This paper develops feedback controllers for walking in 3D, on level ground, with energy efficiency as the performance objective. ATRIAS 2.1 is a new robot that has been designed for the study of 3D bipedal locomotion, with the aim of combining energy efficiency, speed, and robustness with respect to natural terrain variations in a single platform. The robot is highly underactuated, having 6 actuators and, in single support, 13 degrees of freedom. Its sagittal plane dynamics are designed to embody the Spring Loaded Inverted Pendulum (SLIP), which has been shown to provide a dynamic model of the body center of mass during steady running gaits of a wide diversity of terrestrial animals. A detailed dynamic model is used to optimize walking gaits with respect to the Cost of Mechanical Transport (CMT), a dimensionless measure of energetic efficiency, for walking speeds ranging from 0.5 $\text{m/s}$ to 1.4 $\text{m/s}$. A feedback controller is designed that stabilizes the 3D walking gaits, despite the high degree of underactuation of the robot. The 3D results are illustrated in simulation. In experiments on a planarized (2D) version of the robot, the controller yielded stable walking.

1 Introduction

This paper develops feedback controllers for walking in 3D, on level ground, with energy efficiency as the performance objective for an underactuated bipedal robot. The 3D bipedal robot [1] ATRIAS 2.1 shown in Fig. 1 represents a collaborative effort of Oregon State University, Carnegie Mellon University, and the University of Michigan. The robot has been conceived for energy efficiency, speed, and robustness with respect to natural terrain variations, without over-reliance on external sensing, such as vision. The robot is untethered, with all computation and power on board, using electric motors, batteries, and mechanical springs for cyclic gait-energy storage.

The legs of ATRIAS 2.1 are very light (less than 5% of total mass) and are driven by series-elastic actuators. The torso accounts for approximately 40% of the mass of the robot, with its center of mass approximately 30 cm above the hip. The series-elastic actuators in the legs are powered by electric motors through a 50:1 harmonic drive. Hence the reflected inertia of the rotors of the motors dominate leg rotation, while the light legs and springs dominate the impact dynamics. The robot has 6 actuators and in single support

Fig. 1: Untethered 3D bipedal robot ATRIAS 2.1.
The paper is organized as follows. Section 2 describes the design philosophy of ATRIAS 2.1 and an overview of the mechanism. Similarities and differences of ATRIAS 2.1 with respect to existing robots are discussed in Sect. 3. A dynamic model appropriate for walking gaits is given in Sect. 4. Section 5 overviews the hybrid zero dynamics (HZD) as a gait optimization and design tool. This section also addresses the selection of virtual constraints adapted to the morphology of the robot. Section 6 introduces a family of functions, Non Uniform Rational Basis Spline (NURB), to parameterize the virtual constraints. Some advantages of NURBS over Bézier polynomials for gait design are highlighted. Section 7 analyzes the walking efficiency of the 3D model of ATRIAS 2.1 measured by the Coefficient of Mechanical Transport (CMT) [2], for average walking speeds varying from 0.5 to 1.4 m/s. The evolution of important physical quantities such as positive work, negative work, ground reaction force, are highlighted. Section 8 presents a continuous-time time-invariant feedback controller based on virtual constraints and input-output linearization to asymptotically stabilize one of the walking gaits obtained using the HZD optimization. Stability is checked with a Poincaré section analysis. The continuous-time feedback controller is augmented with an event-based controller to stabilize gaits in the 3D model. Finally, Sect. 9 presents concluding remarks.

The feedback designs of Sect. 8 have been implemented on a planarized version of the robot, where lateral stability is assured by a boom, as shown in the video [3]. Stable walking was achieved three days after the robot was assembled. While this initial success was quite welcome, it could still take a year to implement the feedback policies developed herein for the 3D case.

2 Testbed Overview

2.1 Design philosophy

ATRIAS 2.1 is a 3D bipedal robot as shown in Fig. 1. The name is an acronym which stands for Assume The Robot Is A Sphere; a reference to the design goal of creating a mechanical system that is dynamically simple and easy to model and control. The robot’s sagittal plane dynamics are designed to embody the Spring-Loaded Inverted Pendulum (SLIP) model, which has been shown to approximate the body center-of-mass (CoM) motion during steady-state running gaits of a wide diversity of terrestrial animals, [4–8]. Successful running robots, such as the Planar Hopper, ARL Mono pod II and CMU Bowleg Hopper, also exhibit SLIP model behavior [9–11]. An earlier machine by Hurst and Grizzle, the planar bipedal robot MABEL, also approximates a SLIP model; the robot achieved a peak walking speed of 1.5 m/s [12]; a peak running speed of 3 m/s [13]; and walked over terrain with variations exceeding 15% of leg length [14].

These robots demonstrate that spring-mass models are a successful and promising approach to machine design for robotic running. It is also promising for walking gaits – the same spring-mass model arranged in a bipedal pair has also been shown, in simulation, to reproduce steady-state dynam-

ics of human walking [15]. ATRIAS 2.1 takes the spring-mass design philosophy into 3D, and combines it with tether-free electric actuation.

2.2 Mechanism

ATRIAS is constructed of a pair of identical legs, each with two DOF, mounted to a torso by a frontal plane revolute joint, for a total of six actuated DOF. Each leg is comprised of a pair of powerful brushless motors located at the hip joint, each connected through a 50:1 harmonic drive and a large spring to a 4-bar linkage, as shown in Fig. 2a. The motors each actuate one link of the 4-bar linkage through a series spring with stiffness chosen to coincide with the natural frequency of the preferred locomotion gait, and sized large enough to store gait energy. The 4-bar linkage allows the leg to be extremely lightweight, which minimizes the impact losses of the foot during touchdown of each stride, and maximizes the gait energy that can be stored in the springs and recycled.

The torso houses the on board real-time computing, batteries, and motors for actuating the frontal plane motion of the legs, and hence accounts for approximately 40% of the mass of the robot. For the purposes of control, we have assigned axes x-y-z to the torso, oriented so that the z-axis points upward and the y-axis points forward. The left and right hip are connected to the torso through revolute joints with a common axis aligned with the y-axis of the torso. Each hip is independently actuated in the frontal plane by a brushless DC-motor connected through a gear ratio of 26.7:1. As indicated above, these motors are mounted on the torso.

