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Common Control Approaches to 
Biped Walking

Tracking trajectories and modifications thereof

• Algorithms:  PID, Computed torque, Sliding modes

• Modifications:
Zero moment point [Honda], Intuitive control [Pratt et al. ’01], Track center of mass 
location [Kajita et al. ’96, Mitobe et al.’95, Fujimoto and Kawamura ’98, …], Use of 
angular momentum [Sano and Furusho ’90, Aoustin and Formal’sky ’99, Furusho and 
Masubuchi ’86]

• Trajectories obtained via:
Analogy with biological systems [Honda, Vukobratovic ’90], Analogy with simpler 
(passive) robots [McGeer ’90, Thuilot et al. ’97, Linde ’98],  van der Pol, etc. [Katoh and 
Mori ’84], Optimization [Cabodevilla et al. ’96, Cheallereau et al. ’01, Rostami and 
Bessonnet ’01, Hasegawa et al. ’00, Hardt ’99, …]

None of these has led to a stability proof!
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Introduce a common framework for the systematic 
design, analysis, and performance enhancement

of controllers that induce stable walking motions.

Control Presentation Highlights

Outline of Presentation

– Feedback design approach

• walking at a fixed rate

• walking at multiple rates

– Experiments
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The Model:
System with Impulse Effects

Stable walking
�

Asymptotically stable limit cycle (transversal to S)
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A Stability Analysis
(Poincaré)

stable unstable
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Recall Standard Feedback Design

X
Remove time 
dependence

robot state slaved to time
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Idea:
slave the actuated variables to the unactuated variable

Virtual Constraints
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Impose virtual constraints—replace timewith θ (q)

→

reduction of dimension

Virtual Constraints

Idea:
slave the actuated variablesto the unactuated variable
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(do virtual constraint demo now)
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Recall Standard Feedback Design

X
Remove time 
dependence

robot state slaved to time
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robot state slaved to the robot state

X
Remove time 
dependence

Our Approach to Feedback Design
(controlling for analytical tractability)

Idea also present in [Kajita et al., ’92; Hurmuzlu, ’93; Ono ‘01]
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robot state slaved to the robot state

X
Remove time 
dependence

Our Approach to Feedback Design
(controlling for analytical tractability)

Idea also present in [Kajita et al., ’92; Hurmuzlu, ’93; Ono ‘01]
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Choosing what to Control?

angular                  vs.            “Cartesian”
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Control Design Summary:
Imposing Constraints via Feedback

Design: such that 
encodes the desired posture as a 
function of         …

…AND so that the decoupling
matrix is invertible.

decoupling matrix

Thm:             invertible ⇒ can 
use computed torque control:



8

23 Eric Westervelt (The Ohio State University) and Jessy Grizzle (University of Michigan)

(back to demo, now restriction dynamics)
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Constraints Yield
Single Support Zero Dynamics

achieving control objective

⇔
imposing VIRTUAL constraints

→
reduction of dimension

Working definition of Isidori-Moog 1988
“Largest internal dynamics compatible with  y(t) ≡ 0”

1 dof
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The Geometry

1 dim. surface
Swing Foot Height = 0
(2N - 1) dim. surface

Z = 2 dim. surface

Problem 1:  Zero-
dynamics manifold 
is NOT invariant for 
the hybrid model.

Problem 2:  
Return map is 
hard to compute!
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Analytical Development:  Zero Dynamics Form
[Westervelt et al. TAC Jan. ’03]

Lagrangian of the swing 
phase model

Theorem:               and              have the following forms
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Hybrid Zero Dynamics

=  ?+

Zeroing the output should lead to a zero dynamics.

How does the impact map show up?

Working definition of Isidori-Moog 1988
“Largest internal dynamics compatible with  y(t) ≡ 0”
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Stability Analysis with Invariance
[Westervelt et al. TAC Jan. ’03]

1 dim. surface

Key 1:  Zero-dynamics 
manifold is invariant 
for the hybrid model.

Key 2:  Return 
map is scalar

& LTI!

1 dim. surface
Swing Foot Height = 0
(2N - 1) dim. surface

Z = 2 dim. surface
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• Thm: Condition to have a zero dynamics for the full (hybrid) 
model:

• Under this condition, solutions of the zero dynamics are also 
solutions of the complete model compatible with y ≡ 0.

