the hybrid model.

ASNZ)yCcZ

1dim. surface

Key 2: Return
map is scalar
& LTI

Z =2dim. surface
SNz

_ _ 1 dim. surface
Swing Foot Height =0

(2N - 1) dim. surface
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HZD: An “Equivalent” Hybrid System
[Westervelt et al. TAC Jan. '03]

 Thm: Condition to have a zero dynamics for the full (hybrid)
model:

hoAlSﬁZ = 0

A(SNZ Z &
( )C thOA|SﬁZ = 0

» Under this condition, solutions of the zero dynamics are also
solutions of the complete model compatible wita 0.

2 = fzero(z) z §é SN2
¥ = A@GD) z- €SNZ
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HZD: An “Equivalent” Hybrid System
[Westervelt et al. TAC Jan. '03]

. = f(z)+g@u z7¢5
T = A(x) z— €S + A(SNZ)Cz =
v h{g) =0 (invariance)
(an N dof hybrid system)
% = fzero(z) z g SNz

zt = A@GD) z-eSNZ

(1 dof hybrid system)
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HZD Integration
[Westervelt et al. TAC Jan. '03]

Montonicity of z;(¢t) implies

[ 21 ] _ [ r1(z1)22 ] L G k2(x1)

i ) ro(z1) dzy k1(z1)22
o+ g -
ZQdZQ = KQ(Zl)dZ]_ 0 - o A
k1(z1)
= )
(25)2 _ (3)? /Zl fﬁz(s)d
2 2 27 k1(s)

!

(almost the Poincaré map for the HZD)
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HZD Integration — HZD Poincaré Map
[Westervelt et al. TAC Jan. '03]

With invariancer: s —-S becomp:SnZ —SnZz

Theorem: p(¢5) = 820 ¢5 — Vzero(21)

(22)° _ (23 )2 /~1 r2(s) |
2 2 2] I‘u]_(b)

6%ero = v0(q™) A(q0) o4(ag)

/
Vzero(z1) = —/j_l %QESids last row of /
A RIS inertial matrix velocity on 5 2
G = 3(23)?
+ . 52 - velocity impact map
CQ T zeroCz
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HZD Integration — HZD Poincaré Map

[Westervelt et al. TAC Jan. '03]

Withinvariance P: S — S becomes p:SNZ —SnZ

Theorem: p(¢5) = 6%er0C5 — Vzero(21)

Domain of definition:  {¢; >0 | 62,0 ¢z — Vzeromax > 0}

Vzero,max 1= max  Vzero(z1)
Ot <z1<H~
. . \% T
Fixed point: ¢ = _ﬁ(;l)
1 — 6Zero
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HZD Integration — HZD Poincaré Map
[Westervelt et al. TAC Jan. '03]

Poincaré map: p(¢;) = 820 ¢y — Vzero(21)

'

p(¢y) 4

Vzero,max ¢35 $2
2
0Zero
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HZD Poincare Map Relation to full Hybrid model
[Westervelt et al. TAC Jan. '03]

z = fzero(z) z §é SN2
¥ = A@D) z €SNZ

Theorem: There exists an exponentially stable periodic orbit
of the hybrid zero dynamicsif, and only if,

52 -
a) 1 _2?20 Vzero(z7 ) + Vzero,max < 0
Zero

b) 6226 ro <1

Theorem: Above orbit is exponentially stabilizable for the
full-order model.
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Using HZD for Controller Design
[Westervelt et al. TAC Jan. '03]

* Finitely parameterize the outputs (we Gseier
Polynomialy: y = ho(q) — ha(0(q),a)

* Impose invariance condition: A(SN Zg) C Z,

» Stability guaranteed if, and only if, two inequality
constraints hold:

a) Szero(a)?

mvzero(zfa a) + Vzeromax(a) < 0
— d0zero

b) (gero(a) <1
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Using HZD for Controller Design
[Westervelt et al. TAC Jan. '03]

Bezier Polynomial: »:[0,1] - R
hq(0(q)) := b(s) 0 8(q)

b(s) = Lozz MU i = M-

! — 1
) ) o4l i ]
6(q) isanormalized to ~ 02| _ _
be between 0 and 1: S ofi ]
_ 0(a) — o+ < : i E :
o= —0 086 }.5. 0
- —‘--gt‘.(]
-0.8 " i
step start mid stride step enc

0(q)
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Using HZD for Controller Design
[Westervelt et al. TAC Jan. '03]

Achieve performance by tuning parameters via optimization
on 1 dof model, subject to previous constraints.

