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This paper develops feedback controllers for walking in 3D,
on level ground, with energy efficiency as the performance
objective. ATRIAS 2.1 is a new robot that has been designed
for the study of 3D bipedal locomotion, with the aim of com-
bining energy efficiency, speed, and robustness with respect
to natural terrain variations in a single platform. The robot
is highly underactuated, having 6 actuators and, in single
support, 13 degrees of freedom. Its sagittal plane dynam-
ics are designed to embody the Spring Loaded Inverted Pen-
dulum (SLIP), which has been shown to provide a dynamic
model of the body center of mass during steady running gaits
of a wide diversity of terrestrial animals. A detailed dynamic
model is used to optimize walking gaits with respect to the
Cost of Mechanical Transport (CMT), a dimensionless mea-
sure of energetic efficiency, for walking speeds ranging from
0.5 [m

s ] to 1.4[m
s ]. A feedback controller is designed that sta-

bilizes the 3D walking gaits, despite the high degree of un-
deractuation of the robot. The 3D results are illustrated in
simulation. In experiments on a planarized (2D) version of
the robot, the controller yielded stable walking.

1 Introduction
This paper develops feedback controllers for walking in

3D, on level ground, with energy efficiency as the perfor-
mance objective for an underactuated bipedal robot. The 3D
bipedal robot [1] ATRIAS 2.1 shown in Fig. 1 represents
a collaborative effort of Oregon State University, Carnegie
Mellon University, and the University of Michigan. The
robot has been conceived for energy efficiency, speed, and
robustness with respect to natural terrain variations, without
over-reliance on external sensing, such as vision. The robot

is untethered, with all computation and power on board, us-
ing electric motors, batteries, and mechanical springs for
cyclic gait-energy storage.

The legs of ATRIAS 2.1 are very light (less than 5% of
total mass) and are driven by series-elastic actuators. The
torso accounts for approximately 40% of the mass of the
robot, with its center of mass approximately 30 cm above
the hip. The series-elastic actuators in the legs are powered
by electric motors through a 50:1 harmonic drive. Hence the
reflected inertia of the rotors of the motors dominate leg ro-
tation, while the light legs and springs dominate the impact
dynamics. The robot has 6 actuators and in single support

Fig. 1: Untethered 3D bipedal robot ATRIAS 2.1.



has 13 degrees of freedom (DOF).
The paper is organized as follows. Section 2 describes

the design philosophy of ATRIAS 2.1 and an overview of the
mechanism. Similarities and differences of ATRIAS 2.1 with
respect to existing robots are discussed in Sect. 3. A dynamic
model appropriate for walking gaits is given in Sect. 4. Sec-
tion 5 overviews the hybrid zero dynamics (HZD) as a gait
optimization and design tool. This section also addresses the
selection of virtual constraints adapted to the morphology of
the robot. Section 6 introduces a family of functions, Non
Uniform Rational Basis Spline (NURB), to parameterize the
virtual constraints. Some advantages of NURBS over Bézier
polynomials for gait design are highlighted. Section 7 ana-
lyzes the walking efficiency of the 3D model of ATRIAS 2.1
measured by the Coefficient of Mechanical Transport (CMT)
[2], for average walking speeds varying from 0.5 to 1.4[m

s ].
The evolution of important physical quantities such as pos-
itive work, negative work, ground reaction force, are high-
lighted. Section 8 presents a continuous-time time-invariant
feedback controller based on virtual constraints and input-
output linearization to asymptotically stabilize one of the
walking gaits obtained using the HZD optimization. Stability
is checked with a Poincaré section analysis. The continuous-
time feedback controller is augmented with an event-based
controller to stabilize gaits in the 3D model. Finally, Sect. 9
presents concluding remarks.

The feedback designs of Sect. 8 have been implemented
on a planarized version of the robot, where lateral stability is
assured by a boom, as shown in the video [3]. Stable walk-
ing was achieved three days after the robot was assembled.
While this initial success was quite welcome, it could still
take a year to implement the feedback policies developed
herein for the 3D case.

2 Testbed Overview
2.1 Design philosophy

ATRIAS 2.1 is a 3D bipedal robot as shown in Fig. 1.
The name is an acronym which stands for Assume The
Robot Is A Sphere; a reference to the design goal of creat-
ing a mechanical system that is dynamically simple and easy
to model and control. The robot’s sagittal plane dynamics
are designed to embody the Spring-Loaded Inverted Pendu-
lum (SLIP) model, which has been shown to approximate the
body center-of-mass (CoM) motion during steady-state run-
ning gaits of a wide diversity of terrestrial animals, [4–8].
Successful running robots, such as the Planar Hopper, ARL
Mono pod II and CMU Bowleg Hopper, also exhibit SLIP
model behavior [9–11]. An earlier machine by Hurst and
Grizzle, the planar bipedal robot MABEL, also approximates
a SLIP model; the robot achieved a peak walking speed of
1.5[m

s ] [12]; a peak running speed of 3[m
s ] [13]; and walked

over terrain with variations exceeding 15% of leg length [14].
These robots demonstrate that spring-mass models are

a successful and promising approach to machine design for
robotic running. It is also promising for walking gaits – the
same spring-mass model arranged in a bipedal pair has also
been shown, in simulation, to reproduce steady-state dynam-
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Fig. 2: (a) The 4-bar parallelogram that forms each leg and a
conceptual representation of the series-elastic actuators. (b)
The configuration variable q3R is the rotation of the right hip
in the frontal plane; q3L is similar. (c) q1R and q2R are the
angles between the right upper links and the torso; q1L and
q2L are defined similarly.

ics of human walking [15]. ATRIAS 2.1 takes the spring-
mass design philosophy into 3D, and combines it with tether-
free electric actuation.

