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ABSTRACT

This document presents additional results accompanying the pap&h¢lflocument
is divided in two parts. In the first part, details regardingsiheulation implementation
of the controllers in [1] are given. In the second part, additionaltsethdt support the
conclusions derived in [1] are included. The reader who is not irgdrast the
implementation part can pass directly to Section II.

|. IMPLEMENTATION DETAILS

A. Input Saturation

Including saturation is necessary to have reasonable domainaatiatirin the Rigid
Target Model controller. The saturation was implemented asafsllThe horizontal and
vertical ground reaction forces can be computed from the inputs based on the formula,
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Let i be the friction coefficient and:ymin be the minimum value of the vertical
component of the ground reaction (in the simulations included in the pepér8, and
Fymin =10N). Suppose that the feedback controller requireand u,. Then, based on,
and u, the corresponding componerfts and F, of the ground reaction forég can be
computed via (S-1).

1. If F,<F™, then setF, = F"" and computeF, :,u‘Fy‘ = /,I‘Fy”“” . Then, using (S-

1), computeu = J'F, and use the result as the input.



2.1f F,>F™ and u<F,/

F,| (i.e. if sliding occurs) seF, = u|F,|. Then, using (S-
1), computeu = J'F, and use the result as the input.

These conditions imposed on the inputsandu, guarantee that, neither the unilateral

ground force nor the friction limitation constraistviolated.

B. Designing the Target Model and Virtual Holonomic Constraints

In this section, details regarding the design ofohomic constraints for suitably
parameterizing the zero dynamics of both the Slki®exding controller and the Rigid
Target Model controller are described.

B1) Designing the Target Model in the SLIP embedding controller:

As was mentioned in [1], the SLIP embedding coidrointroduces a number of

parameters in the stance phase dynamics assouwidtegroperties of the target model

that are to be chosen via optimization. Accordingtlte notation in [1], the array
a,=(8,k,r,,Ar) includes the physical properties of the target ehog. the SLIP as
well as the desired pitch angfe. The constrained minimization problem associatiét w
the cost (37) in [1] is then numerically solvedsuking to the nominal values for the
parametersa,, a,, and to the fixed point stat& . The solution of the minimization
problem is

| =0.91m, k, =7578.6 N/, k = 7898.4 N/, r, =1.14m, Ar =0.008m,  =9.7°

X=0.193m, y=1.129 m, § =89.6, X=2m/s, =133 m, § =0 °/s.
B2) Designing the Virtual Holonomic Constraints in the Rigid Target Model controller:
As is mentioned in the Appendix of [1], the useBézier polynomials simplifies the
implementation of the conditions for hybrid invaréa (conditions (i) and (ii) of Section

Il C in [1]). One however, could parameterize titdonomic constraint$),, imposed on

the actuated degrees of freedom, see [1] (20)gusiandard polynomials. Then, the

constraints imposed on the leg length and the @itaiie are given by

1y (a) =i(uj a, (S-2)

Hd (qu) = dM +17 (8'3)



where 1, and u, are the parameters of a centering and scalingfoamation intended
to improve the numerical properties of the polynaimand they will be included in the
optimization. Note that, because the primary gdahis work is to compare the Rigid
Target Model controller with the SLIP embedding trolter to highlight the significance
of compliance in transient motions, a constant patyial was used for the pitch angle.
The constrained optimization problem (37), (38]1his then solved with the “search”

states being the parametea§:(c7j) a, =¢“, u, W, together with the fixed

j=0,..M+1’
point statesx; . The results of the optimization are presentedvoel
@,=0.783, @, =0.003, @, =0.041, &, =-0.000], &, =3.62x 10° ,
@, =-4.94x 10°, &, =-0.000%, &, =1.565¢, 1, =1.574, 1, =0.124,
X=0.195m, y=1.129 m, § =89.7, x=2m/s, y=1.31m, 8 =0 °/s.

C. Achieving Hybrid Invariance

In this section, details regarding the implemeotatiof hybrid invariance are
presented. The conditions are easily achievabléhéncase of the SLIP embedding
controller, however, in the case of the Rigid Tafgedel controller, the addition of the

inner loop feedback law of Fig. 2 in [1] is necessary.

