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“Monopedal Running Control: SLIP Embedding and 

Virtual Constraint Controllers” 
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ABSTRACT 

This document presents additional results accompanying the paper [1]. The document 

is divided in two parts. In the first part, details regarding the simulation implementation 

of the controllers in [1] are given. In the second part, additional results that support the 

conclusions derived in [1] are included. The reader who is not interested in the 

implementation part can pass directly to Section II.  

I. IMPLEMENTATION DETAILS 

A. Input Saturation 

Including saturation is necessary to have reasonable domain of attraction in the Rigid 

Target Model controller. The saturation was implemented as follows. The horizontal and 

vertical ground reaction forces can be computed from the inputs based on the formula, 

 

�

( ) ( )

( ) ( ) �
1

2

1
sin cos

1
cos sin

G

x

y

uF

F ul
F u

l

ϕ θ ϕ θ

ϕ θ ϕ θ

 − + − +    
=     
    + − + 
 

J
�������������

. (S-1) 

Let µ  be the friction coefficient and min
yF  be the minimum value of the vertical 

component of the ground reaction (in the simulations included in the paper 0.8µ = , and 

min 10yF N= ). Suppose that the feedback controller requires 1u  and 2u . Then, based on 1u  

and 2u  the corresponding components xF  and yF  of the ground reaction forceGF  can be 

computed via (S-1). 

1. If min
y yF F≤ , then set min

y yF F=  and compute min
x y yF F Fµ µ= = . Then, using (S-

1), compute 1
Gu F−= J  and use the result as the input. 
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2. If min
y yF F>  and x yF Fµ <  (i.e. if sliding occurs) set x yF Fµ= . Then, using (S-

1), compute 1
Gu F−= J  and use the result as the input. 

These conditions imposed on the inputs 1u  and 2u  guarantee that, neither the unilateral 

ground force nor the friction limitation constraint is violated. 

B. Designing the Target Model and Virtual Holonomic Constraints 

In this section, details regarding the design of holonomic constraints for suitably 

parameterizing the zero dynamics of both the SLIP embedding controller and the Rigid 

Target Model controller are described.  

B1) Designing the Target Model in the SLIP embedding controller: 

As was mentioned in [1], the SLIP embedding controller introduces a number of 

parameters in the stance phase dynamics associated with properties of the target model 

that are to be chosen via optimization. According to the notation in [1], the array 

s 0( , , , )k r rα θ ′= ∆  includes the physical properties of the target model i.e. the SLIP as 

well as the desired pitch angle θ . The constrained minimization problem associated with 

the cost (37) in [1] is then numerically solved, resulting to the nominal values for the 

parameters sα , fα , and to the fixed point state sx − . The solution of the minimization 

problem is 

nat 0.91ml = , A 7578.6 N/mk = , 7898.4 N/mk = , 0 1.14mr = , 0.008mr∆ = , 9.7oψ =  

0.193 mx = , 1.129 my = , 89.6oθ = , 2 m/sx =ɺ , 1.33 my =ɺ , o0 /sθ =ɺ . 

B2) Designing the Virtual Holonomic Constraints in the Rigid Target Model controller: 

As is mentioned in the Appendix of [1], the use of Bézier polynomials simplifies the 

implementation of the conditions for hybrid invariance (conditions (i) and (ii) of Section 

III C in [1]). One however, could parameterize the holonomic constraints dh  imposed on 

the actuated degrees of freedom, see [1] (20), using standard polynomials. Then, the 

constraints imposed on the leg length and the pitch angle are given by 
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 ( ) 1d u Mqθ α += ɶ , (S-3) 
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where 1µ  and 2µ  are the parameters of a centering and scaling transformation intended 

to improve the numerical properties of the polynomial, and they will be included in the 

optimization. Note that, because the primary goal of this work is to compare the Rigid 

Target Model controller with the SLIP embedding controller to highlight the significance 

of compliance in transient motions, a constant polynomial was used for the pitch angle. 

The constrained optimization problem (37), (38) in [1] is then solved with the “search” 

states being the parameters ( )s 0,..., 1j j M
α α

= +
= ɶ , td

fα ϕ= , 1µ , 2µ , together with the fixed 

point states sx − . The results of the optimization are presented below 

0 0.783α =ɶ , 1 0.003α =ɶ , 2 0.041α =ɶ , 3 0.0001α = −ɶ , 5
4 3.62 10α −= ×ɶ  , 

5
5 4.94 10α −= − ×ɶ , 6 0.0003α = −ɶ , 7 1.5655α =ɶ , 1 1.574µ = , 2 0.124µ = , 

0.195 mx = , 1.129 my = , 89.7oθ = , 2 m/sx =ɺ , 1.31 my =ɺ , o0 /sθ =ɺ . 