2.2 Mechanism
ATRIAS is constructed of a pair of identical legs, each

with two DOF, mounted to a torso by a frontal plane revo-
lute joint, for a total of six actuated DOF. Each leg is com-
prised of a pair of powerful brushless motors located at the
hip joint, each connected through a 50:1 harmonic drive and
a large spring to a 4-bar linkage, as shown in Fig. 2a. The
motors each actuate one link of the 4-bar linkage through a
series spring with stiffness chosen to coincide with the nat-
ural frequency of the preferred locomotion gait, and sized
large enough to store gait energy. The 4-bar linkage allows
the leg to be extremely lightweight, which minimizes the im-
pact losses of the foot during touchdown of each stride, and
maximizes the gait energy that can be stored in the springs
and recycled.

The torso houses the on board real-time computing, bat-
teries, and motors for actuating the frontal plane motion of
the legs, and hence accounts for approximately 40% of the
mass of the robot. For the purposes of control, we have
assigned axes x-y-z to the torso, oriented so that the z-axis
points upward and the y-axis points forward. The left and
right hip are connected to the torso through revolute joints
with a common axis aligned with the y-axis of the torso.
Each hip is independently actuated in the frontal plane by a
brushless DC-motor connected through a gear ratio of 26.7:1.
As indicated above, these motors are mounted on the torso.

Each hip is approximately 15 cm wide, so that the to-
tal width of the hips when they are parallel is 30 cm. At the
current time, the legs are terminated in point feet for simplic-
ity. Nontrivial feet may be added later, to explore potential
improvements in efficiency and robustness.

It follows that the robot is highly underactuated. Indeed,
when ATRIAS 2.1 is not in contact with the environment, it



has sixteen DOF and six independent actuators. Six DOF
are associated with the torso. There are two DOF where the
hips attach to the torso, and each leg has four DOF with two
DOF arising from the 4-bar mechanism and an additional
two DOF due to the springs.

2.3 Nominal parameters
Our team is maintaining a web site to document the

modeling parameters for ATRIAS 2.1 [16]. SolidWorks has
been used to compute the COM and inertia tensor of the
components of the robot. Parameters for the springs, mo-
tor inertia, motor gear ratio and harmonic drive are reported
by the manufacturer. Later, these will be verified by sys-
tem/parameter identification.

3 Relation to Other Robots
A number of robots have been built for the purposes of

walking and running, [10, 17–20]. One class of robots relies
on large actuators and active control to implement a variety
of behaviors. Examples include robots with rigid transmis-
sions such as Rabbit and Asimo [19,20]. While these robots
are capable of an aerial phase, it is at the expense of heavy ac-
tuators with high energetic cost and potentially unpredictable
dynamic behavior at ground impact. At the other end of the
spectrum, the McGeer walker and similar robots use only
passive elements. These robots can efficiently walk down
shallow slopes, but are extremely sensitive to disturbances
and hard code only a single behavior [21, 22].

There are robots that fall in between those two extremes.
For instance, the “Cornell Ranger” adds minimal actuation at
the ankle to its reliance on passive dynamics, and can main-
tain a very efficient walking gait on flat ground. Yet this and
similar machines [2,23] retain the extreme sensitivity of pas-
sive dynamic walkers to disturbances and the focus on only
one dynamic behavior.

The MIT Leg Lab’s “Spring Flamingo” walking biped
and Boston Dynamics’ “Big Dog” walking and running
quadruped both use series springs, a passive dynamic ele-
ment that improves the performance of their actuators. Like
the rigid-transmission robots, however, they attempt to cre-
ate all gait dynamics through software control [24, 25]; the
springs on these robots are primarily for force sensing and
mechanical filtering purposes, and are essentially a soft load
cell, acting as a force sensor for the low-level controllers
[26]. Although this approach can result in impressive agility
and robustness surpassing a rigid system, the energetic cost
is still very high. For example, Big Dog uses a gasoline en-
gine as a power source. Very recently, robots are being pur-
posely built with high-bandwidth actuators and no springs
with the objective of implementing compliance in software.
Examples include the hydraulically-actuated HyQ [27] and
MIT’s electrically-powered Cheetah [28]; both machines use
significantly more energy than a similarly-sized animal.

The jury is still out on which design philosophy will
provide the best tradeoffs in terms of agility, efficiency, and
ease of control. ATRIAS 2.1 is very much in the camp

of seeking to combine the advantages of passive dynamics
with actuation and feedback control for achieving a wide
range of legged mobility. Its design exploits springs for
energy-efficient steady-state locomotion and accommodat-
ing large disturbances, while using powerful actuators to
achieve legged dexterity and gait stability when needed dur-
ing transient behaviors.

4 Dynamic Model of Walking
4.1 Generalized coordinates

Coordinates are defined for the robot in general posi-
tion, that is, when neither leg is in contact with the ground.
When the robot is in single support, meaning one and only
one leg is contact with the ground, appropriate holonomic
constraints can be applied to arrive at a reduced set of gener-
alized coordinates. The coordinates are defined independent
of which leg is eventually the stance leg; this is different from
the approach followed in [29]. All relative angles are posi-
tive in the direction that respects the right-hand rule with one
exception, the left hip joint angle.

