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Abstract-Quantitative measures for the separation and pen- 
etration of two convex objects are formulated. These measures, 
called separation and penetration growth distances, are closely 
related to traditional translational distance measures and share 
many of their desirable properties. The solution of a single 
optimization problem yields both the separation and penetra- 
tion distances. For three-dimensional polytopes the optimization 
problem is a linear program in four variables whose asymptotic 
computational time is O(7n),  where 7 7 1  is the number of linear 
inequalities required to specify the two polytopes. This equals 
or far betters the known times required to compute translational 
distances: O(m ) for separation and O(m2 log m )  for penetration. 
When the positioning of the two objects depends on configuration 
variables, the partial derivatives of the growth distances with 
respect to the configuration variables exist almost everywhere. 
Moreover, for polytopes they can be evaluated with little numer- 
ical effort. The large speed advantage for penetration growth 
distance creates new opportunities for the algorithmic separation 
of intersecting objects. Specifically, derivatives of the penetration 
growth distance can be used to construct motions which separate 
the objects. An application to path finding is described. 

I. INTRODUCTION 
HE PROXIMAL relationship between two objects is of 
interest for many practical reasons. The most obvious 

is interference detection in robot motion planning. Other 
areas of interest include collision avoidance in machine-tool 
path planning, computer-aided design of mechanisms, and 
computer graphics. Knowing whether or not the mathematical 
representations of two objects intersect is a basic requirement 
in such areas, and algorithms for intersection detection have 
received considerable attention. However, in motion planning 
intersection detection alone is not sufficient. It is important to 
have quantitative measures of object separation or penetration. 
Separation and penetration distances serve this need. They 
show where path adjustment is needed and, more importantly, 
they give insight into how the adjustments should be carried 
out. Efficient computational procedures for the distances are 
crucial because in the planning process it is necessary to 
determine the distances for many potential placements of the 
objects. This paper and its predecessors [27], [16], [29] con- 
sider new distances, called growth distances, which measure 
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separation and penetration. They have desirable properties and 
can be computed very efficiently. 

When two objects, represented by point sets A and B, are 
separated the most natural measure of separation is the shortest 
Euclidean distance between a pair of points contained in them: 
&(A, B) = min Ila - blla, a E A, b E B. The dependence of 
this separation distance on configuration variables which cause 
the objects to move is well studied [13]. Furthermore, algo- 
rithms for its computation are available for convex polytopes 
(see, e.g., [2], [9], [lo], [14], 1211, 2221, and [34]) as well as 
for a variety of smooth convex objects [15]. 

Unlike d$(A, B), which has a clear physical meaning, a 
penetration distance is inherently conceptual in nature. After 
all, objects do not penetrate each other in the real world; they 
collide and are deformed or broken. The general objective of 
a penetration distance is to quantify depth of intersection for 
object models. There is an obvious motivation for studying 
penetration distances. They provide information on changes 
in object position which can reduce or eliminate intersection. 
Separation distances are noit useful for this purpose, since 
they are identically zero on the set of positions which cause 
intersection. Past research on penetration distance is relatively 
sparse. To the best of our knowledge, substantial contributions 
are limited to [4]-[6], [8], [U], [26], and [31]-[33]. In most of 
these papers, the objects are modeled by convex polytopes and 
the penetration distance is defined in essentially the same way. 
Roughly speaking, it is the shortest relative translation of the 
two objects, measured by the Euclidean norm, that causes them 
to have no interior points in common. For objects in three- 
dimensional (3-D) space the computation of this penetration 
distance, d$(A,B), is very expensive [51, [171, [311, [331. 
Consequently, its potential advantages in solving mechanical 
interference problems and in path planning [4]-[6] have not 
been realized. Our interest in growth distances grew out 
of a desire to obtain computationally efficient measures of 
penetration. 

Growth distances are also defined for a pair of convex 
objects. They are a measure of how much each'of the objects 
must be grown, outward from fixed seed points in their 
interiors, so that they just {.ouch. When the grown objects 
are larger than the actual objects, the growth measures sep- 
aration; when the grown objects are smaller than the actual, 
objects, the growth measures penetration. Thus, the growth 
for touching determines both the separation and penetration 
distances. The main reason for introducing growth distances 
is their computational efficiency. Indeed, when the objects 
are polytopes in 3-D space the computation becomes the 
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solutioin of a linear program in only four variables whose 
computational time is O ( m ) ,  where m is the total number 
of faces in the two objects. It is also possible to compute 
growth distances efficiently for a general class of smooth 
convex objects [27]. Desirable properties of growth distances 
include invariance with respect to the choice of the origin 
and orientation of the coordinate system in which A and B 
are represented, continuous dependence of the distances on 
configuration variables describing the position and orientation 
of the objects, and under appropriate conditions, a simple 
characlerization of the derivatives of the distances with respect 
to the configuration variables. The derivatives are important 
because they determine directions of object motion which 
either iincrease separation or decrease penetration. Separation 
and penetration growth distances are related by bounding 
expressions to the corresponding translational distances. When 
the ob,jects are rotund, these bounds show that the growth 
distances closely approximate the translational distances. 