Each hip is approximately 15 cm wide, so that the total width of the hips when they are parallel is 30 cm. At the current time, the legs are terminated in point feet for simplicity. Nontrivial feet may be added later, to explore potential improvements in efficiency and robustness.

It follows that the robot is highly underactuated. Indeed, when ATRIAS 2.1 is not in contact with the environment, it
has sixteen DOF and six independent actuators. Six DOF are associated with the torso. There are two DOF where the hips attach to the torso, and each leg has four DOF with two DOF arising from the 4-bar mechanism and an additional two DOF due to the springs.

2.3 Nominal parameters

Our team is maintaining a website to document the modeling parameters for ATRIAS 2.1 [16]. SolidWorks has been used to compute the COM and inertia tensor of the components of the robot. Parameters for the springs, motor inertia, motor gear ratio and harmonic drive are reported by the manufacturer. Later, these will be verified by system/parameter identification.

3 Relation to Other Robots

A number of robots have been built for the purposes of walking and running. [10, 17–20]. One class of robots relies on large actuators and active control to implement a variety of behaviors. Examples include robots with rigid transmissions such as Rabbit and Asimo [19,20]. While these robots are capable of an aerial phase, they are at the expense of heavy actuators with high energetic cost and potentially unpredictable dynamic behavior at ground impact. At the other end of the spectrum, the McGeer walker and similar robots use only passive elements. These robots can efficiently walk down shallow slopes, but are extremely sensitive to disturbances and hard code only a single behavior [21,22].

There are robots that fall in between those two extremes. For instance, the “Cornell Ranger” adds minimal actuation at the ankle to its reliance on passive dynamics, and can maintain a very efficient walking gait on flat ground. Yet this and similar machines [2,23] retain the extreme sensitivity of passive dynamic walkers to disturbances and the focus on only one dynamic behavior.

The MIT Leg Lab’s “Spring Flamingo” walking biped and Boston Dynamics’ “Big Dog” walking and running quadruped both use series springs, a passive dynamic element that improves the performance of their actuators. Like the rigid-transmission robots, however, they attempt to create all gait dynamics through software control [24,25]: the springs on these robots are primarily for force sensing and mechanical filtering purposes, and are essentially a soft load cell, acting as a force sensor for the low-level controllers [26]. Although this approach can result in impressive agility and robustness surpassing a rigid system, the energetic cost is still very high. For example, Big Dog uses a gasoline engine as a power source. Very recently, robots are being purposefully built with high-bandwidth actuators and no springs with the objective of implementing compliance in software. Examples include the hydraulically-actuated HyQ [27] and MIT’s electrically-powered Cheetah [28]; both machines use significantly more energy than a similarly-sized animal.

The jury is still out on which design philosophy will provide the best tradeoffs in terms of agility, efficiency, and ease of control. ATRIAS 2.1 is very much in the camp of seeking to combine the advantages of passive dynamics with actuation and feedback control for achieving a wide range of legged mobility. Its design exploits springs for energy-efficient steady-state locomotion and accommodating large disturbances, while using powerful actuators to achieve legged dexterity and gait stability when needed during transient behaviors.

4 Dynamic Model of Walking

4.1 Generalized coordinates

Coordinates are defined for the robot in general position, that is, when neither leg is in contact with the ground. When the robot is in single support, meaning one and only one leg is contact with the ground, appropriate holonomic constraints can be applied to arrive at a reduced set of generalized coordinates. The coordinates are defined independent of which leg is eventually the stance leg; this is different from the approach followed in [29]. All relative angles are positive in the direction that respects the right-hand rule with one exception, the left hip joint angle.

Let a world frame be defined and attach a Cartesian coordinate frame \((x_T, y_T, z_T)\) to the torso, oriented so that when the torso is upright, the \(z\)-axis points upward and the \(y\)-axis points forward. Euler angles are used to parameterize the orientation of the torso with respect to the world frame. These angles are denoted by \(q_z\), \(q_y\), and \(q_{gr}\) and are called yaw, pitch, and roll, respectively. The yaw coordinate of the torso is also called heading. The angles of the right and left hips relative to the torso are denoted by \(q_{3R}\) and \(q_{3L}\), respectively, as shown in Fig. 2b. Because the four links in each leg form a parallelogram, only two coordinates are needed to parameterize the four links. The angles of the top two links relative to the hip are denoted by \(q_{1R}\) and \(q_{2R}\) for the right leg, and \(q_{1L}\) and \(q_{2L}\) for the left leg. This completes the coordinates for the body of the robot; see Fig. 2c.

Turning to the actuators, because the motors at the hips are connected to the body through a fixed gear ratio, the angles of the rotors relative to the torso are uniquely determined from \(q_{3R}\) and \(q_{3L}\). On the other hand, the motors driving the legs are connected through springs, and hence additional coordinates are needed. For each motor, the angle of the output shaft of the harmonic drive is denoted by \(q_{gr}\). These angles are used instead of the angles of the rotors of the motors because \(q_{gr1R}, q_{gr2R}, q_{gr1L},\) and \(q_{gr2L}\) are in the “same coordinate frame” as the link angles of the legs.

4.2 Single-support 3D dynamic model

When in single support, the Cartesian coordinates of the torso are redundant and can be eliminated. Hence, for developing the single-support model, with either the left or the right leg in stance, the configuration variables are \(q_s = (q_z, q_y, q_{gr}, q_{1R}, q_{2R}, q_{1L}, q_{2L}, q_{gr1R}, q_{gr2R}, q_{gr1L}, q_{gr2L}, q_{3R}, q_{3L}).\) We note that the last 6 coordinates are independently actuated whereas the first 7 coordinates are un-actuated. Let \(Q_s \subset SO(3) \times S^{10}\) be a connected open subset giving the feasible set for the configuration variables.
The model and its feasible set of variables will of course depend on which leg is in stance. This will be made clear in Sect. 4.4 by appending a subscript “L” or “R” as appropriate.

