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Outline

Why is bipedal locomotion a hard problem
Heuristics and the ZMP principle

What is RABBIT & why this morphology
Systematic derivation of planar models

— Lagrangian dynamics for SS (continuous portion)

— Rigid impact model for DS (discrete portion)
— System with impulse effects

Automating model computations within MATLAB
— Files available online at :

I www.eecs.umich.edu/~grizzle/CDC2003Workshop/ I
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Why biped locomotion is hard

Inherent difficulties:

1. High DOF system with low DOF task
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Why biped locomotion is hard

Inherent difficulties:

1. High DOF system with low DOF task

2. Effectively underactuated [kajita '96]
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Why biped locomotion is hard

Inherent difficulties:

1. High DOF system with low DOF task

2. Effectively underactuated [kajita '96]

VAN
3

Normal gait human gait has underactuated phases

]
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Why biped locomotion is hard

Inherent difficulties:

1. High DOF system with low DOF task

2. Effectively underactuated [kajita '96]

3. Static instability during swing phase

------------.‘
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Why biped locomotion is hard

Inherent difficulties:

1.

2.

High DOF system with low DOF task
Effectively underactuated [kajita '96]
Static instability during swing phase

Desire periodic motions that are stable
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Why biped locomotion is hard

Inherent difficulties:

1.

2.

High DOF system with low DOF task
Effectively underactuated [kajita '96]
Static instability during swing phase

Desire periodic motions that are stable

Impacts and/or nontrivial double
support phase
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Conseguence: Impressive Advances in
Mechanisms, but status quo in Control Notions

" Jogging Johnnie Control Architecture
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Control Block Diagram

ZMP: "Stability” is determined by the trajectory
generator and NOT the within-stride feedback loop.

Trajectory r o ”
Generator + Y _

ZMP “Principle”
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ZMP Principle (Heuristic)

fully actuated 'TPA A underactuated

Minority View: Inherent Complexity
does NOT Render Analysis Impossible!

» Carefully develop low level behaviors
» Obtain complex behaviors via composition
of simpler behaviors
— Koditschek (Michigan)
— Krishnaprasad (Maryland)
— The present workshop

» See also Workshop M-4: “Motion
Description Languages for Multi-Modal

Control”, CDC 2003
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RABBIT: Simplest Mechanism Capable of
Quasi-Anthropomorphic Gait

Sagittal plane
dynamics
Two legs, knees, torso

No feet = No ZMP =
Need control theory!
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ROBEA: Robotique et Entités Atrtificielles
(1997)

— Supported by CNRS and links seven French
laboratories

» Gabriel Abba, Carlos Canudas-de-Wit, C. Chevallereau, ....

— Michigan joined in late 1998 through a sabbatical in
Strasbourg; NSF support came in September 2000

— Themes:
modeling of underactuated systems, systems with impacts
dynamic gaits (fast walking and running)
optimal motions

« control of underactuated & hybrid systems

* experimentation
— Robot named RABBIT:

* LAG: Laboratoire Automatique de Grenoble

» See Carlos Canduas-de-Wit for details! —
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RABBIT Prototype

swing leg

\ / stance leg

/

4 actuators and 5 links 32 kg mass and 1.425 m tall
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Robot Model: SS + DS = Hybrid

Normal walking: /g L

... S§, DS, SS, DS, ...

SS — Single Support DS — Double Support

/
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Robot Model: SS + DS = Hybrid

Normal walking: /g

... S5, DS, SS, DS, ...

SS — Single Support DS — Double Support

/ /

Lagrangian Dynamics Impact Dynamics
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Lagrangian Dynamics

Lagrange’s Equation

doL oL __ —
qok_oh—r L=K-V

K = Kinetc Energy
V = Potential Energy

I = Forces & Torques

Typical Form in Robotics

\D(q)q + C(g,9)q + G(q) = By
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Computing the Lagrangian

» Basic Assumptions in SS
— Stance leg acts as a pivot

— Swing leg is not interacting
with the ground

— Rigid links, rigid joints, no joint
friction,...