Our separation and penetration growth distances appear to 
be new concepts. A related idea was discussed by Leven 
and Sharir [20]. However, they grow only one of the two 
objects and are mainly concerned with the construction of a 
generalized Voronoi diagram which they use for planning the 
translational motion of a convex object in a two-dimensional 
(2-D) space. Another approach based on growing one object is 
given in [23]. It has a serious weakness: in some situations the 
distance is discontinuous with respect to the relative motion 
of the two objects. Growing both objects rather than one 
is crucial to most of the desirable results that we obtain. 
Penetration measures, closer to the one defined in this paper, 
have alppeared recently [26], [32], [35].  They are also obtained 
by shrinking both object models until they touch. However, the 
shrinking process is very different: each object boundary point 
is moved inward, either normal to a polyhedral face [26] or 
approximately normal to a smooth boundary [32], by an equal 
distance. This eliminates the need for seed points, and for 
small penetrations, the resulting penetration measure (twice 
the movement of the boundary points) closely approximates 
the translational penetration distance. Unlike penetration trans- 
lational distance and penetration growth distance, the distance 
is not defined for all object pairs. The definition fails, for 
example, when one of the objects is slender. As the objects 
shrink, the slender object may become empty before the pair 
of objects just touch. 

The following is an outline of the paper and its con- 
tents. Section I1 reviews in a general way prior results on 
separation and penetration distances. It also motivates the 
need for a computationally efficient penetration distance and 
allows contributions of this paper to be placed in a clear 
perspective. Object models and their growth representations 
are introduced in Section 111. The fractional growth needed 
for the grown objects to just touch is the growth func- 
tion, g(A, B). Separation and penetration growth distances, 
which are defined in terms of g(A,  B), are considered in 
Section IV. Illustrative examples are given, and connections 
between growth distances and the translational distances are 
established. Linear programming (LP) approaches to polytopal 
objects, are formulated in Section V. Numerical issues, includ- 

ing some computational results, are considered in Section VI. 
When the polytopes are in a so-called regular configuration, 
partial derivatives of the growth function with respect to 
the configuration variables of the objects exist and may be 
obtained numerically with little effort. These results and their 
application to the separation of objects which intersect are 
developed in Section VII. Section VI11 describes briefly an 
application of growth distance to path finding. Section IX 
summarizes key issues raised by the results of the paper. Proofs 
of the theorems are contained in the appendixes, Readers who 
desire an introductory treatment of the main ideas may omit 
the following material: the last seven paragraphs of Section 11, 
the last four paragraphs of Section 111, the last two paragraphs 
of Section V, all but the last two paragraphs of Section VII, 
and the Appendixes. 

The following is a summary of needed notations. The empty 
set is 0; the nonnegative real numbers are R+; x E R" is a 
column vector with real components 2'; zT is the transpose 
of x ;  M E R"'" is a real n x n matrix. Generic norms and 
p-norms on R" are denoted, respectively, by 1 1  . 1 1  and 1 1  . [ I p ;  
the Frobenius norm on RnX" is 1 1  . 1 1 ~ .  Origin-centered closed 
balls of radius T in R" corresponding to the different norms 
are N ( T )  = {.cl lllcll I r }  and NP(r)  = { X I  Illl;llP I T } .  The 
interior, boundary, closure, and complement of a set A c Rn 
are, respectively, int A,bd A,cl  A, and A'. The Minkowski 
sum or difference of A, B c R" is A f B = { U  f bla E 
A, b E B}. The multiplication of A by a scalar CT E R is 
aA = {anla E A}. S 0 ( n )  is the special orthogonal group 
of real n x n orthogonal matrices with determinant one, i.e., 
T E SO(n)  is a rotation matrix. The hyperplane in R" passing 
through p with normal q # 0 is P(p,  7 )  = {x lqT(x  - p )  = O}; 
the half-space bounded by P(p,  q)  with outward normal r/ is 

The class of sets in R? that are compact, convex, and have 
a nonempty interior is denoted by 0. It is easy to confirm 
that A, B E 0 and CT # 0 imply A & B E 0 and aA E 0. 
It is also known [30] that cl(int A) = A. Thus, A is fully 
determined by its interior, a property which is expected of 
solid physical objects. Moreover, physical objects are finite in 
extent and include their surfaces (boundary points). Hence, 0 
is the natural class of sets for modeling convex objects. In the 
representation of objects n I= 2 or 3. However, in what follows, 
no special use is made of this fact. If the object A undergoes a 
change of configuration, i.e., a rotation T E S 0 ( n )  followed 
by a translation s E R", it is represented by T A  + { s } .  For 
a detailed discussion of these matters see [18]. Obviously, 
A E 0 implies T A  + { s }  E 0. 