C. Achieving Hybrid Invariance 

In this section, details regarding the implementation of hybrid invariance are 

presented. The conditions are easily achievable in the case of the SLIP embedding 

controller, however, in the case of the Rigid Target Model controller, the addition of the 

inner loop feedback law sΓ  of Fig. 2 in [1] is necessary. 

C1) Hybrid Invariance for the SLIP embedding controller 

Hybrid invariance in the SLIP embedding controller is a consequence of the form of 

the flight dynamics of the ASLIP. Indeed, if the ASLIP liftoff occurs when θ θ=  and 

0θ θ= =ɺɺ ɺ , i.e. on the zero dynamics manifold, then since during flight 0θ =ɺɺ , touchdown 

will occur on the zero dynamics manifold. More details can be found in the proof of 

Lemma 3 in [2]. 

C2) Hybrid Invariance for the SLIP embedding controller 

The easiest way to impose the conditions of hybrid invariance (conditions (i) and (ii) 

of Section III C in [1]) is to transform the polynomial1 (S-2) into a Bézier polynomial and 

apply the rules given in the Appendix of [1]. This section shows how to derive the linear 

                                                 
1 There is no need to update the coefficient of the pitch angle polynomial, since hybrid invariance is 
achieved through the dynamics of the ASLIP during flight, just as in the case of SLIP embedding 
controller. 
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transformation taking the coefficients ( )
0,...,j j M

α
=

ɶ  of the standard polynomial (S-2) into 

the coefficients ( )
0,...,j j M

α
=

 of a Bézier polynomial, and vice versa. 

Suppose min max,u uq q    is the interval in which uq  takes its values. Since the degree of 

the polynomial is 6M = , take 5N =  points from min max,u uq q    including min
uq  and max

uq . 

The sampling vector is then [ ] 1,...5i
q q

=
= , with min

1 uq q=  and max
5 uq q= . Evaluate 

 1

2

ˆ i
i

q
q

µ
µ
−= , 

2

ˆ i
i

q
q

µ
=
ɺɺ , 1,...,5i = , (S-4) 

 
min

max min
i

i

q q
s

q q

−=
−

, 
max min

i
i

q
s

q q
=

−
ɺ

ɺ , 1,...,5i = . (S-5) 

Equating the standard polynomials with the Bézier polynomials we have 

Positions: 
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Boundary velocities: 
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In particular, since 1 0s =  and 1 1s = , in view of properties of the Bézier polynomials, the 

last two equations for the boundary velocities take the simple form 

 1
1 1 1 0 1 1
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Hence, the following linear system of equations arises 

 1 2L a L a=ɶ , (S-10) 

where 

 ( ) 1
1 ˆ j

iij
L q −= , for { } { }1,...,5 , 1,...,7i j∈ ∈ , 

 ( )1 6,1
0L = , ( ) ( ) 2

1 1 16
ˆ ˆ1 j

j
L j q q−= − ɺ , for { }2,...,7j ∈ , (S-11) 
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Hence, the linear transformation mapping the coefficients of a standard polynomial aɶ  

into the coefficients a  of a Bézier polynomial is 

 ( )min max,u ua T q q a= ɶ , (S-13) 

where 

 ( )min max 1
2 1,u uT q q L L−= . (S-14) 

It is emphasized that the linear transformation ( )min max,u uT q q  is a function of min
uq  and 

max
uq , and therefore to compute it, the values of these parameters must be known. To 

ensure that liftoff occurs on 
s s

s f s fS Z S Zα α+→ →=∩ ∩  (
s

s fS Zα→ ∩  corresponds to the 

nominal, i.e. fixed point, values of the stance parameters sα ) max
uq  is always selected to 

be equal to its nominal value. On the other hand min
uq  is selected to be equal to the current 

value at touchdown. 

To conclude, at each touchdown the coefficients of the Bézier polynomial are updated 

based on the rule (43) in the Appendix of [1]. Then, we compute min
uq  based on the values 

of the state at touchdown, and set max
uq  equal to its nominal value so that the matrix 

( )min max,u uT q q  can be calculated. Given ( )min max,u uT q q  and the updated values of the Bézier 

polynomial coefficients, the updated values of the coefficients of the standard polynomial 

are computed by inverting (S-13). 
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II.  SIMULATION RESULTS 

A. Recovery from a perturbation 

In the paper [1] plots presenting pitch angle, forward velocity, and leg forces as the 

ASLIP recovers from a perturbation 6degδθ = −  using both controllers were included. In 

this supplement more plots are given that support the arguments in [1]. More specifically, 

the Cartesian trajectory of the COM as the ASLIP recovers from the given pitch 

perturbation, is given in Fig. 1, while Fig. 2 and 3 present the corresponding leg angle 

and length during the same motion. Fig. 4 present the hip torque required by the 

controller, and Figs. 5 to 7 present the horizontal and vertical components of the ground 

force developed during the motion of the ASLIP, showing that the corresponding 

constraints are all met. 