C1) Hybrid Invariance for the SLIP embedding controller

Hybrid invariance in the SLIP embedding controlea consequence of the form of
the flight dynamics of the ASLIP. Indeed, if the IAB liftoff occurs whend=8 and
6=6+=0, i.e. on the zero dynamics manifold, then sincenguflight & =0, touchdown

will occur on the zero dynamics manifold. More dst@an be found in the proof of
Lemma 3 in [2].
C2) Hybrid Invariance for the SLIP embedding controller

The easiest way to impose the conditions of hylmi@riance (conditions (i) and (ii)
of Section Il C in [1]) is to transform the polymial’ (S-2) into a Bézier polynomial and

apply the rules given in the Appendix of [1]. Tkisction shows how to derive the linear

! There is no need to update the coefficient of iteh angle polynomial, since hybrid invariance is
achieved through the dynamics of the ASLIP duritight, just as in the case of SLIP embedding
controller.



transformation taking the coeffic:ien(szﬁfj)‘:O y of the standard polynomial (S-2) into

the coefficients(aj) of a Bézier polynomial, and vice versa.

j=0,..M

min max

Suppose[qu ek } is the interval in whichg, takes its values. Since the degree of

the polynomial isM =6, take N =5 points from| g;"",q™ | including ¢, and q;"".

U

The sampling vector is therm:[q]izly__.S, with g, =q™ and g, = g™ . Evaluate
qizu,ai:i,izl,__,g, (S-4)
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Equating the standard polynomials with the Béz@ympomials we have
Positions:

i[dﬂ]a,. :i{.M—!),Sj (1—3)“”‘1}611. ,fori=1,.. .k (S-6)

jif(M =)
Boundary velocities:
N T = M! ,- v-i -
(;[jqi qi]aj] = ;{ms (1-5) s}(am—aj), fori =1,5. (S-7)
In particular, sinces =0 and s =1, in view of properties of the Bézier polynomiéise

last two equations for the boundary velocities tiieesimple form

=

u 1A T~ . .
[Z[ jaal_lql] q, J =-Msa,+Msga,, (S-8)

v 1A . .
(Z[ jﬁs"l%] aj] = —M85a5+ Mssae- (S-9)

j=1
Hence, the following linear system of equationsesi
La=L,a, (S-10)
where

(L), =6 forin{1...3 .jo{1..7},

(L), =0, (L), =(i =167y, for jO{2,...,3, (S-11)



(L), =0. (L), =(i-1)&G forjOf2.... 3,

and

(szj:-I?Geééjjisj(l—-s)M_j,fori[]{lp_,Q Jo{1..Y. (S-12)

Hence, the linear transformation mapping the coleffits of a standard polynomial
into the coefficientsa of a Bézier polynomial is

a=T(q" q"™)a, (5-13)
where

(o™, o)=L, (S-14)

min max

It is emphasized that the linear transformatib(qu ek ) is a function ofg™ and

q, ", and therefore to compute it, the values of them@ameters must be known. To

ensure that liftoff occurs or§_(NZ . =S _(NZ (S_.NZ,  corresponds to the

max
u

nominal, i.e. fixed point, values of the stanceapaetersa,) g, is always selected to
be equal to its nominal value. On the other hgfill is selected to be equal to the current

value at touchdown.

To conclude, at each touchdown the coefficientthefBézier polynomial are updated

based on the rule (43) in the Appendix of [1]. Thea computeq™ based on the values
of the state at touchdown, and sgt* equal to its nominal value so that the matrix
T (qj”i“,qu"ax) can be calculated. Give‘h(qj”i“,qu"ax) and the updated values of the Bézier

polynomial coefficients, the updated values of¢befficients of the standard polynomial

are computed by inverting (S-13).



[I. SMULATION RESULTS

A. Recovery from a perturbation

In the paper [1] plots presenting pitch angle, fmvvelocity, and leg forces as the

ASLIP recovers from a perturbatiad@ = —6 deg using both controllers were included. In

this supplement more plots are given that supperatguments in [1]. More specifically,
the Cartesian trajectory of the COM as the ASLIPovecs from the given pitch
perturbation, is given in Fig. 1, while Fig. 2 aBdoresent the corresponding leg angle
and length during the same motion. Fig. 4 preséet hip torque required by the
controller, and Figs. 5 to 7 present the horizoatal vertical components of the ground
force developed during the motion of the ASLIP, wimy that the corresponding

constraints are all met.