H(P,7 )  = {J17T(Z - P )  5 01. 

11. SEPARATION AND PENETRATION DISTANCES 

A pair of objects has three intuitive, qualitative states of 
proximity: separation, penetration, and touching. For objects 
modeled by sets A and B in 0 it is possible to give these states 
a precise meaning: separation e A fl B = 0, penetrdon 
e irit A n int B # 0, touching e A n B # 0, and 
int A n irit B = 0. Clearly, the three states of proximity 
are exhaustive and mutually exclusive. 

Quantitative measures of separation and penetration should 
conform to the above definitions. Specifically, a separation 
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(a) (b) (c) 

Fig. 1. Determination o f t :  (a) separation, (b) penetration, and (c) touching. 

distance, &(A, B), should be positive for separation and 
zero otherwise, and a penetration distance, d p ( A ,  B ) ,  should 
be positive for penetration and zero otherwise. It should be 
emphasized that such distances are not metrics on 0. Instead, 
they conform to our physical concept of distance between 
objects, i.e., they measure the amount of relative motion which 
is needed to bring A and B into a touching position. 

We now develop these ideas more fully. The purpose is 
to review in a common setting results and different points of 
view which have appeared in the literature. It is understood 
throughout that A , B  E 0. 

The preceding remarks suggest the following definitions for 
ds and dp: 

(I) 
(2) 

For obvious reasons we call these distances tvanslational 
distances. It is also possible, with a significant increase in 
complexity, to develop distances which are based on rotations 
as well as translations of the objects [28]. Definitions (1) and 
(2) are similar to those of Cameron and Culley [6j but avoid 
their need for explicitly using a concept of touching (contact, 
in their terminology). It is easy to confirm that &(A,  B) and 
dp(A, B) are defined for all A and B in 0. Also, they are 
nonnegative and satisfy the desired positivity conditions for 
separation and penetration. Note that a generic norm is used 
to measure the translation and that the actual values of the 
distances depend on a particular choice of the norm. When p-  
norms are chosen, the distances will be denoted by dS(A, B) 
and &(A,  B). Geometric interpretations for the t’s which 
characterize the infima are illustrated in Fig. 1 for p = 2 .  

The distances &(A,  B )  and d p ( A ,  B) have simple prop- 
erties. It is easily confirmed that they are symmetric in 
their arguments and are invariant with respect to common 
translations of A and B: d(A, B) = d(B, A ) ,  d(A + {s}, B + 
I s } )  = d(A,  B) for all s E R“. Ideally, the distances should 
be independent of changes in the position and orientation 
of the coordinate system. This means that they should be 
invariant with respect to both rotations and translations, i.e., 
d(TA+{s} ,TB+{s})  = d(A ,B)  for all T E S O ( n )  and all 
s E R“. This property holds only for the p = 2 norm, and it 
is undoubtedly the underlying reason for the almost universal 
adoption of 

Both ds and dp can be computed as solutions of optimiza- 
tion problems. Note that A n (B + { t } )  # 0 if and only if 
t E A - B. Thus, (1) yields 

=inf{lltll IA n (B + { t } )  # @} 
dP(A, B) = inf{lltll IA n (B + { t } )  # 0). 

and d;  in the literature. 

ds (A,  B) = niin{/ltl/ It E A - B} 
= min{lla - bl/ la E A, b E B}. (3) 

A - B  P *  

(a) 

Fig. 2. Determination of t* 
and (c) touching. 

* 

(b) (C) 

from d - B: (a) separation, (b) penetration. 

It is acceptable to replace the “inf” by “min” because A , B  
and A - B are compact, and norms are continuous functions. 
Similarly, but with a few more details for the proof, it can 
be shown that 

dp(A, B) = min{lltll It cl(A - B)’} 
= max{rlN(r) c (A - B)}, 0 E A - E 
= 0 ,  O f A - B .  (4) 

Unlike the situation for ds, there is no simple way of express- 
ing dp directly in terms of A and B. The characterization in 
terms o f ’ N ( r )  c A - B appears in [17] (with sup instead 
of max) and is implicit in the expressions of [6]. It states 
that dp(A, B) is the radius of the largest origin-centered ball 
in A - B. The characterization of penetration distance given 
by Buckley [5] is basically a variational principle for the 
minimization problem in (4). 