» Five Degrees of Freedom
— need 5 generalized coordinates
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Computing the Lagrangian

Define a reference (world) frame and
a set of five generalized coordinates.

q1
a2

a4
a5
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Computing the Lagrangian

» For each link, assign
coordinates to
— the center of mass

g
Y;

— and the angle of the
link with respect to the
world frame

a

4;
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Computing the Lagrangian

» And express these as a
function of the generalized
coordinates, q

— the center of mass

1)- (401

Y y§(q)

— angle of the link with
respect to the world frame

[eEdleY

a

gt = q¢%(q)
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Computing the Lagrangian

» By the chain rule
— velocity of center of mass

.C 027(q)
Ty | _ Fi) .
s ayfgq) 4
k3 7
dq

— angular velocity of link

. 093(q) .
4 = =54
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Computing the Lagrangian

Kinetic Energy of i-th Link

K; = Smy (92 + (59)2) + 31,660)°
K; = 3¢"Di(9)

Potential Energy of i-th Link

Vi = mugys

Vi = migyf(q)
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Computing the Lagrangian

Total Kinetic Energy

K=Y% K =3"D(g)d

Total Potential Energy

V= Z?Zl Vi
Lagrangian
L=K-V
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Dynamic Model in SS

Lagrange’s Equation

Form of the Equations

D(q)i+ C(q,4)q+ G(q) = Bu

Underactuated: 5 DOF & 4 Controls
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A Property of the SS Model

Coordinates: 4 relative and 1 absolute

doL _ oL _ ) u k=14
dtaqk an 0 k=5
Ogs = 0 cyclic coordinate

o=32_1dsx(q1, ", qa)

A
g = aq5(Q)
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A Property of the SS Model

Coordinates: 4 relative and 1 absolute

w k=1,---,4

d0L 0L _

didgy gy 0 k=5

0K __ ; ;

o5 — 0 cyclic coordinate 4

o= ==
0ds

o=52_1ds (a1, qa)

_ oV Alternate choice of
& = —545(0 | the absolute coordinate
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Robot Model: SS + DS = Hybrid

Normal walking:

SS, DS, SS, DS,

SS — Single Support DS — Double Support

D(@)d+ Cle(@)q+ G(q) =

\ /

jointangles  motor torques ,
& velocities
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Terms in the Model...Oh my!

2P P B T P T P TR g T )

Desalae) = '2?”:I~Urf~f cos (gq) — Iy — I — ML
D.sala.) = —pMMLycos(qs) — 2p)' M,Ljeos(ay)
+Iy + 20 + I + 2M, L}

Desalae) = p" MiLpeos(ga) — It

Desslge) = 'ZJA;UM,L; cos (g3) 2};“' MLy cos(q)
+lg + 2y + 21, + ML LG
Desglae) = MiLpcos(qa+gs)

+MLycos(qr — g2+ s + gs)
P M, cos (g1 — gz + g3 — qa + a5)
P Mycos (g —az+ s+ qs)

+cos(q +gqs + qg'\;u‘,”M;
+pY M cos (g2 +4s) — p M, cos (gs)
Desr(ge) = ~MiLysinigs+aqs)
MLysin{q — g2 +as +q5)
+pM M, sin (g — gz + 45 — 1 + 05)

sin (g1 + g5 + g5) i My

[f! My sin (g — g2 +qa + gs)

M o M i1 (e )
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Dugalae) = I +T;+Ip+ML3 — %Y MLy cos(g,)

D7 df
Dery
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Using MATLAB to Obtain the
Model

» Very convenient to derive model, compute
control laws, and perform simulations in a
common environment:

—we have been using MATLAB

— model derived using SYMBOLIC TOOLBOX

— m-files for ODEA45 or Simulink are
automatically generated from the symbolic
computations

—relevant files can be downloaded at

I www.eecs.umich.edu/~grizzle/CDC2003Workshop/ I

Dec. 7, 2003 Maui, Hawaii Feedback Control of Bipedal Walking Robots, 6rizzle, Canudas-de-Wit, Westervelt, and Spong

Robot Model: SS + DS = Hybrid

Normal walking: /g L

... S§, DS, SS, DS, ...