Al) Cartesian variables and Leg states

Rigid Target Model SLIP embedding
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Figure 1. Cartesian trajectory of the COM in readowg from a perturbationdd = -6deg. Left: Rigid
Target Model controller; right: SLIP embedding controller.



Rigid Target Model SLIP embedding
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Figure 2. Leg angles. Left: Rigid Target Model controligght: SLIP embedding controller Notice that the
leg angle in the SLIP embedding is not constant durightflsince it is a function of the pitch by (34) in
[1]. It worth mentioning that, at the first step, thg Engle during flight appears to be constant. This is a

result of the particular perturbation, for whiée 0.
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Figure 3. Leg length. Left: Rigid Target Model controllactual length solid, desired length dashed); right:
SLIP embedding controller. Notice again that the leg lengtthé SLIP embedding during flight is not

constant since it is a function of the pitch.



A2) Continuous Controller Inputs: Hip Torques

Rigid Target Model SLIP embedding
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Figure 4. Hip torque. Left: Rigid Target Model contenjl right: SLIP embedding controller. Reasonable
values in both cases. Note the effect of the saturation imighéorque developed by the Rigid Target
Model controller. Leg forces are detailed in [1], see Fign8, bence, they are not presented here.

A3) Ground Reaction Forces

Rigid Target Model SLIP embedding

150 : : 150 ‘ :
£ £
c 100 — 100
2 S
S 50 S 50
o o
5 5
o -50 o -50
(@] (@]
® -100 © -100
5 5
N 150 N .150
T £

-200 : : -200 : :

0 0.5 1 15 0 0.5 1 15
t (s) t(s)

Figure 5. Horizontal ground force component. Left: Rigadget Model controller; right: SLIP embedding
controller. In the SLIP embedding controller, the horiabground reaction forces are similar to the SLIP
ground reaction n forces, even when the system is noeamotininal orbit.



Rigid Target Model SLIP embedding
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Figure 6. Vertical ground force component. Left: Rigid Tafdedel controller, right: SLIP embedding
controller. The fact that the values are always positive meanshh unilateral ground force constraint is
not violated (the robot does not pull the ground). &éothat in the Rigid Target Model saturation of the
input torques must be used.
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Figure 7. Ratio of the horizontal over the vertical groungtdocomponents. Left: Rigid Target Model

controller, right: SLIP embedding controller. The fricti@oefficient is taken to be 0.8 and is never
exceeded. This means that no sliding occurs. Again in the Higidet Model this is a result of the

saturation.



B. Maximum Perturbations Rejected

The following table complements Table Il of [1] tvithe rest of the states. The
perturbations are assumed to enter the system aftgrt liftoff. Perturbations in vertical
positions are omitted because they result in teé'souffing” the ground. Note also that,
in the SLIP embedding controller, no saturatiomuded. This is the reason why the

SLIP controller cannot rejeadd = —15%Y , which is the magnitude of the perturbation

rejected by the RTM controller.

Perturbation | Control | Stride (Uf, uz)max (W, ’Wz)mta'
dy =0.09m RTM 2 (473,22.9 (34,9
SLIP S (105,22 (39,23
oy=+0.5% | RTM 3 (468,23 (37,135
SLIP > (92,22 (36,23
oy =-2.77 RTM 5 (416,29 (55,22
SLIP 1 (8,17) (15)
o0 = +16%Y RTM 7 (477,19 (83,27
SLIP 5 (59,3 (29,23
o0 = -15%Y RTM 4 (490,28.3 (75,20
o0 = -12%y SLIP 4 (51,30 (18,20

The following table includes the maximum and minmmperturbations rejected by the
SLIP embedding controller respecting all the cansts. In this table saturation is
included. It is immediately clear that the domairatiraction is much larger than that of

the Rigid Target Model controller results presentetthe previous table.
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Perturbation Stride (Uf uz)max (VV1 ’Wz)total

Oy, =0.3m 6 (487.3,32.¢ | (128.5,28.

0, =+15dec | 10 | (214.8,553 | (85,53

o6, =-19dec | 10 (442,100 (90,70
OX e = +0.97/ 6 (415,19 (110,49
OX e = —0.7 8 (113,3) (56,39
OYrmax = +1.3% 6 (406,3) (121,29

OV, = —4m, 6 (434,32 (88,28
OO, = +49%y | 16 (256,53 (98,79
0, = —56°Y 8 (313,99 (71,59
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