Let a world frame be defined and attach a Cartesian co-
ordinate frame (xT ,yT ,zT ) to the torso, oriented so that when
the torso is upright, the z-axis points upward and the y-axis
points forward. Euler angles are used to parameterize the ori-
entation of the torso with respect to the world frame. These
angles are denoted by qz, qx, and qy and are called yaw, pitch,
and roll, respectively. The yaw coordinate of the torso is also
called heading. The angles of the right and left hips rela-
tive to the torso are denoted by q3R and q3L, respectively, as
shown in Fig. 2b. Because the four links in each leg form a
parallelogram, only two coordinates are needed to parame-
terize the four links. The angles of the top two links relative
to the hip are denoted by q1R and q2R for the right leg, and
q1L and q2L for the left leg. This completes the coordinates
for the body of the robot; see Fig. 2c.

Turning to the actuators, because the motors at the hips
are connected to the body through a fixed gear ratio, the an-
gles of the rotors relative to the torso are uniquely determined
from q3R and q3L. On the other hand, the motors driving the
legs are connected through springs, and hence additional co-
ordinates are needed. For each motor, the angle of the output
shaft of the harmonic drive is denoted by qgr. These angles
are used instead of the angles of the rotors of the motors be-
cause qgr1R, qgr2R, qgr1L, and qgr2L are in the “same coordi-
nate frame” as the link angles of the legs.

4.2 Single-support 3D dynamic model
When in single support, the Cartesian coordinates of the

torso are redundant and can be eliminated. Hence, for de-
veloping the single-support model, with either the left or the
right leg in stance, the configuration variables are qs = (qz,
qy, qx, q1R, q2R, q1L, q2L, qgr1R, qgr2R, q3R, qgr1L, qgr2L, q3L).
We note that the last 6 coordinates are independently ac-
tuated whereas the first 7 coordinates are un-actuated. Let
Qs ⊂ SO(3)×S10 be a connected open subset giving the fea-
sible set for the configuration variables.



The model and its feasible set of variables will of course
depend on which leg is in stance. This will be made clear in
Sect. 4.4 by appending a subscript “L” or “R” as appropriate.

Because the 4-bar linkage in each leg forms a parallelo-
gram, the linear and angular velocities of the lower two links
are identical to the linear and angular velocities of the corre-
sponding upper links. It follows that the Lagrangian of the
model can be developed as if the robot were a pinned open
kinematic chain. To compute the Lagrangian, the kinetic en-
ergy and potential energy of each rigid body are calculated
and expressed in the generalized coordinates. Summing over
the rigid bodies then gives the total kinetic energy Ks and the
total potential energy Vs, yielding

Ls(qs, q̇s) := Ks(qs, q̇s)−Vs(qs). (1)

Lagrange’s equation then gives the standard robot equations

Ds(qs)q̈s +Cs(qs, q̇s)q̇s +Gs(qs) = Γs, (2)

where the matrix Ds is the mass-inertia matrix, Cs is the ma-
trix of Coriolis and centrifugal terms, Gs is the gravity vector,
and Γs is the vector of generalized forces acting on the robot.
Using the principle of virtual work, Γs can be written as,

Γs = Bsu+Bsp(qs)τsp(qs, q̇s)+Byaw(qs)τyaw(qs, q̇s), (3)

where the matrices1 Bs, Bsp, and Byaw define how the motor
torques u = [u1R,u2R,u3R,u1L,u2L,u3L]

T , the spring torques
τsp, and the stance-leg end yaw torque τyaw enter the model,
respectively. For i ∈ {1R,2R,1L,2L}, the spring torque of
the i-th series-elastic actuator is modeled as

τsp,i =−ksp,i(qi−qgr,i)−bsp,i(q̇i− q̇gr,i), (4)

where, ksp,i denotes spring stiffness and bsp,i is a damping
coefficient. The primary joint friction is due to the harmonic
drives used in the series-elastic actuators and is ignored in the
model at the current time. References [30, 31] provide non-
linear models of power-loss at the harmonic drives and will
be incorporated when sufficient experimental data is avail-
able from the robot. The stance-leg end yaw torque is also
modeled as viscous friction

τyaw =−byawωshin(qs, q̇s), (5)

where ωshin is the vertical component of the angular velocity
about the stance shin and byaw is a constant.

1Because of the way coordinates have been assigned, Bs is a constant
matrix. Moreover, because the actuators are independent, Bs has (full) rank
equal to the number of actuators, 6.

Setting x = (qs; q̇s) ∈ T Qs, the model in state-variable
form is

ẋ =
[

q̇s
D−1

s (qs)(−Hs(qs, q̇s)+Bsu)

]
, (6)

where

Hs(qs, q̇s) =Cs(qs, q̇s)q̇s +Gs(qs)−Bsp(qs)τsp(qs, q̇s)−
B f ric(qs)τ f ric(qs, q̇s)−Byaw(qs)τyaw(qs, q̇s).

(7)
Equation (6) immediately leads to the state variable model

ẋ = fs(x)+gs(x)u. (8)

4.3 Impact model
An impact occurs when the end of the swing leg contacts

the ground. Let pv : Qs→R denote the vertical height of the
swing leg above the ground so that the impact surface is

S = {x ∈ T Qs | pv(qs) = 0}. (9)

The impact is modeled as a contact of two rigid bod-
ies, using the methodology of [32]; see [33] for the details.
Consequently, the impact is instantaneous, the generalized
configuration variables are constant across the impact, while
the generalized velocities undergo a jump. The impact map
is expressed as

x+ = ∆(x−), (10)

where x− is the value of the state just before the impact and
x+ is its value just after the impact.

4.4 Hybrid model
Combining the swing phase models and the impact mod-

els for the left and right legs results in the hybrid model

ΣL :
{

ẋ = fs,L(x)+gs,L(x)u, x− 6∈ SL
x+ = ∆L→R(x−), x− ∈ SL

(11)

ΣR :
{

ẋ = fs,R(x)+gs,R(x)u, x− 6∈ SR
x+ = ∆R→L(x−), x− ∈ SR.