Because the 4-bar linkage in each leg forms a parallelogram, the linear and angular velocities of the lower two links are identical to the linear and angular velocities of the corresponding upper links. It follows that the Lagrangian of the model can be developed as if the robot were a pinned open kinematic chain. To compute the Lagrangian, the kinetic energy and potential energy of each rigid body are calculated and expressed in the generalized coordinates. Summing over the rigid bodies then gives the total kinetic energy $K_s$ and the total potential energy $V_s$, yielding

$$L_s(q_s, ̇q_s) := K_s(q_s, ̇q_s) - V_s(q_s).$$

Lagrange’s equation then gives the standard robot equations

$$D_s(q_s) ̈q_s + C_s(q_s, ˙q_s) ˙q_s + G_s(q_s) = \Gamma_s,$$  
(2)

where the matrix $D_s$ is the mass-inertia matrix, $C_s$ is the matrix of Coriolis and centrifugal terms, $G_s$ is the gravity vector, and $\Gamma_s$ is the vector of generalized forces acting on the robot. Using the principle of virtual work, $\Gamma_s$ can be written as,

$$\Gamma_s = B_s u + B_{sp}(q_s)  τ_{sp}(q_s, ˙q_s) + B_{yaw}(q_s)  τ_{yaw}(q_s, ˙q_s),$$  
(3)

where the matrices\(^1\) $B_s$, $B_{sp}$, and $B_{yaw}$ define how the motor torques $u = [u_{1R}, u_{2R}, u_{3R}, u_{1L}, u_{2L}, u_{3L}]^T$, the spring torques $τ_{sp}$, and the stance-leg end yaw torque $τ_{yaw}$ enter the model, respectively. For $i \in \{1R, 2R, 1L, 2L\}$, the spring torque of the $i$-th series-elastic actuator is modeled as

$$τ_{sp,i} = -k_{sp,i}(q_i - q_{gr,i}) - b_{sp,i}( ˙q_i - ˙q_{gr,i}),$$  
(4)

where $k_{sp,i}$ denotes spring stiffness and $b_{sp,i}$ is a damping coefficient. The primary joint friction is due to the harmonic drives used in the series-elastic actuators and is ignored in the model at the current time. References [30, 31] provide nonlinear models of power-loss at the harmonic drives and will be incorporated when sufficient experimental data is available from the robot. The stance-leg end yaw torque is also modeled as viscous friction

$$τ_{yaw} = -b_{yaw}ω_{shin}( q_s, ˙q_s),$$  
(5)

where $ω_{shin}$ is the vertical component of the angular velocity about the stance shin and $b_{yaw}$ is a constant.

Setting $x = (q_s, ˙q_s) \in TQ_s$, the model in state-variable form is

$$\dot{x} = D_s^{-1}(q_s)( -H_s(q_s, ˙q_s) + B_s u),$$  
(6)

where

$$H_s(q_s, ˙q_s) = C_s(q_s, ˙q_s) ˙q_s + G_s(q_s) - B_{sp}(q_s)  τ_{sp}(q_s, ˙q_s) - B_{fric}(q_s) τ_{fric}(q_s, ˙q_s) - B_{yaw}(q_s)  τ_{yaw}(q_s, ˙q_s).$$

Equation (6) immediately leads to the state variable model

$$\dot{x} = f_s(x) + g_s(x)u.$$  
(8)

4.3 Impact model

An impact occurs when the end of the swing leg contacts the ground. Let $p_s : Q_s \to \mathbb{R}$ denote the vertical height of the swing leg above the ground so that the impact surface is

$$S = \{x \in TQ_s | p_s(q_s) = 0\}.$$  
(9)

The impact is modeled as a contact of two rigid bodies, using the methodology of [32]; see [33] for the details. Consequently, the impact is instantaneous, the generalized configuration variables are constant across the impact, while the generalized velocities undergo a jump. The impact map is expressed as

$$x^+ = \Delta(x^-),$$  
(10)

where $x^-$ is the value of the state just before the impact and $x^+$ is its value just after the impact.

4.4 Hybrid model

Combining the swing phase models and the impact models for the left and right legs results in the hybrid model

$$\Sigma_L: \begin{cases} \dot{x} = f_{s,L}(x) + g_{s,L}(x)u, & x^- \not\in S_L \\ x^+ = \Delta_{L\rightarrow R}(x^-), & x^- \in S_L \end{cases}$$  
(11)

$$\Sigma_R: \begin{cases} \dot{x} = f_{s,R}(x) + g_{s,R}(x)u, & \; x^- \not\in S_R \\ x^+ = \Delta_{R\rightarrow L}(x^-), & \; x^- \in S_R \end{cases}$$

In the hybrid model, the dynamics evolve according to (8) until the swing leg impacts the ground. The impact map given by (10) is inactive until the state of the robot reaches the switching surface $S$, at which point, the impact map becomes active and results in jump (or discontinuity) in the velocity states. Equation (11) gives the hybrid nonlinear system for 3D bipedal walking.
4.5 Planar or 2D dynamic model

A sagittal plane model is obtained from the 3D model of Sect. 4.2 by imposing four holonomic constraints and setting the width of the hips to zero. In particular, the yaw and roll coordinates of the torso, \( q_z \) and \( q_y \), and their derivatives are set to zero, thereby constraining the torso to the sagittal plane. The hip coordinates \( q_{3R} \) and \( q_{3L} \) and their derivatives are also set to zero, so that the hip axis is perpendicular to the sagittal plane. The Lagrangian of the planar model is then the Lagrangian of the 3D model restricted to the surface

\[
(q_0, \dot{q}_0) \in TQ, \quad q_z = 0, q_y = 0, q_{3R} = 0, q_{3L} = 0, \dot{q}_z = 0, \dot{q}_y = 0, \dot{q}_{3R} = 0, \dot{q}_{3L} = 0. \quad (12)
\]

The control torques associated with \( q_{3R} \) and \( q_{3L} \) are removed, leaving four actuators. The mass of these actuators is retained in the model so that solutions of the 3D and 2D models can be compared.

The impact map is once again developed using the method in [32]. A hybrid model is then formed, just as in (11). The model can be simplified to a single-phase system with impulse effects if leg swapping is incorporated into the impact map, as in [34].

5 Gait Design and Optimization

5.1 General method

A holonomic constraint that is imposed through the action of an actuator rather than the internal forces of a physical constraint is said to be virtual [34–36]. Virtual constraints can be used to synchronize the links of a robot in order to achieve common objectives of walking, such as supporting the torso, advancing the swing leg in relation to the stance leg, specifying foot clearance, etc. Analogous to physical constraints, virtual constraints induce a reduced-dimensional model compatible with the constraints, called the zero dynamics [35, 37]. When combined with parameter optimization, virtual constraints can be designed to achieve additional objectives such as walking at a desired speed and respecting bounds on ground reaction forces. Energy efficiency can be increased, as explained in [29, 33, 35, 38]. The main ideas of designing and optimizing periodic walking gaits are summarized below while the details are given in Appx. A. The issue of stability is addressed separately in Sect. 8.