Geometric interpretations for di(A, B) and d$(A, B) in 
terms of A - B are shown in Fig. 2 for the cases of separation, 
penetration, and touching. The minimizers in (3) and (4) are 
denoted by t*. In all three cases t* E bd(A - B). It is of 
interest to note that the sets N(llt*ll) and A - B have a 
common support hyperplane P* passing through t* . 

The distances ds and dl= have special properties which 
justify their application in iterative algorithms for moving 
object models apart (when they intersect) and farther apart 
(when they are separated). Specifically, separation (penetra- 
tion) implies the existence of an incremental motion which 
increases ds (decreases dp). To be precise, ds(A,B)  > 0 
implies ds(A, B) increases locally, i.e., there exist arbitrarily 
small s E R” such that ds(A + { s } ,  B) > ds(A,  B). 
Similarly, dg(A, B) > 0 imlplies dp(A, B) decreases locally. 
Fig. 2(a) and (b) illustrates the simple reasoning behind the 
proof of these properties. Clearly, ( A  + { s } )  - B = ( A  - 
B) + { s } .  Choosing s = at*, where 01 is small and positive, 
causes the size of N2 to change appropriately when A - B is 
replaced by A - B + { s } .  

The local increasing (decreasing) properties do not hold 
for all separation (penetration) distances [ 171, [33j. Consider, 
for example, penetration measured by intersection volume: 
dg(A, B) = volume A fl B. While dg(A, B) satisfies all of 
the other properties of a penetration distance mentioned above, 
it is not always locally decreasing. Suppose A C int B; then 
dK(A + { s } , B )  = volume of A for all s, ~~s~~ sufficiently 
small. 

The computation of cli for the case of convex polytopes 
has been studied at length. Dobkin and Kirkpatrick [9j give an 
algorithm for 7~ = 3 which exploits detailed structural models 
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of A and B, whose run time is O ( m ) ,  where nz = V L A  + wig 
and mil and mg represent the complexity of A and B (either 
the number intersecting half-spaces or the number of vertices). 
In [lo] they show that a related procedure has an even faster 
asymptotic time, O(1ogmA x log mg). However, it assumes 
that a preprocessing of the representations for A and B has 
taken place, where the preprocessing times are, respectively, 
O ( m A )  and O ( ~ B ) .  Other procedures for the n = 3 case have 
been described by Gilbert et al. [ 141, Bobrow [2], [34], and Lin 
et al. [2 11, [22]. While good asymptotic complexity bounds do 
not exist for the algorithms in [14], [2], and [34], they get by 
with sirnple structural representations (A and B are described 
either by vertices or by faces) and have efficient, empirically 
demonstrated performance. Moreover, the algorithmic idea in 
[14] extends to a wide class of objects with curved bound- 
aries [15]. While the algorithms in 1211, [22] have a large 
speed advantage when the objects move continuously and d i  
must be evaluated on a closely spaced sequence of object 
configurations, they too demand structurally more complex 
representations of A and B. For polytopes the computation d& 
and dy can be reduced to the solution of LP problems in 2n+ 1 
variables and roughly m inequalities. Even though a computa- 
tional time O ( m )  is possible [17], it is doubtful that there is a 
significant speed advantage over the better 2-norm algorithms. 

The computation of d p  for convex polytopes is a much more 
difficult problem and has received relatively little attention. 
Procedures for computing d$ have been described in [4]-[6], 
[SI, [l;!], and [33]. The basic idea is to work with A - B 
represented by an intersection of half-spaces and solve (4) 
by finding the half-space which is nearest to the origin. The 
approaches differ in determining the half-space representation 
of A - B, the most time-consuming part of the computation. 
For n = 2, algorithms have been described which have 
complexity O ( m ) .  For n, = 3 ,  no algorithms are known [31] 
which have asymptotic performance better than O(m2 log m). 
Keerthi and Sridharan [ 171 emphasize the striking advantage 
of working with d b  and d F .  Specifically, they show that d b  
or dy can be computed by solving several linear programs 
in n + 1 variables and m inequality constraints. When n = 3 
the number of LP problems is either six, for the 1-norm, or 
eight for the oo-norm. In both cases the computational time is 
O ( m )  [24]. Sridharan et al. [33] discuss briefly the case where 
A, B C R2 are nonconvex polygons. 