In the hybrid model, the dynamics evolve according to (8)
until the swing leg impacts the ground. The impact map
given by (10) is inactive until the state of the robot reaches
the switching surface S , at which point, the impact map be-
comes active and results in jump (or discontinuity) in the ve-
locity states. Equation (11) gives the hybrid nonlinear system
for 3D bipedal walking.



4.5 Planar or 2D dynamic model
A sagittal plane model is obtained from the 3D model

of Sect. 4.2 by imposing four holonomic constraints and set-
ting the width of the hips to zero. In particular, the yaw and
roll coordinates of the torso, qz and qy, and their derivatives
are set to zero, thereby constraining the torso to the sagittal
plane. The hip coordinates q3R and q3L and their derivatives
are also set to zero, so that the hip axis is perpendicular to
the sagittal plane. The Lagrangian of the planar model is
then the Lagrangian of the 3D model restricted to the surface

{(qs; q̇s) ∈ T Qs | qz = 0,qy = 0,q3R = 0,q3L = 0,
q̇z = 0, q̇y = 0, q̇3R = 0, q̇3L = 0}. (12)

The control torques associated with q3R and q3L are removed,
leaving four actuators. The mass of these actuators is re-
tained in the model so that solutions of the 3D and 2D models
can be compared.

The impact map is once again developed using the
method in [32]. A hybrid model is then formed, just as in
(11). The model can be simplified to a single-phase system
with impulse effects if leg swapping is incorporated into the
impact map, as in [34].

5 Gait Design and Optimization
5.1 General method

A holonomic constraint that is imposed through the ac-
tion of an actuator rather than the internal forces of a physical
constraint is said to be virtual [34–36]. Virtual constraints
can be used to synchronize the links of a robot in order to
achieve common objectives of walking, such as supporting
the torso, advancing the swing leg in relation to the stance
leg, specifying foot clearance, etc. Analogous to physical
constraints, virtual constraints induce a reduced-dimensional
model compatible with the constraints, called the zero dy-
namics [35, 37]. When combined with parameter optimiza-
tion, virtual constraints can be designed to achieve additional
objectives such as walking at a desired speed and respecting
bounds on ground reaction forces. Energy efficiency can be
increased, as explained in [29, 33, 35, 38]. The main ideas of
designing and optimizing periodic walking gaits are summa-
rized below while the details are given in Appx. A. The issue
of stability is addressed separately in Sect. 8.

5.2 Virtual constraints
One virtual constraint per actuator is proposed in the

form of an output that, when zeroed by a feedback controller,
enforces the constraint. The constraints are written in the
form

y = h(qs,α) = h0(qs)−hd(θ(qs),α), (13)

where h0(qs) specifies the vector of variables to be con-
trolled, hd(θ,α) is the desired evolution of the controlled

variables as a function of θ(qs), and α = [α j,i] ∈ R 6×(n+1)

is a matrix of real parameters to be chosen. The number of
columns, n+1, is defined later in Sect.6. A gait-timing vari-
able θ(qs) is used to replace time in parameterizing a motion
of the robot. Consequently, θ(qs) is selected to be strictly
monotonic (i.e., strictly increasing or decreasing) along nor-
mal walking gaits.

For the 3D model of ATRIAS 2.1 , the controlled vari-
ables, when the right leg is the stance leg, are initially se-
lected as :

h0(qs) =



qgr1R +qgr2R

2
qgr1L +qgr2L

2
qgr2R−qgr1R
qgr2L−qgr1L

q3R
q3L


=



qLA
grR

qLA
grL

qKnee
grR

qKnee
grL

qHip
R

qHip
L


, (14)

where qLA
grR, qLA

grL, qKnee
grR , qKnee

grL , qHip
R and qHip

L are the leg angle
for stance leg, leg angle for swing leg, knee angle for stance
leg, knee angle for swing leg, hip joint angle for stance leg
and hip joint angle for the swing leg, respectively. The first
four variables represent quantities in the sagittal plane, on
the motor side of the series-compliant actuators; specifically,
they correspond to the angles of the right and left legs relative
to the torso, and the angles of the knees, respectively, when
the springs are at rest. The last two controlled variables are
the angles of legs relative to the torso, in the frontal plane;
recall that these variables are not actuated through springs.

The gait-timing variable is selected as

θ(qs) =

{
θR(qs) if the right leg is stance,
θL(qs) otherwise,

(15)

where θR(qs) is the angle between the virtual leg2 and the
ground surface normal vector when the right leg is the stance
leg. θL(qs) is defined in an analogous manner when the
left leg is the stance leg. The desired evolution of the con-
trolled variables, hd(θ(qs),α), will be specified in Sect. 6.
The quantity α represents the free coefficients in the family
of functions used to design the virtual constraints. The free
parameters will be determined based on a finite-dimensional
nonlinear optimization problem.

5.3 Zero dynamics
When the decoupling matrix is invertible, see [33, 35,

37], zeroing of the virtual constraints in (13) via feedback
creates a parameterized smooth surface Zα that is invariant
under the flow of the closed-loop single support dynamics.

2Virtual leg is defined as a virtual line connecting the pivot point of the
stance leg to the hip joint.