5.2 Virtual constraints

One virtual constraint per actuator is proposed in the form of an output that, when zeroed by a feedback controller, enforces the constraint. The constraints are written in the form

\[
y = h(q_j, \alpha) = h_0(q_j) - h_d(\theta(q_j), \alpha), \quad (13)
\]

where \( h_0(q_j) \) specifies the vector of variables to be controlled, \( h_d(\theta, \alpha) \) is the desired evolution of the controlled variables as a function of \( \theta(q_j) \), and \( \alpha = [\alpha_j] \in \mathbb{R}^{6 \times (n+1)} \) is a matrix of real parameters to be chosen. The number of columns, \( n + 1 \), is defined later in Sect. 6. A gait-timing variable \( \theta(q_j) \) is used to replace time in parameterizing a motion of the robot. Consequently, \( \theta(q_j) \) is selected to be strictly monotonic (i.e., strictly increasing or decreasing) along normal walking gaits.

For the 3D model of ATRIAS 2.1, the controlled variables, when the right leg is the stance leg, are initially selected as:

\[
h_0(q_j) = \begin{bmatrix} q_{gr1R} + q_{gr2R} \\ q_{gr1L} + q_{gr2L} \\ q_{gr1R} - q_{gr1L} \\ q_{gr2R} - q_{gr1R} \\ q_{3R} \\ q_{3L} \end{bmatrix},
\]

where \( q_{gr1R}, q_{gr1L}, q_{gr2R}, q_{gr2L}, q_{gr1L} \) and \( q_{gr1R} \) are the angle for stance leg, leg angle for swing leg, knee angle for stance leg, knee angle for swing leg, hip joint angle for stance leg, and hip joint angle for the swing leg, respectively. The first four variables represent quantities in the sagittal plane, on the motor side of the series-compliant actuators; specifically, they correspond to the angles of the right and left legs relative to the torso, and the angles of the knees, respectively, when the springs are at rest. The last two controlled variables are the angles of legs relative to the torso, in the frontal plane; recall that these variables are not actuated through springs.

The gait-timing variable is selected as

\[
\theta(q_j) = \begin{cases} \theta_R(q_j) & \text{if the right leg is stance,} \\ \theta_L(q_j) & \text{otherwise}, \end{cases}
\]

where \( \theta_R(q_j) \) is the angle between the virtual leg\(^2\) and the ground surface normal vector when the right leg is the stance leg. \( \theta_L(q_j) \) is defined in an analogous manner when the left leg is the stance leg. The desired evolution of the controlled variables, \( h_d(\theta(q_j), \alpha) \), will be specified in Sect. 6. The quantity \( \alpha \) represents the free coefficients in the family of functions used to design the virtual constraints. The free parameters will be determined based on a finite-dimensional nonlinear optimization problem.

5.3 Zero dynamics

When the decoupling matrix is invertible, see [33, 35, 37], zeroing of the virtual constraints in (13) via feedback creates a parameterized smooth surface \( Z_\alpha \) that is invariant under the flow of the closed-loop single support dynamics.

\(^2\)Virtual leg is defined as a virtual line connecting the pivot point of the stance leg to the hip joint.
The dynamics restricted to this surface, that is, the dynamics compatible with the constraints, is called the zero dynamics. In each single-support phase, the zero dynamics can be expressed in the form of a second-order system,

\[ D(zero)q_{zero} + H(zero)q_{zero}, \alpha) = 0, \]  

(16)

where \((q_{zero}, \dot{q}_{zero})\) are the unactuated variables in the Lagrangian model and constitute a set of local coordinates for the surface \(Z_\alpha\) (see Appx. A for more details). Because the actuators are doing work on the system when zeroing the outputs, the resulting dynamics may not be Lagrangian, although, in special cases, the zero dynamics is Lagrangian [35]. When the virtual constraints in (13) have vector relative degree two [35, 37], as is the case here, the dimension of \(q_{zero}\) equals the dimension of \(q\) minus the number of independent actuators. Hence, for the 3D model used here, \(\dim q_{zero} = 7\) and \(q_{zero} = (q_1; q_2; q_3; q_1R; q_2R; q_1L; q_2L).\)

5.4 Optimization

As shown in Appx. A, the process of deriving (16) provides a closed-form expression for the control input \(u_\alpha(q_{zero}, \dot{q}_{zero})\) achieving

\[ 0 = h(q_s, \alpha) \Leftrightarrow h_0(q_s) = h_d(\theta, \alpha), \]

that is, the control input that zeros the virtual constraints and creates \(Z_\alpha\). Solutions of the zero dynamics (16) are exact solutions of the full-dimensional model (6) in closed-loop with \(u_\alpha\) [29, 33, 39]. This motivates posing an optimization problem to select \(\alpha\) resulting in a periodic solution of the hybrid model (11), where the lower-dimensional dynamic equations of the zero dynamics (16) are integrated in place of the full dynamics (8) in closed loop with \(u_\alpha\).

The cost function will be taken as the cost of mechanical transport \(CMT\) [2],

\[ J(\alpha, q_{zero}, \dot{q}_{zero}) = \frac{1}{gM_{tot}d} \int_0^{T_1} \sum_{i=1}^6 |p_i(t)|_2 dt, \]

(17)

where \((q_{zero}, \dot{q}_{zero})\) denotes the final condition of the zero dynamics. Furthermore, \(T_1\) is the step duration, \(d\) represents the distance traveled by the center of mass (COM) in one step, \(g\) denotes the gravitational constant, \(M_{tot}\) is the total mass of the robot, \(p_i(t)\) is actuator power, and \(|p|_2 = p\) when \(p \geq 0\) and equals zero otherwise. According to [2], for humans walking at approximately 1 m/s, CMT is approximately 0.05.

The parameter vector \(\alpha\) and the initial conditions \((q_{zero}, \dot{q}_{zero})\) are chosen to minimize \(J(\alpha, q_{zero}, \dot{q}_{zero})\) subject to the walking gait being periodic and symmetric, the ground reaction forces are feasible, and the speed is a desired value. Here, the minimization was carried out in MATLAB using the \texttt{fmincon} function.