 

A1) Cartesian variables and Leg states 
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Figure 1. Cartesian trajectory of the COM in recovering from a perturbation 6degδθ = − . Left: Rigid 

Target Model controller; right: SLIP embedding controller. 
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Figure 2. Leg angles. Left: Rigid Target Model controller; right: SLIP embedding controller Notice that the 
leg angle in the SLIP embedding is not constant during flight since it is a function of the pitch by (34) in 
[1]. It worth mentioning that, at the first step, the leg angle during flight appears to be constant. This is a 

result of the particular perturbation, for which 0θ =ɺ . 
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Figure 3. Leg length. Left: Rigid Target Model controller (actual length solid, desired length dashed); right: 
SLIP embedding controller. Notice again that the leg length in the SLIP embedding during flight is not 
constant since it is a function of the pitch. 
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A2) Continuous Controller Inputs: Hip Torques  
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Figure 4. Hip torque. Left: Rigid Target Model controller; right: SLIP embedding controller. Reasonable 
values in both cases. Note the effect of the saturation in the hip torque developed by the Rigid Target 
Model controller. Leg forces are detailed in [1], see Fig. 5, and, hence, they are not presented here. 
 
 
 
A3) Ground Reaction Forces 
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Figure 5. Horizontal ground force component. Left: Rigid Target Model controller; right: SLIP embedding 
controller. In the SLIP embedding controller, the horizontal ground reaction forces are similar to the SLIP 
ground reaction n forces, even when the system is not on the nominal orbit.  
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Figure 6. Vertical ground force component. Left: Rigid Target Model controller, right: SLIP embedding 
controller. The fact that the values are always positive means that the unilateral ground force constraint is 
not violated (the robot does not pull the ground). Notice that in the Rigid Target Model saturation of the 
input torques must be used. 
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Figure 7. Ratio of the horizontal over the vertical ground force components. Left: Rigid Target Model 
controller, right: SLIP embedding controller. The friction coefficient is taken to be 0.8 and is never 
exceeded. This means that no sliding occurs. Again in the Rigid Target Model this is a result of the 
saturation.  
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B. Maximum Perturbations Rejected 

The following table complements Table II of [1] with the rest of the states. The 

perturbations are assumed to enter the system right after liftoff. Perturbations in vertical 

positions are omitted because they result in the toe “scuffing” the ground. Note also that, 

in the SLIP embedding controller, no saturation is included. This is the reason why the 

SLIP controller cannot reject deg
s15δθ = −ɺ , which is the magnitude of the perturbation 

rejected by the RTM controller.  

 
Perturbation Control  Stride ( )max

1 2,au u  ( )total

1 2,W W  

0.09y mδ =  RTM 2  ( )473,22.5  ( )34,9  

 SLIP 5 ( )105,22  ( )39,23  

m
s0.5yδ = +ɺ  RTM 3 ( )468,23  ( )37,13.5  

 SLIP 5 ( )92,22  ( )36,23  

m
s2.7yδ = −ɺ   RTM 5 ( )416,25  ( )55,22  

 SLIP 1 ( )8,17  ( )1,5  

deg
s16δθ = +ɺ  RTM 7  ( )477,15  ( )83,27  

 SLIP 5 ( )59,31  ( )29,23  

deg
s15δθ = −ɺ  RTM 4  ( )490,28.2  ( )75,20  

deg
s12δθ = −ɺ  SLIP 4  ( )51,30  ( )18,20  

 
The following table includes the maximum and minimum perturbations rejected by the 

SLIP embedding controller respecting all the constraints. In this table saturation is 

included. It is immediately clear that the domain of attraction is much larger than that of 

the Rigid Target Model controller results presented in the previous table. 
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Perturbation Stride ( )max

1 2,au u  ( )total

1 2,W W  

max 0.3y mδ =  6  ( )487.3,32.6 ( )128.5,28.4 

max 15degδθ = +  10 ( )214.8,55.3 ( )85,53  

min 19degδθ = −  10 ( )442,100  ( )90,70  

m
smax 0.9xδ = +ɺ  6  ( )415,16  ( )110,40  

m
smax 0.7xδ = −ɺ  8  ( )113,31  ( )56,35  

m
smax 1.3yδ = +ɺ  6  ( )406,31  ( )121,28  

m
smin 4yδ = −ɺ  6  ( )434,32  ( )88,28  

deg
smax 49δθ = +ɺ   16 ( )256,51  ( )98,75  

deg
smin 56δθ = −ɺ  8  ( )313,99  ( )71,59  