The dynamics restricted to this surface, that is, the dynamics
compatible with the constraints, is called the zero dynamics.
In each single-support phase, the zero dynamics can be ex-
pressed in the form of a second-order system,

Dzero(qzero,α)q̈zero +Hzero(qzero, q̇zero,α) = 0, (16)

where (qzero, q̇zero) are the unactuated variables in the La-
grangian model and constitute a set of local coordinates for
the surface Zα (see Appx. A for more details). Because the
actuators are doing work on the system when zeroing the
outputs, the resulting dynamics may not be Lagrangian, al-
though, in special cases, the zero dynamics is Lagrangian
[35]. When the virtual constraints in (13) have vector rela-
tive degree two3 [35, 37], as is the case here, the dimension
of qzero equals the dimension of qs minus the number of in-
dependent actuators. Hence, for the 3D model used here,
dim qzero = 7 and qzero = (qz;qy;qx;q1R;q2R;q1L;q2L).

5.4 Optimization
As shown in Appx. A, the process of deriving (16)

provides a closed-form expression for the control input
u∗α(qzero, q̇zero) achieving

0 = h(qs,α)⇔ h0(qs) = hd(θ,α),

that is, the control input that zeros the virtual constraints and
creates Zα. Solutions of the zero dynamics (16) are exact so-
lutions of the full-dimensional model (6) in closed-loop with
u∗α [29, 33, 39]. This motivates posing an optimization prob-
lem to select α resulting in a periodic solution of the hybrid
model (11), where the lower-dimensional dynamic equations
of the zero dynamics (16) are integrated in place of the full
dynamics (8) in closed loop with u∗α.

The cost function will be taken as the cost of mechanical
transport CMT [2],

J(α,q−zero, q̇
−
zero) =

1
gMtotd

∫ TI

0

6

∑
i=1

[pi(t)]+dt, (17)

where (q−zero; q̇−zero) denotes the final condition of the zero dy-
namics. Furthermore, TI is the step duration, d represents the
distance traveled by the center of mass (COM ) in one step,
g denotes the gravitational constant, Mtot is the total mass of
the robot, pi(t) is actuator power, and [p]+ = p when p ≥ 0
and equals zero otherwise. According to [2], for humans
walking at approximately 1 m/s, CMT is approximately 0.05.

The parameter vector α and the initial conditions
(q−zero; q̇−zero) are chosen to minimize J(α,q−zero, q̇

−
zero) subject

to the walking gait being periodic and symmetric, the ground
reaction forces are feasible, and the speed is a desired value.
Here, the minimization was carried out in MATLAB using
the fmincon function.

3Essentially means the second derivatives of the six outputs in (13) de-
pend on six inputs in a full rank or independent manner.

If the optimization process is successful, it returns the
(locally) optimized value for the parameters in the virtual
constraints, α∗ and the final conditions (q−zero; q̇−zero) for a pe-
riodic solution of the hybrid model (11) corresponding to a
walking gait with the specified properties. Section 8 will dis-
cuss how the virtual constraints can be used to synthesize a
feedback controller that asymptotically stabilizes the walk-
ing gait.

6 Parametrization of Desired Trajectories for Holo-
nomic Constraints

6.1 NURB Curves
A NURB curve is defined in a two dimensional homoge-

neous coordinate space as follows. Let s be related to the gait
timing variable by s = θ(qs)−θ+

θ−− θ+
and θ+ and θ− are the initial

and final values of the gait timing variable θ on the periodic
orbit, and let P(s) = (s;hd, j(s)) ∈ R2 be the 2D position of
the points on the NURB curve for the jth output. Then

P(s) =
∑

n+1
i=1 Bi wi Ni,k(s)

∑
n+1
i=1 wi Ni,k(s)

=
n+1

∑
i=1

Bi Ri,k(s), (18)

where wi, i = 1, · · · ,n+ 1 are nonnegative real scalars, Bi =
(si;α j,i) ∈ R2 is the 2D position of the ith control vertex for
the jth output function, Ni,k(s) denotes the basis function of
order k corresponding to the ith control point defined by Cox-
de Boor recursion, [40].

Ni,0(s) =

{
1 si ≤ s < si+1

0 otherwise,
(19)

Ni,k(s) =
(s− si)Ni,k−1(s)

si+k−1− si
+

(si+k− s)Ni+1,k−1(s)
si+k− si+1

(20)

where si are the values of the knot vector s =[
s1 s2 · · · sn+1

]
and si < si+1, and n+ 1 denotes the num-

ber of the control points.
It is worth noting that if the number of the control points

and the order of the basis functions are the same, then a
NURB curve is equivalent to a Bézier curve [40].

6.2 Advantages of NURBs
Bézier polynomials have been previously used in ref-

erences [35], [33, Chap. 6], [12] and [29] to parameter-
ize the holonomic constraints for the bipedal robots. As
noted above, Bézier polynomials are a special case of NURB
curves, and thus using NURBs allows more solutions when
designing gaits via optimization, as in Sect. 5.4, which may
result in lower values of the cost function.

We offer next a few qualitative reasons for why NURBs
yield better results.
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Fig. 3: a) Basis functions, b) first derivative of the basis functions, and c) second derivative of the basis functions, all with
respect to the timing variable s for each control point Bi when the order k is six (solid line) and three (dashed line).

6.2.1 Local action of control points
As the order of the NURB basis functions Ni,k(s) de-

creases, the control points affect the curve over smaller
ranges of s, which has advantages. For example, Fig. 3 shows

Ni,k(s),
∂Ni,k(s)

∂s and ∂2Ni,k(s)
∂s2 for k = 6 (solid line) and k = 3

(dashed line), with n= 6. When k = 3, B4, B5 and B6 have no
contribution to the shape of the desired trajectory at s = 0 be-
cause the basis functions Ni,k(s) corresponding to those con-
trol points vanish at s = 0. On the other hand, for k = 6,
all of the control points contribute to the value of the trajec-
tory at s = 0. Figure 3 also shows that when k = 6, at the
boundaries where the control points B1, B2, B5 and B6 affect
P(s), their corresponding basis functions have large values

for ∂Ni,k(s)
∂s and ∂2Ni,k(s)

∂s2 . This can cause numerical instability
of the solutions as a numerical optimizer tries to adjust the
control points to minimize cost while achieving periodicity
of the solution.