If the optimization process is successful, it returns the (locally) optimized value for the parameters in the virtual constraints, \(\alpha^*\) and the final conditions \((q_{zero}^*, \dot{q}_{zero}^*)\) for a periodic solution of the hybrid model (11) corresponding to a walking gait with the specified properties. Section 8 will discuss how the virtual constraints can be used to synthesize a feedback controller that asymptotically stabilizes the walking gait.

6 Parametrization of Desired Trajectories for Holonomic Constraints

6.1 NURB Curves

A NURB curve is defined in a two-dimensional homogeneous coordinate space as follows. Let \(s\) be related to the gait timing variable by \(s = \frac{\theta(q_s)}{\theta^+ - \theta^-}\) and \(\theta^+\) and \(\theta^-\) are the initial and final values of the gait timing variable \(\theta\) on the periodic orbit, and let \(P(s) = (s; h_{d,i}(s)) \in \mathbb{R}^2\) be the 2D position of the points on the NURB curve for the \(j^\text{th}\) output. Then

\[ P(s) = \frac{\sum_{i=1}^{n+1} B_j w_i N_{i,k}(s)}{\sum_{i=1}^{n+1} w_i N_{i,k}(s)} = \sum_{i=1}^{n+1} B_j R_{i,k}(s), \]

(18)

where \(w_i, i = 1, \ldots, n + 1\) are nonnegative real scalars, \(B_j = (s_j; \alpha_{d,j}) \in \mathbb{R}^2\) is the 2D position of the \(j^\text{th}\) control vertex for the \(j^\text{th}\) output function, \(N_{i,k}(s)\) denotes the basis function of order \(k\) corresponding to the \(k^\text{th}\) control point defined by Cox-de Boor recursion, [40].

\[ N_{i,0}(s) = \begin{cases} 1 & s_i \leq s < s_{i+1} \\ 0 & \text{otherwise}, \end{cases} \]

(19)

\[ N_{i,k}(s) = \frac{(s - s_i) N_{i,k-1}(s)}{s_{i+k} - s_i} + \frac{(s_{i+k} - s) N_{i+1,k-1}(s)}{s_{i+k} - s_{i+1}} \]

(20)

where \(s_i\) are the values of the knot vector \(s = [s_1, s_2, \ldots, s_{n+1}]\) and \(s_i < s_{i+1}\), and \(n + 1\) denotes the number of the control points.

It is worth noting that if the number of the control points and the order of the basis functions are the same, then a NURB curve is equivalent to a Bézier curve [40].

6.2 Advantages of NURBs

Bézier polynomials have been previously used in references [35], [33, Chap. 6], [12] and [29] to parameterize the holonomic constraints for the bipedal robots. As noted above, Bézier polynomials are a special case of NURB curves, and thus using NURBs allows more solutions when designing gaits via optimization, as in Sect. 5.4, which may result in lower values of the cost function.

We offer next a few qualitative reasons for why NURBs yield better results.

---

1Essentially means the second derivatives of the six outputs in (13) depend on six inputs in a full rank or independent manner.
6.2.1 Local action of control points

As the order of the NURB basis functions $N_{i,k}(s)$ decreases, the control points affect the curve over smaller ranges of $s$, which has advantages. For example, Fig. 3 shows $N_{i,k}(s)$, $\frac{\partial N_{i,k}(s)}{\partial s}$ and $\frac{\partial^2 N_{i,k}(s)}{\partial s^2}$ for $k = 6$ (solid line) and $k = 3$ (dashed line), with $n = 6$. When $k = 3$, $B_2$, $B_3$ and $B_6$ have no contribution to the shape of the desired trajectory at $s = 0$ because the basis functions $N_{i,k}(s)$ corresponding to those control points vanish at $s = 0$. On the other hand, for $k = 6$, all of the control points contribute to the value of the trajectory at $s = 0$. Figure 3 also shows that when $k = 6$, at the boundaries where the control points $B_1$, $B_2$, $B_5$ and $B_6$ affect $P(s)$, their corresponding basis functions have large values for $\frac{\partial N_{i,k}(s)}{\partial s}$ and $\frac{\partial^2 N_{i,k}(s)}{\partial s^2}$. This can cause numerical instability of the solutions as a numerical optimizer tries to adjust the control points to minimize cost while achieving periodicity of the solution.

6.2.2 Subphases

Because a Bézier polynomial is an analytic function (in the sense of globally convergent Taylor series), if it (or one of its derivatives) is constant over an open set, then it (or the derivative) is constant everywhere. When $k < n$, a NURB is not an analytic function, and hence it is possible to have non-trivial regions where the curve or one of its derivative is constant, while the NURB is not globally constant. These regions are informally referred to as “subphases”. Figure 4 illustrates this for one of the trajectories associated with the right leg knee angle, in the regions for $s \in [0, 0.25]$, $s \in [0.25, 0.5]$, $s \in [0.5, 0.75]$ and $s \in [0.75, 1]$. This figure shows that the velocity of the knee angle is commanded to a small value at the beginning of the stance phase. Consequently, the energy of the impact forces $F_{\text{impact}}$ shown in Fig. 5, is directed into the springs, as illustrated by their deflection $\delta$. The energy stored in the springs is released later.
in the gait.

7 Performance Analysis of ATRIAS

The optimization framework of Sects. 5 and 6 has been applied to the 3D model of Sect. 4 to compute walking gaits that are locally optimal with respect to CMT. The gaits may only be locally optimal because of the dependence of the cost function (17) on the parameters of the virtual constraints and the final conditions of the zero dynamics is non convex. Simulations for nominal walking speeds of 0.5 to 1.4 [m/s], in increments are 0.1 [m/s], are presented. Walking at 1 [m/s] is analyzed in greater detail.

7.1 Walking efficiency versus speed

Figure 6 shows the computed CMT versus speed when Bézier and NURB are used as desired trajectories for the holonomic constraints, circles and squares respectively. For comparison purposes, the CMT of a human is estimated from experimental data to be 0.05 at a speed of 1 [m/s] [2], while the experimentally estimated CMT of the Cornell Biped is 0.04 at a speed of 0.6 [m/s] [41]. Interpolating a cubic polynomial through the NURB-based simulation data of ATRIAS 2.1 results in a minimum CMT of 0.05 at 0.7 [m/s]. At 1 [m/s], the simulated CMT of ATRIAS is 0.096, which means the robot would require approximately twice the power of a human when walking at 1 [m/s], assuming once again that the harmonic drives are lossless.