2 = fazero(z) 2z ¢SNZ
n v _ ¢ Ja) = ng || (8)]]2dt

zT = Ag(z7) z= € SNZ,

4000

3500

Can include: g

£ 2500

« dynamic constraints £ 200

« kinematic constraintg ~ *

500

00 0.5 1 15 2 25 3

torque (Nm)
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Using HZD for Controller Design
[Westervelt et al. TAC Jan. '03]

Achieve performance by tuning parameters via optimization
on 1 dof model, subject to previous constraints.

z = fazero(z) 2T ¢ SN Zg

J(a) == 51— & luz ()] |2dt
o= D) esnze T gan o el

00.0 sec 00.0 sec
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Movie: Walking at a fixed rate 0.7 m/s

RABBIT_walking 0.7ms no_wheels HIGH.wmv

Available at:
http://www.mecheng.osu.edu/~westerve/thesis_documentation/movies/March03/RABBIT_walking_0.7ms_no_wheels HIGH.wmv
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Movie: Robustness demonstration

RABBIT_perturbation HIGH.wmv

Available at:
http://www.mecheng.osu.edu/~westerve/thesis_documentation/movies/MarchO3/RABBIT_perturbation HIGH.wmv
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&

=\ jointfriction
boom

trenches
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Experimental Reality

 Joint friction & boom dynamics included into model
* Trenches— rubber & wood

Poincaré map: p(¢3) = 8%ro o — Vzero(21)

1.1
1.05
1
0.95
0.9
0.85
0.8

<2 — 2
0%ero ‘= adzer0  — 3

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

v m/s
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Experimental Reality

« Joint friction & boom dynamics included into model
» Trenches— rubber & wood
Poincaré map: p((3) = 820r0 G5 — Vzero(21)
p(Cy) 4

2 — 2
0%ero ‘= adzero  —
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Additional Tools
[Westervelt et al. TAC Feb. '03]

1) Provably stable composition of walking motions
e.g., switching from 0.75 m/sto 0.85 m/s

2) Walking at a continuum of rates

eg., € (v* — 6,7+ 9)
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Composition of Walking Motions

Introduce controller to transition from domain of one
Poincaré map to another

f—-"—“— ‘-»\M

/

A(SN Za)

¥ Py

/ : :
- /
SN Zg m\\//

(0.75 m/s)
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Composition of Walking Motions

Introduce controller to transition from domain of one
Poincaré map to another

A(S N Z
A(Sﬁ Za) ( \ b)

SﬂZb

(0.75 m/s) (1.0 m/s)
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Composition of Walking Motions

Introduce controller to transition from domain of one

Poincaré map to another

A(S N Za) A5 Zy)

SN Zb
(0.75 m/s) (LOMs)
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P(O)

Transition Controller & Stability Proof
Za Zb
=
— Transition WITH stability e—
7 (/e
6 Fa—p 6
ra i a% [_b
07 0 [ b
a% ag + _|_( — (18) aq
a$ —0a ab
1 (-l—l—ab 1
GG =2 M2
- b
afr_1 ab; + Z* Z‘;(aM 1—d%y) apr 1
afy ab a%y
M
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P(O)

Zq

Transition Controller & Stability Proof

e O\

Zy

P(O)

Transition WITHOUT
Stability Guaranteed
I—a—>b
_ 8
0, —04 48
ao + o, — 0.1_( 0)
a ab
LS =2, M -2
+ ° 0@ (aM 1 “?w)
a?w
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Movie: Transitioning

RABBIT _transitioning HIGH.wmv

Available at:
http://www.mecheng.osu.edu/~westerve/thesis_documentation/movies/M arch03/RABBIT_transitioning_HIGH.wmv
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Event-Based Pl Control
Key Idea:

Use the parameters of the within-step controller as
control knobs

* Do not destroy invariance
» Modify “posture” to change speed

Within-Step Robot
Controller (Avg. Vel.)
ll Pl a(k) rxa(k) 0 $ v
Control i (torque)
[ Impact o
Detector (robot's state)
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Event-Based Pl Control

Well dined relative degree + exponentially stable
equilibrium point yields:

2(k+1) = p(z(k)a+daw(k)) e(k+1) = e(k)+ (" —nk))

n(k) = v(z(k)) w(k) = Kp @ —n(k)) + Kre(k)
Within-Step Robot
Controller (Avg. Vel.)
S PO e f— -
X,a
Control (torque)
[ Impact -
potecion (robot's state)
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Putting It All Together:
Variable Speed Profile

* Transition control
 Event-based PI control 00.0 sec

----- ' commanded

5 10 15 20 25 30
step number
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Movie: PI, Rejecting a disturbance

RABBIT_perturbation regjection HIGH.wmv

Available at:
http://www.mecheng.osu.edu/~westerve/thesis_documentation/movies/M arch03/RABBIT _perturbation rejection HIGH.wmv
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Movie: PI, Stopping

RABBIT_stopping_HIGH.wmv

Available at:
http://www.mecheng.osu.edu/~westerve/thesis_documentation/movies/M arch03/RABBIT_stopping_HIGH.wmv
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Conclusions

 Introduced a common framework for the systematic,
design analysis andperformance enhancemeoft
controllers that induce stable walking motions...

...via hybrid zero dynamics: an invariant suynamic
of the hybrid robot model

* Developed tools for the composition of controllers an
the modification of fixed points

« Initial experiments illustrate the practicality of the
approach
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