SS — Single Support DS — Double Support

[

[D()q+ C(q. )3+ G(¢) = By | Impact Dynamics

l \\&//
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DS: Rigid Impact Model

[Brach-1989, Hurmuzlu-Marghitu-1994]

» Basic Assumptions in DS

— Impact instantaneous
* = impulsive contact forces
— No rebound, no slip at impact
— Former stance leg releases freely and
does not interact with the ground
« Yields conservation of angular
momentum about impact point
« Positions are continuous but
instantaneous jump in the velocities
— Relabel coordinates so that previous
SS model can be reused

V4
N
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DS: Rigid Impact Model

[Brach-1989, Hurmuzlu-Marghitu-1994]

1S ={q | v2(q) = 0,w2(q) > 0} Impact Surfacq

gt =Rq" (relabel states)
[- is just before impact and + is just after|

+ N
_la| _| Rq _ _
= 4] =& |2

et = Az (overall effect of impact)

Vi
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DS: Rigid Impact Model

[Brach-1989, Hurmuzlu-Marghitu-1994]

» Derivation is provided in
handout, but is NOT covered
in oral presentation

» See web site for MATLAB
symbolic code

| www.eecs.umich.edu/~grizzle/CDC2003Workshop/ |
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DS: Rigid Impact Model

« Standard reference is: Y. Hurmuzlu
and D.B. Mar‘ghi’ru, "Rigid Body
Collisions of Planar Kinematic
Chains with Multiple Contact
Points," IJRR, Vol. 13, No. 1,
1194, pp. 82-92.

« Step-by-step derivation in: J.W.
Grizzle, 6. Abba and F. Plestan,
"Asymptotically Stable Walking
for Biped Robots: Anal\ésis via
Systems with Impulse Effects,”
IEEE T-AC, Volume 46, No. 1,
January 2001, pp. 51-64, is easier
to read
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DS: Rigid Impact Model

Need to use 7 DOF model. Introduce
Cartesian coordinates of stance leg end

1
Y1

[ii] and define ¢ =
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DS: Rigid Impact Model

Need to use 7 DOF model. Introduce
Cartesian coordinates of stance leg end

[iﬂ and define ¢ =

1
Y1

Use Lagrange to Compute
7DOF Model

De(Qe)de + Ce(Qe; (16)46 + Ge(qe) =Te
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DS: Rigid Impact Model

q. = velocity just before impact

qj = velocity just after impact

F. = Pr = impact force (intensities)
Fn
ACD) r
E=1 ol
8%:

I_e = Beu + EF@

b
Assumption: Impact forces are impulses
while motor torques are not
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DS: Rigid Impact Model

Conservation of momentum about
impact point

De (¢ —dz ) = EFe

No rebound nor slip at impact of
swing leg end

ET¢ =0

Prior stance leg acted as pivot
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DS: Rigid Impact Model

Solve equations on previous page
and then remove Cartesian components
to obtain

0t =Ry

Fe= A(q)q~
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DS: Rigid Impact Model

In order to re-use the previous SS model
at the next step, must re-label the
coordinates

q‘l‘ — qu
it =RAy~ = D44
Final result is:

¥ = v
] |
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Robot Model: SS + DS = Hybrid
Normal walking: Q /g X

— ———

... S5, DS, SS, DS, ...

SS — Single Support DS — Double Support

m:f@ —|—g(m@ $+=A(x_)

_o0
"R .
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Robot Model: SS + DS = Hybrid

Normal walking: u , /g L,

... S§, DS, SS, DS, ...

SS — Single Support DS — Double Support

10 differential ;
= = +
equations x=1 (X) g(x)u S

& X" =A(X) DS
impact map —
(Hybrid Model)
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Robot Model: SS + DS = Hybrid

Normal walking: u /g X

... S5, DS, SS, DS, ...

SS — Single Support DS — Double Support

p(x) =0
10 differential
equations
&
impact map — ot = A7)
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Model as System with
Impulse Effects

z-{ z(t) = f(zx(t)) (@) ES
2T = A G) 2 () e s
2T (t) == lim . z(7) () == lim, yy a(7)

Good reference: H.Ye, ANN. Michel, and L.Hou, "Stability theory for hybrid dynamical
systems,” TEEE T-AC,Vol.43(4), 1998, pp. 461—474.

S = {z € X | swing leg contacts the ground}

Stable walking = Asymptotically stable limit cycle (transversal to S)
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|s the Model Complete?

» Standard friction
compensation is used
in the final stage of
controller
implementation

{ « Lagrangian model is
crucial for inverse

pendulum dynamics
w.r.t. the support leg!
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Conclusions:
Background & Modeling

Bipedal locomotion is a hard problem due to high
DOF, impacts, periodic orbits, and underactuation

Models are necessarily hybrid in nature

— Lagrangian dynamics for SS (continuous portion)
— Rigid impact model for DS (discrete portion)

— System with impulse effects

RABBIT conceived to enhance understanding
Systematic derivation of planar model presented
MATLAB tools shared with participants
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