If the harmonic drives are assumed to be 70% efficient on average, then the motors in the sagittal plane must produce approximately 43% more power when realizing the walking gaits of Fig. 6. When this is taken into account, ATRIAS’s estimated CMT at 0.7 [m/s] is 0.071, or approximately one and a half times that of a human, while at 1 [m/s], CMT would 0.13, or approximately two and a half times that of a human.

Table 1: The energy breakdown over one step for walking at 1.0 [m/s]; right leg is stance. The CMT is 0.096.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>u_{1R}</td>
<td>0.154</td>
<td>3.605</td>
<td>84.518</td>
<td>4.154</td>
</tr>
<tr>
<td>u_{2R}</td>
<td>1.711</td>
<td>1.265</td>
<td>113.720</td>
<td>5.358</td>
</tr>
<tr>
<td>u_{3R}</td>
<td>0.429</td>
<td>0.608</td>
<td>42.834</td>
<td>4.989</td>
</tr>
<tr>
<td>u_{1L}</td>
<td>1.339</td>
<td>1.487</td>
<td>174.23</td>
<td>4.154</td>
</tr>
<tr>
<td>u_{2L}</td>
<td>4.434</td>
<td>3.444</td>
<td>391.780</td>
<td>5.358</td>
</tr>
<tr>
<td>u_{3L}</td>
<td>0.283</td>
<td>0.330</td>
<td>27.298</td>
<td>4.989</td>
</tr>
</tbody>
</table>

7.2 Walking at 1 [m/s]

A periodic walking gait optimized at 1 [m/s] is analyzed in more detail. In the following, the right leg is the stance leg while the left leg is the swing leg.

The evolution of the virtual constraints is shown in Fig. 7. The motor-side right leg angle $q_{knee}^{LA}$ decreases from 187 [deg] to 175 [deg] and the corresponding left leg angle $q_{knee}^{LA}$ increases from 175 [deg] to 187 [deg]. The motor-side right hip angle $q_{hip}^{L}$ varies between 4 [deg] and 10 [deg] and the left knee angle $q_{knee}^{LA}$ varies from 2 [deg] to 8 [deg]. In the frontal plane, the right hip joint angle $q_{hip}^{R}$, and the left hip joint angle $q_{hip}^{L}$, shown in Fig. 7c are essentially constant, being bounded between 4 [deg] and 5 [deg].

Figure 8 shows the motor torques for $u_{1R}$, $u_{1L}$, $u_{2R}$, $u_{2L}$, $u_{3R}$ and $u_{3L}$, while Fig. 9 shows the corresponding actuator power (product of torque and angular velocity at the motor shafts). Table 1 presents the amount of the positive work performed by each actuator as well as the amount of the negative work absorbed by each actuator over the course of a single step. A notable point is the large amount of negative work done by actuator $u_1$ of the stance leg. Due to the 4-bar linkage, $u_1$ is positive to support the robot but moves in the negative direction to advance the body of the robot.

8 Feedback Control via Input-Output Linearization

Each of the gaits presented in Sect. 7 comes with a set of outputs (i.e., virtual constraints) which vanish on the pe-
A periodic orbit traced out by the robot’s states over the periodic walking motion. Let \( \alpha^* \) denote the vector of the free parameters resulting from the optimization of the virtual constraints, giving

\[
y = h(q_s, \alpha^*) = h_0(q_s) - h_d(\theta(q_s), \alpha^*). \tag{21}
\]

A feedback controller is required to impose the constraints by driving the outputs to zero when the robot is away from the periodic orbit. A Poincaré analysis is then done to assess the stability of the closed-loop system.

Our first step in the design of the feedback controller is optional: we augment the virtual constraints given in (21) with a term \( h_{\text{corr}}(q_s) \) that vanishes on the periodic orbit and hence leaves the walking motion unchanged. The extra term has the effect of smoothing the torques at leg transition. The augmented output is then

\[
y = \tilde{h}(q_s) = h_0(q_s) - h_d(\theta(q_s), \alpha^*) - h_{\text{corr}}(q_s). \tag{22}
\]

Assuming the decoupling matrix \( A(x) \) is invertible (see (53) of Appx. B), input-output linearization yields the feedback controller

\[
u(x) = u^*(x) - A(x)^{-1}\left(\frac{1}{\varepsilon}K_Py + \frac{1}{\varepsilon}K_D\dot{y}\right), \tag{23}
\]

which renders the input-output map linear, namely

\[
\dot{y} + \frac{1}{\varepsilon}K_D\dot{y} + \frac{1}{\varepsilon^2}K_Py = 0. \tag{24}
\]

The control gains \( K_P \) and \( K_D \) are chosen such that the matrix

\[
\begin{bmatrix}
0 & I \\
-K_D & -K_P
\end{bmatrix}
\]

is Hurwitz and \( \varepsilon > 0 \) is a tuning parameter.
The feedback controller in (23) was implemented on the 3D model for the nominal walking speed of 1.0 m/s. The stability of the fixed point is checked using a linearized Poincaré map \( P : \Delta S \to \Delta S \), where \( x_{j+1} = P(x_j) \) and \( \Delta S \) is the Poincaré section taken at the map of the switching surface by the impact. \( x_j = (q_1; q_2; \ldots; q_5; \dot{q}_1; \ldots) \in \Delta S \) denotes the projection of the state vector for the full dynamics model during step \( j \) onto \( \Delta S \). Because the Poincaré section \( \Delta S \) is a hyperspace in \( \mathbb{R}^6 \), the Poincaré section has twenty five independent components. To implement this, define a projection map \( \Pi(x) = (q_1; q_2; \ldots; q_5; q_6; \ldots) \) which eliminates \( q_6 \) (pitch angle) from the state vector and also defining perturbations as \( \Delta x_j = \Pi(x_j - x^*) \), the linearization of the Poincaré map around the fixed point \( x^* \) results in the Jacobian \( A = \frac{\partial P}{\partial x} \) of the Poincaré map. In particular,

\[
A_j = \frac{P(x^* + \Delta x_j) - P(x^* - \Delta x_j)}{2\Delta x_j} \quad (25)
\]

where \( A_j \) is \( j^{th} \) column of \( A = [A_1, A_2, \ldots, A_{25}] \) and \( \Delta x_j = (0; \ldots; 0; \varepsilon_j; 0, \ldots; 0) \). Using the output functions explained in (14) and computing the linearized Poincaré map for \( \varepsilon = 0.01 \). The feedback controller of (23) makes the zero dynamics manifold invariant and attractive, however, due to the existence of compliant components and high degree of under actuation, it does not make the zero dynamics manifold hybrid invariant [39]. As expected from [29], calculations show that one eigenvalue has magnitude greater than one and hence the gait is unstable under this controller.