6.2.2 Subphases
Because a Bézier polynomial is an analytic function

(in the sense of globally convergent Taylor series), if it (or
one of its derivatives) is constant over an open set, then it
(or the derivative) is constant everywhere. When k < n, a
NURB is not an analytic function, and hence it is possible to
have non-trivial regions where the curve or one of its deriva-
tive is constant, while the NURB is not globally constant.
These regions are informally referred to as “subphases”. Fig-
ure 4 illustrates this for one of the trajectories associated
with the right leg knee angle, in the regions for s ∈ [0 0.25],
s ∈ [0.25 0.5], s ∈ [0.5 0.75] and s ∈ [0.75 1]. This figure
shows that the velocity of the knee angle is commanded to
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Fig. 4: a) Desired trajectory for right (stance) leg knee angle
qR

Knee, b) first derivative of the desired trajectory and c) the
second derivative of the desired trajectory when order of the
NURB basis function is 3.

a small value at the beginning of the stance phase. Conse-
quently, the energy of the impact forces Fimpact , shown in
Fig. 5, is directed into the springs, as illustrated by their de-
flection δ. The energy stored in the springs is released later



Fig. 5: Leg shortly after impact, showing the springs absorb-
ing the impact energy.

in the gait.

7 Performance Analysis of ATRIAS
The optimization framework of Sects. 5 and 6 has been

applied to the 3D model of Sect. 4 to compute walking gaits
that are locally optimal with respect to CMT. The gaits may
only be locally optimal because of the dependence of the cost
function (17) on the parameters of the virtual constraints and
the final conditions of the zero dynamics is non convex. Sim-
ulations for nominal walking speeds of 0.5 to 1.4 [m

s ], in
increments are 0.1 [m

s ], are presented. Walking at 1 [m
s ] is

analyzed in greater detail.

7.1 Walking efficiency versus speed
Figure 6 shows the computed CMT versus speed when

Bézier and NURB are used as desired trajectories for the
holonomic constraints, circles and squares respectively. For
comparison purposes, the CMT of a human is estimated from
experimental data to be 0.05 at a speed of 1 [m

s ] [2], while
the experimentally estimated CMT of the Cornell Biped is
0.04 at a speed of 0.6 [m

s ] [41]. Interpolating a cubic polyno-
mial through the NURB-based simulation data of ATRIAS
2.1 results in a minimum CMT of 0.05 at 0.7 [m

s ]. At 1[m
s ],

the simulated CMT of ATRIAS is 0.096, which means the
robot would require approximately twice the power of a hu-
man when walking at 1[m

s ], assuming once again that the har-
monic drives are lossless.

If the harmonic drives are assumed to be 70% efficient
on average, then the motors in the sagittal plane must pro-
duce approximately 43% more power when realizing the
walking gaits of Fig. 6. When this is taken into account,
ATRIAS’s estimated CMT at 0.7[m

s ] is 0.071, or approxi-
mately one and a half times that of a human, while at 1[m

s ],
CMT would 0.13, or approximately two and a half times that
of a human.

Table 1: The energy breakdown over one step for walking at
1.0[m

s ]; right leg is stance. The CMT is 0.096.

Actuator Positive
Work
[Joule]

Negative
Work
[Joule]

Peak
Power
[W ]

Peak
Torque
[N.m]

u1R 0.154 3.605 84.518 4.154
u2R 1.711 1.265 113.720 5.358
u3R 0.429 0.608 42.834 4.989
u1L 1.339 1.487 174.23 4.154
u2L 4.434 3.444 391.780 5.358
u3L 0.283 0.330 27.298 4.989

7.2 Walking at 1 [m
s ]

A periodic walking gait optimized at 1 [m
s ] is analyzed

in more detail. In the following, the right leg is the stance leg
while the left leg is the swing leg.

The evolution of the virtual constraints is shown in
Fig. 7. The motor-side right leg angle qLA

grR decreases from
187[deg] to 175[deg] and the corresponding left leg angle
qLA

grL increases from 175[deg] to 187[deg]. The motor-side
right knee angle qKnee

grR varies between 4[deg] and 10[deg] and
the left knee angle qKnee

grL varies from 2[deg] to 8[deg]. In the
frontal plane, the right hip joint angle qR

Hip and the left hip
joint angle qL

Hip shown in Fig. 7c are essentially constant,
being bounded between 4[deg] and 5[deg].

Figure 8 shows the motor torques for u1R, u1L, u2R, u2L,
u3R and u3L, while Fig. 9 shows the corresponding actuator
power (product of torque and angular velocity at the motor
shafts). Table 1 presents the amount of the positive work
performed by each actuators as well as the amount of the
negative work absorbed by each actuators over the course of
a single step. A notable point is the large amount of negative
work done by actuator u1 of the stance leg. Due to the 4-bar
linkage, u1 is positive to support the robot but moves in the
negative direction to advance the body of the robot.

8 Feedback Control via Input-Output Linearization
Each of the gaits presented in Sect. 7 comes with a set

of outputs (i.e., virtual constraints) which vanish on the pe-
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Fig. 6: Circles represent computed CMT using Bézier curves
for the desired trajectories versus walking speed from 0.5 to
1.4 [m

s ]. The thick solid line is a cubic interpolation of these
data. Squares represent computed CMT using NURB curves
versus walking speeds 0.5, 0.7, 0.9, 1.1 and 1.4 [m

s ]. The
dashed line is a cubic interpolation of these data. Losses at
the harmonic drives are ignored
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riodic orbit traced out by the robot’s states over the periodic
walking motion. Let α∗ denote the vector of the free parame-
ters resulting from the optimization of the virtual constraints,
giving

y = h(qs,α
∗) = h0(qs)−hd(θ(qs),α

∗). (21)

A feedback controller is required to impose the constraints
by driving the outputs to zero when the robot is away from
the periodic orbit. A Poincaré analysis is then done to assess
the stability of the closed-loop system.