HZD:  An “Equivalent” Hybrid System
[Westervelt et al. TAC Jan. ’03]
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HZD:  An “Equivalent” Hybrid System
[Westervelt et al. TAC Jan. ’03]

=+

(1 dof hybrid system)

(an N dof hybrid system)

(invariance)
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HZD Integration
[Westervelt et al. TAC Jan. ’03]

(almost the Poincaré map for the HZD)

Montonicity of             implies 
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With invariance                    becomes

velocity impact map

last row of

inertial matrix

Theorem:

velocity on

HZD Integration � HZD Poincaré Map
[Westervelt et al. TAC Jan. ’03]
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Domain of definition:

With invariance                    becomes

Theorem:

HZD Integration � HZD Poincaré Map
[Westervelt et al. TAC Jan. ’03]

Fixed point:
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HZD Integration � HZD Poincaré Map
[Westervelt et al. TAC Jan. ’03]

Poincaré map:
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Theorem:  There exists an exponentially stable periodic orbit
of the hybrid zero dynamics if, and only if,

a)

b)

Theorem: Above orbit is exponentially stabilizable for the
full-order model.

HZD Poincaré Map Relation to full Hybrid model  
[Westervelt et al. TAC Jan. ’03]
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• Finitely parameterize the outputs (we use Bezier 

Polynomials):

• Impose invariance condition:

• Stability guaranteed if, and only if, two inequality 
constraints hold:

a)

b)

Using HZD for Controller Design
[Westervelt et al. TAC Jan. ’03]
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Using HZD for Controller Design
[Westervelt et al. TAC Jan. ’03]

is a normalized to 
be between 0 and 1:

Bezier Polynomial:
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Using HZD for Controller Design
[Westervelt et al. TAC Jan. ’03]

Can include:

• dynamic constraints

• kinematic constraints

Achieve performance by tuning parameters via optimization 
on 1 dof model, subject to previous constraints.
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Using HZD for Controller Design
[Westervelt et al. TAC Jan. ’03]

Achieve performance by tuning parameters via optimization 
on 1 dof model, subject to previous constraints.
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Movie:  Walking at a fixed rate 0.7 m/s

RABBIT_walking_0.7ms_no_wheels_HIGH.wmv

Available at:
http://www.mecheng.osu.edu/~westerve/thesis_documentation/movies/March03/RABBIT_walking_0.7ms_no_wheels_HIGH.wmv
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Movie: Robustness demonstration

RABBIT_perturbation_HIGH.wmv

Available at:
http://www.mecheng.osu.edu/~westerve/thesis_documentation/movies/March03/RABBIT_perturbation_HIGH.wmv
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Experimental Reality

boom

trenches

rubber & wood

joint friction
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Experimental Reality

• Joint friction & boom dynamics included into model
• Trenches � rubber & wood

m/s

Poincaré map:
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Experimental Reality

• Joint friction & boom dynamics included into model
• Trenches � rubber & wood

Poincaré map:
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Additional Tools
[Westervelt et al. TAC Feb. ’03]

1) Provably stable composition of walking motions

e.g.,  switching from 0.75 m/s to 0.85 m/s

2) Walking at a continuum of rates

e.g.,
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Composition of Walking Motions

Introduce controller to transition from domain of one 
Poincaré map to another

(0.75 m/s)
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Composition of Walking Motions

Introduce controller to transition from domain of one 
Poincaré map to another

(0.75 m/s) (1.0 m/s)
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Composition of Walking Motions

Introduce controller to transition from domain of one 
Poincaré map to another

(0.75 m/s) (1.0 m/s)



21

56 Eric Westervelt (The Ohio State University) and Jessy Grizzle (University of Michigan)

Transition Controller & Stability Proof

Transition WITH stability
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Transition Controller & Stability Proof

Transition WITHOUT 
Stability Guaranteed
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Movie:  Transitioning

RABBIT_transitioning_HIGH.wmv

Available at:
http://www.mecheng.osu.edu/~westerve/thesis_documentation/movies/March03/RABBIT_transitioning_HIGH.wmv

59 Eric Westervelt (The Ohio State University) and Jessy Grizzle (University of Michigan)

Event-Based PI Control
Key Idea:

Use the parameters of the within-step controller as 
control knobs

• Do not destroy invariance
• Modify “posture” to change speed
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Event-Based PI Control
Well- defined relative degree + exponentially stable 
equilibrium point yields:
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Putting It All Together:
Variable Speed Profile

• Transition control
• Event-based PI control

commanded

achieved
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Movie:  PI, Rejecting a disturbance

RABBIT_perturbation_rejection_HIGH.wmv

Available at:
http://www.mecheng.osu.edu/~westerve/thesis_documentation/movies/March03/RABBIT_perturbation_rejection_HIGH.wmv
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Movie:  PI, Stopping

RABBIT_stopping_HIGH.wmv

Available at:
http://www.mecheng.osu.edu/~westerve/thesis_documentation/movies/March03/RABBIT_stopping_HIGH.wmv
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Conclusions

• Introduced a common framework for the systematic, 
design, analysis, and performance enhancementof 
controllers that induce stable walking motions…

…via hybrid zero dynamics:  an invariant sub- dynamic 
of the hybrid robot model

• Developed tools for the composition of controllers and 
the modification of fixed points

• Initial experiments illustrate the practicality of the 
approach