On the other hand, when the virtual constraints are applied to the 2D model \( q_{3R} \) and \( q_{3L} \) removed, a stable gait is achieved. Based on this fact, one suspects that the instability of the 3D model is due to the roll or yaw motions. From [29], the position of the \( COM \) in the frontal plane is important. If at leg touchdown, the \( COM \) is not between the feet, but outside the position of the next supporting foot, the robot will topple sideways. Based on this physical intuition, the control of the variable \( q_3 \) (which regulates step width on the swing leg) was replaced by the control of the distance between the swing leg end and the \( COM \) along the frontal direction. The distance between the end of the swing leg and the \( COM \) of the robot in the frontal plane is computed\(^4\). Then, a \( NURB \) curve, see Fig. 10, of order five with fifteen control points is fit to this distance. Next, an event based controller is designed and integrated with the continuous input output linearizing controller in (23). To achieve this goal, we parameterize the corrective term \( h_{corr} \) by a vector \( \beta \) which is held constant over two steps and is updated at the left-to-right impact event. In particular, the augmented output function is written as

\[
y = \tilde{h}(q_s) = h_0(q_s) - h_\delta(\theta(q_s), \alpha^*) - h_{corr}(q_s, \beta). \quad (26)
\]

\(^4\)Frontal plane is attached to the torso and the normal axis is aligned with \( y \) axis of the torso frame.

Finally, the Poincaré map \( x_{j+1} = P(x_j, \beta_j) \) is linearized around the fixed point \( x^* \) and \( \beta^* \) as \( \Delta x_{j+1} = \frac{\partial P(x, \beta)}{\partial x} \Delta x_j + \frac{\partial P(x, \beta)}{\partial \beta} \Delta \beta_j \) where \( \Delta \beta_j = \beta_j - \beta^* \). A state feedback law \( \Delta x_j = -K \Delta \beta_j \) is designed such that \( A - BK \) is Hurwitz. \( K \) is found through discrete LQR algorithm and the two largest eigenvalues in magnitude for the closed loop system are \( |k_1| = 0.74 \) and \( |k_2| = 0.066 \), proving stability. Figure 11 shows the convergence of the phase portrait for \( (q_s, q_\delta), (q_s, q_{\dot{s}}), (q_s, q_{\dot{s}}), (q_{1R}, q_{1R}), (q_{2R}, q_{2R}), (q_{3R}, q_{3R}), (q_{gr1r}, q_{gr1r}), (q_{gr2r}, q_{gr2r}) \) and \( (q_{gr2r}, q_{gr2r}) \) after perturbing the fixed point.

9 Conclusions

The 3D bipedal robot ATRIAS 2.1 has 6 actuators, and when in single support, it has 13 DOF. To the best of the authors’ knowledge, no bipedal robot has been successfully controlled with this much underactuation. The paper showed that the method of virtual constraints and hybrid zero dynamics could be used to design energetically efficient gaits with respect to the cost of mechanical transport (CMT) and to stabilize them. For the process of gait optimization, Non Uniform Rational Basis Spline (NURB) were used to parameterize the virtual constraints; these functions provided more flexibility that the Bézier curves that have previously been used for this purpose.

Stable walking of the robot attached to a boom has been demonstrated; a video is available online [3]. The gait was designed using the virtual constraints of the \( 1 \) m/s gait presented herein, with the lateral virtual constraints replaced by constant set points. Currently, the 3D model is being refined and experiments in 3D are being planned. In addition, the electronics of the robot are being refined so that energy consumption can be measured and logged in real time.

Acknowledgements

This work was supported by DARPA Contract W91CRB-11-1-0002. Ching-Long Shih and Christine Chevallereau made valuable contributions to the Lagrangian model of ATRIAS 2.1.
Fig. 11: Convergence of the trajectories to the fixed point after perturbing the initial condition.

References


A Single-support zero dynamics

This section presents a derivation of the zero dynamics of ATRIAS 2.1 in single support. Suppose that \( \theta \) is given by

\[
\theta(q_s) = c_0 q_s + c_1, \tag{27}
\]

for an appropriate row vector \( c_0 \) and scalar \( c_1 \). Let \( q_{\text{cont}} = h_0(q_s) \) denote the controlled variables in the output in (13) and suppose that \( q_{\text{cont}} \) can be expressed as an affine function of the configuration variables

\[
q_{\text{cont}} = H_0 q_s + H_1, \tag{28}
\]

Let \( q_{\text{zero}} \) be a complementary set of variables satisfying

\[
q_{\text{zero}} = H_0 q_s + H_1, \tag{29}
\]

and selected so that

\[
\bar{q} = \begin{bmatrix} q_{\text{cont}} \\ q_{\text{zero}} \end{bmatrix} \tag{30}
\]

is a set of generalized coordinates for \( Q \). Define

\[
H_0 = \begin{bmatrix} H_0 \\ \bar{H}_0 \end{bmatrix}, \quad H_1 = \begin{bmatrix} \bar{H}_1 \end{bmatrix},
\]
where it follows that $H_0$ has (full) rank equal to the dimension of $Q$. Defining

$$T_0 = H_0^{-1} \text{ and } T_1 = -H_0^{-1} H_1$$

leads to

$$q_s = T_0 \tilde{q} + T_1.$$  \hspace{1cm} (31)

**Assumptions:**

1. The controlled variables $q_{cont}$ in (28), the gait-timing variable $\theta(q_s)$ in (27), and the desired evolution $h_d(\theta)$ in (13) have been selected so that the decoupling matrix (53) is invertible.