Our first step in the design of the feedback controller is
optional: we augment the virtual constraints given in (21)
with a term hcorr(qs) that vanishes on the periodic orbit and
hence leaves the walking motion unchanged. The extra term
has the effect of smoothing the torques at leg transition. The
augmented output is then

y = h̃(qs) = h0(qs)−hd(θ(qs),α
∗)−hcorr(qs). (22)

Assuming the decoupling matrix A(x) is invertible (see
(53) of Appx. B), input-output linearization yields the feed-
back controller

u(x) = u∗(x)−A(x)−1(
1
ε2 KPy+

1
ε

KDẏ), (23)

which renders the input-output map linear, namely

ÿ+
1
ε

KDẏ+
1
ε2 Kpy = 0. (24)

The control gains KP and KD are chosen such that the matrix

[
0 I
−KD −KP

]

is Hurwitz and ε > 0 is a tuning parameter.



The feedback controller in (23) was implemented on the
3D model for the nominal walking speed of 1.0[m

s ]. The
stability of the fixed point is checked using a linearized
Poincaré map P : ∆S → ∆S , where x j+1 = P(x j) and ∆S is
the Poincaré section taken at the map of the switching sur-
face by the impact. x j = (qz;qy; · · · ; q̇z; q̇y; · · ·) ∈ ∆S denotes
the projection of the state vector for the full dynamics model
during step j onto ∆S . Because the Poincaré section ∆S is a
hyperspace in R26, the Poincaré section has twenty five inde-
pendent components. To implement this, define a projection
map Π(x)= (qz;qy; · · · ; q̇z; q̇y; · · ·) which eliminates qx (pitch
angle) from the state vector and also defining perturbations
as δx j = Π(x j − x∗), the linearization of the Poincaré map
around the fixed point x∗ results in the Jacobian A = ∂P

∂x of
the Poincaré map. In particular,

A j =
P(x∗+∆x j)−P(x∗−∆x j)

2∆x j
(25)

where A j is jth column of A = [A1,A2, · · · ,A25] and ∆x j =
(0; · · · ;0;ε j;0; · · · ;0). Using the output functions explained
in (14) and computing the linearized Poincaré map for ε =
0.01. The feedback controller of (23) makes the zero dy-
namics manifold invariant and attractive, however, due to the
existence of compliant components and high degree of un-
der actuation, it does not make the zero dynamics manifold
hybrid invariant [39]. As expected from [29], calculations
show that one eigenvalue has magnitude greater than one and
hence the gait is unstable under this controller.

On the other hand, when the virtual constraints are ap-
plied to the 2D model (q3R and q3L removed), a stable gait is
achieved. Based on this fact, one suspects that the instability
of the 3D model is due to the roll or yaw motions. From [29],
the position of the COM in the frontal plane is important. If
at leg touchdown, the COM is not between the feet, but out-
side the position of the next supporting foot, the robot will
topple sideways. Based on this physical intuition, the control
of the variable q3 (which regulates step width on the swing
leg) was replaced by the control of the distance between the
swing leg end and the COM along the frontal direction. The
distance between the end of the swing leg and the COM of
the robot in the frontal plane is computed4. Then, a NURB
curve, see Fig. 10, of order five with fifteen control points
is fit to this distance. Next, an event based controller is de-
signed and integrated with the continuous input output lin-
earizing controller in (23). To achieve this goal, we param-
eterize the corrective term hcorr by a vector β which is held
constant over two steps and is updated at the left-to-right im-
pact event. In particular, the augmented output function is
written as

y = h̃(qs) = h0(qs)−hd(θ(qs),α
∗)−hcorr(qs,β). (26)

4Frontal plane is attached to the torso and the normal axis is aligned with
y axis of the torso frame.
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Fig. 10: NURB curve of order 5 with 15 control point is fitted
to the trajectory of the horizontal distance between the end of
the left leg and the COM in the frontal plane, black curve is
the distance trajectory, dashed red curve is the fitted data and
the black squares are the control points of the NURB curve.

Finally, the Poincaré map x j+1 = P(x j,β j) is linearized
around the fixed point x∗ and β∗ as δx j+1 = ∂P(x,β)

∂x δx j +
∂P(x,β)

∂β
δβ j where δβ j = β j − β∗. A state feedback law

δx j = −Kδβ j is designed such that A− BK is Hurwitz.
K is found through discrete LQR algorithm and the two
largest eigenvalues in magnitude for the closed loop sys-
tem are |λ1| = 0.74 and |λ2| = 0.066, proving stabil-
ity. Figure 11 shows the convergence of the phase
portrait for (qx, q̇x), (qy, q̇y),(qz, q̇z), (q1R, q̇1R), (q2R, q̇2R),
(q3R, q̇3R),(qgr1R, q̇gr1R) and (qgr2R, q̇gr2R) after perturbing
the fixed point.

9 Conclusions
The 3D bipedal robot ATRIAS 2.1 has 6 actuators, and

when in single support, it has 13 DOF. To the best of the
authors’ knowledge, no bipedal robot has been successfully
controlled with this much underactuation. The paper showed
that the method of virtual constraints and hybrid zero dy-
namics could be used to design energetically efficient gaits
with respect to the cost of mechanical transport (CMT) and
to stabilize them. For the process of gait optimization, Non
Uniform Rational Basis Spline (NURB) were used to param-
eterize the virtual constraints; these functions provided more
flexibility that the Bézier curves that have previously been
used for this purpose.