2. The complementary variables $q_{zero}$ of (29) have been selected so that

$$T_0^T B = \begin{bmatrix} \bar{B}_1 \\ 0 \end{bmatrix},$$

and $\bar{B}_1$ is $6 \times 6$, that is, it is square with size determined by the number of actuators.

3. The gait-timing variable can be expressed in terms of $q_{zero}$, that is

$$\theta(\tilde{q}) = \tilde{c}_0 q_{zero} + \tilde{c}_1.$$  \hspace{1cm} (32)

Expressing the mechanical model (2) in the coordinates (30) leads to

$$\bar{D}(\tilde{q}) \dot{\tilde{q}} + \bar{B}(\tilde{q}, \dot{\tilde{q}}) = \bar{B} u,$$  \hspace{1cm} (33)

where

$$\bar{D}(\tilde{q}) = T_0^T D_s(q_s) T_0 \bigg|_{q_s = T_0 \tilde{q} + T_1},$$  \hspace{1cm} (34)

$$\bar{H}(\tilde{q}, \dot{\tilde{q}}) = T_0^T H_s(q_s, \dot{q}_s) T_0 \bigg|_{q_s = T_0 \tilde{q} + T_1} \hspace{1cm} (35)$$

and

$$\bar{B} = T_0^T B_s.$$  \hspace{1cm} (36)

In the transformed coordinates, the dynamic model can be partitioned as

$$\begin{bmatrix} \bar{D}_{11}(\tilde{q}) & \bar{D}_{12}(\tilde{q}) \\ \bar{D}_{21}(\tilde{q}) & \bar{D}_{22}(\tilde{q}) \end{bmatrix} \begin{bmatrix} \dot{q}_{cont} \\ \dot{q}_{zero} \end{bmatrix} + \begin{bmatrix} \bar{H}_1(\tilde{q}, \dot{\tilde{q}}) \\ \bar{H}_2(\tilde{q}, \dot{\tilde{q}}) \end{bmatrix} = \begin{bmatrix} \bar{B}_1 \\ 0 \end{bmatrix} u$$  \hspace{1cm} (37)

The zero dynamic is the unactuated part of this model, namely

$$\bar{D}_{21}(\tilde{q}) \dot{q}_{cont} + \bar{D}_{22}(\tilde{q}) \dot{q}_{zero} + \bar{H}_2(\tilde{q}, \dot{\tilde{q}}) = 0.$$  \hspace{1cm} (38)

We now bring the virtual constraints into consideration,

$$0 = q_{cont} - h_d(\theta),$$  \hspace{1cm} (39)

that is,

$$q_{cont} = h_d(\theta).$$  \hspace{1cm} (40)

Computing the derivatives of $q_{cont}$ with respect to time so that we can substitute into (38) gives

$$\dot{q}_{cont} = \frac{\partial h_d(\theta)}{\partial \theta} \dot{\theta},$$  \hspace{1cm} (41)

and

$$\ddot{q}_{cont} = \frac{\partial h_d(\theta)}{\partial \theta} \ddot{\theta} + \frac{\partial^2 h_d(\theta)}{\partial \theta^2} (\dot{\theta})^2.$$  \hspace{1cm} (42)

Equation (32) yields

$$\dot{\theta} = \tilde{c}_0 \dot{q}_{zero}$$  \hspace{1cm} (43)

$$\ddot{\theta} = \tilde{c}_0 \ddot{q}_{zero}.$$  \hspace{1cm} (44)

Substituting these expressions into (38) and simplifying leads to

$$D_{zero}(q_{zero}) \dot{q}_{zero} + H_{zero}(q_{zero}, q_{zero}) = 0,$$  \hspace{1cm} (45)

where

$$D_{zero} = \bar{D}_{22} + \bar{D}_{21} \frac{\partial h_d(\theta)}{\partial \theta} \tilde{c}_0$$  \hspace{1cm} (46)

and

$$H_{zero} = \bar{H}_1 + \bar{D}_{21} \frac{\partial^2 h_d(\theta)}{\partial \theta^2} (\dot{\theta})^2.$$  \hspace{1cm} (47)

The control signal $u$ compatible with the virtual constraints being zeroed can also be computed from Eqns. (37), (42), and (44)

$$u^* = \bar{B}_1^{-1} \left\{ \begin{bmatrix} \bar{D}_{12} + \bar{D}_{11} \frac{\partial h_d(\theta)}{\partial \theta} \tilde{c}_0 \end{bmatrix} \dot{q}_{zero} + \begin{bmatrix} \bar{H}_1 + \bar{D}_{11} \frac{\partial^2 h_d(\theta)}{\partial \theta^2} (\dot{\theta})^2 \end{bmatrix} \right\}.$$  \hspace{1cm} (48)

---

5When the decoupling matrix is invertible, $D_{zero}$ is guaranteed to be invertible as well.
B Feedback Control Details

Consider the following output function representing a virtual constraint as in (22)

\[ y = \tilde{h}(q_s). \]  

(49)

The first derivative of \( y \) along the solutions of the single-support phase model (2) is simply

\[ \dot{y} = \frac{\partial \tilde{h}(q_s)}{\partial q_s} \dot{q}_s, \]  

(50)

and the second derivative is

\[ \ddot{y} = -\frac{\partial \tilde{h}(q_s)}{\partial q_s} D^{-1}_s(q_s) H_s(q_s) + \frac{\partial}{\partial q_s} \left( \frac{\partial \tilde{h}(q_s)}{\partial q_s} \dot{q}_s \right) \dot{q}_s + \frac{\partial \tilde{h}(q_s)}{\partial q_s} D^{-1}_s(q_s) B_s u. \]  

(51)

The decoupling matrix is given by

\[ A(q_s, \dot{q}_s) = \frac{\partial \tilde{h}(q_s)}{\partial q_s} D^{-1}_s(q_s) B_s, \]  

(53)

while \( u^* \) is obtained by solving for the input that sets \( \ddot{y} = 0 \), giving

\[ u^*(q_s, \dot{q}_s) = A^{-1}(q_s, \dot{q}_s) \left( \frac{\partial}{\partial q_s} \left( \frac{\partial \tilde{h}(q_s)}{\partial q_s} \dot{q}_s \right) \dot{q}_s - \frac{\partial \tilde{h}(q_s)}{\partial q_s} D^{-1}_s(q_s) H_s(q_s) \right). \]  

(54)