Stable walking of the robot attached to a boom has been
demonstrated; a video is available online [3]. The gait was
designed using the virtual constraints of the 1 m/s gait pre-
sented herein, with the lateral virtual constraints replaced by
constant set points. Currently, the 3D model is being refined
and experiments in 3D are being planned. In addition, the
electronics of the robot are being refined so that energy con-
sumption can be measured and logged in real time.
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A Single-support zero dynamics
This section presents a derivation of the zero dynamics

of ATRIAS 2.1 in single support. Suppose that θ is given by

θ(qs) = c0qs + c1, (27)

for an appropriate row vector c0 and scalar c1. Let qcont =
h0(qs) denote the controlled variables in the output in (13)
and suppose that qcont can be expressed as an affine function
of the configuration variables

qcont = H̃0qs + H̃1. (28)

Let qzero be a complementary set of variables satisfying

qzero = Ĥ0qs + Ĥ1, (29)

and selected so that

q̄ =

[
qcont
qzero

]
(30)

is a set of generalized coordinates for Qs. Define

H0 =

[
H̃0
Ĥ0

]
, H1 =

[
H̃1
Ĥ1

]
,



where it follows that H0 has (full) rank equal to the dimen-
sion of Qs. Defining

T0 = H−1
0 and T1 =−H−1

0 H1

leads to

qs = T0q̄+T1. (31)

Assumptions:

1. The controlled variables qcont in (28), the gait-timing
variable θ(qs) in (27), and the desired evolution hd(θ)
in (13) have been selected so that the decoupling matrix
(53) is invertible.

2. The complementary variables qzero of (29) have been se-
lected so that

T ′0B =

[
B̄1
0

]
,

and B̄1 is 6×6, that is, it is square with size determined
by the number of actuators.

3. The gait-timing variable can be expressed in terms of
qzero, that is

θ(q̄) = c̄0qzero + c̄1. (32)

Expressing the mechanical model (2) in the coordinates
(30) leads to

D̄(q̄) ¨̄q+ H̄(q̄, ˙̄q) = B̄u, (33)

where

D̄(q̄) = T ′0Ds(qs)T0
∣∣
qs=T0q̄+T1

, (34)

H̄(q̄, ˙̄q) = T ′0Hs(qs, q̇s)T0
∣∣
qs =T0q̄+T1

q̇s =T0 ˙̄q

(35)

and

B̄ = T ′0Bs. (36)

In the transformed coordinates, the dynamic model can
be partitioned as

[
D̄11(q̄) D̄12(q̄)
D̄21(q̄) D̄22(q̄)

][
q̈cont
q̈zero

]
+

[
H̄1(q̄, ˙̄q)
H̄2(q̄, ˙̄q)

]
=

[
B̄1
0

]
u (37)

The zero dynamic is the unactuated part of this model,
namely

D̄21(q̄)q̈cont + D̄22(q̄)q̈zero + H̄2(q̄, ˙̄q) = 0. (38)

We now bring the virtual constraints into consideration,

0 = qcont −hd(θ), (39)

that is,

qcont = hd(θ). (40)

Computing the derivatives of qcont with respect to time so
that we can substitute into (38) gives

q̇cont =
∂hd(θ)

∂θ
θ̇, (41)

and

q̈cont =
∂hd(θ)

∂θ
θ̈+

∂2hd(θ)

∂θ2 (θ̇)2. (42)

Equation (32) yields

θ̇ = c̄0q̇zero (43)
θ̈ = c̄0q̈zero. (44)

Substituting these expressions into (38) and simplifying
leads to5

Dzero(qzero)q̈zero +Hzero(qzero, q̇zero) = 0, (45)

where

Dzero = D̄22 + D̄21
∂hd(θ)

∂θ
c̄0 (46)

and

Hzero = H̄1 + D̄21
∂2hd(θ)

∂θ2 (θ̇)2. (47)

The control signal u compatible with the virtual con-
straints being zeroed can also be computed from Eqns. (37),
(42), and (44)

u∗ =B̄−1
1

{[
D̄12 + D̄11

∂hd(θ)

∂θ
c̄0

]
q̈zero+

H̄1 + D̄11
∂2hd(θ)

∂θ2 (θ̇)2
}
. (48)

5When the decoupling matrix is invertible, Dzero is guaranteed to be in-
vertible as well.



B Feedback Control Details
Consider the following output function representing a

virtual constraint as in (22)

y = h̃(qs). (49)

The first derivative of y along the solutions of the single-
support phase model (2) is simply

ẏ =
∂h̃(qs)

∂qs
q̇s, (50)

and the second derivative is

ÿ =− ∂h̃(qs)

∂qs
D−1

s (qs)Hs(q̇s,qs)+ (51)

∂

∂qs

(
∂h̃(qs)

∂qs
q̇s

)
q̇s +

∂h̃(qs)

∂qs
D−1

s (qs)Bsu. (52)

The decoupling matrix is given by

A(qs, q̇s) =
∂h̃(qs)

∂qs
D−1

s (qs)Bs, (53)

while u∗ is obtained by solving for the input that sets ÿ = 0,
giving

u∗(qs, q̇s) =A−1(qs, q̇s)

(
∂

∂qs

(
∂h̃(qs)

∂qs
q̇s

)
q̇s −

∂h̃(qs)

∂qs
D−1

s (qs)Hs(q̇s,qs)

)
. (54)