When the position and orientation of objects A and B 
depend on configuration variables, the question of numerically 
evaluating the gradients of ds and d p  with respect to the 
configuration variables arises. Complete results are given in 
[13] foir d i .  It is shown that the gradient exists for almost all 
configurations and is given by a simple formula. Where the 
gradient fails to exist, a generalized gradient [7] exists, and it 
too is characterized by a simple formula. Similarly complete 
results are lacking for dg,  when p # 2, and d;, for all p .  An 
approximate approach for evaluating the gradient of d$,  when 
it exists, is described in [5 ] .  

111. GROWTH MODELS AND THE GROWTH FUNCTION 

The formulation of the growth distances has three main 
feature:;: a modeling of the objects, which endows them with a 

A(1.5) 

P A  
U 

Fig. 3. Growth models 

= A  ,- 

B(1)= U 
B(a*) 

(a) (b) 

Fig 4 (a) Determination of o* (b) Geometric configuration of A(o*) and 
B(o*)  

fractional growth a;  the growth, o* , which causes them to just 
touch; and an appropriate scaling of a* - 1, which generates 
the separation and penetration distances. In this section the first 
two features are addressed. Since a* depends on the choice of 
the two objects, it is called the growth function and is given 
a special notation: g(A,B)  = a*. 

A growth model for an object A c R" is a family 
of compact, nonempty sets A(a)  c R", defined for a E 
R+ , which satisfies the following, somewhat loosely stated, 
conditions: a) A(a)  varies continuously with a;  b) A(a)  is 
strictly increasing in a;  c) A(0) = {PA}, the seed point: d) 
A ( l )  = A, the object; e) A(a)  covers all of R" as a + foo. 
Fig. 3 shows some examples of growth models in R2. The 
growth function for an object pair, A, B c R", is 

(5) 

The touching of A(a*) and B(a*) required by (5) is illus- 
trated by the example in Fig. 4(a). Conditions a)*) have the 
following motivations: e) guarantees A(a)  n B(a)  # 0 for 
some a E R+; a) implies the existence of the minimum in 
(5); d) determines the relative size of the two growth models 
so that the sign of o* - 1 determines separation or penetration 
of A and B; and b) and c) are required so that g(A + { s } ,  B) 
increases locally in s (so that the corresponding separation 
and penetration growth distances respectively increase and 
decrease locally). 

Objects possess many growth models which satisfy the 
conditions. To establish mathematically precise results and 
to provide effective computational procedures, it is necessary 
to introduce specific assumptions about the class of objects 
and the growth model. As in Section I1 and in much of the 
literature on object distances, it is assumed hereafter that 

g(A,B)  = a* = min{a E R+IA(a) n B(a)  # 0}. 
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A,  B E 0. It is also possible to define growth distances for 
convex objects which have empty interiors. This generaliza- 
tion is not pursued here because it introduces uninteresting 
complications and has limited value in representing physical 
objects. As Fig. 3 suggests, it is possible to develop growth 
models for nonconvex objects. However, this brings in serious 
mathematical and computational complications. Instead, in 
what follows, we shall treat nonconvex objects by the familiar 
idea of representing each of them by a union of convex sets 
and then defining the distance as the least distance (or the 
sum of the distances) between all pairs of the convex sets in 
which one set is taken from each of the objects. Of course, 
this requires additional effort. The union must be created (for 
most physical objects a simple inspection suffices), and the 
number of object pairs is increased. 

Our growth model for A E 0 is 

A(o)  = { p ~ }  + 02, CJ E R+ ( 6 )  

PA E int A and 2 = A - {PA). (7) 

where PA and 2 satisfy the conditions 

Fig. 3(c) is an example of (6). Note 2 is the object A with 
the origin shifted to p ~ .  Clearly, 2 E 0 and 0 E int 2. 

Requirements a)*) are satisfied. Conditions a), c), and d) 
are direct consequences of (6) and (7). Since 0 E int 2, 
there exists r' > 0 such that N ( r )  c A. Thus, A(cJ) 3 
{ p ~ } + o N ( r ' ) ,  which shows that condition e)  holds. Let C J ~  and 
a2 satisfy 0 5 01 5 0 2 .  By ( 6 ) ,  A(a2) = A ( a l ) + ( ~ ~ z  -al)A. 
This implies A(a2) 2 A(al )+(az-a l )N(r) ,  which confirms 
condition b). 

The growth model (6) is not unique; it is defined for any 
seed point PA E int A. There are, however, guidelines for 
choosing PA. As will be seen in the next section, the growth 
distances more closely approximate the translational distances 
when seed points are placed well inside the objects. Hereafter, 
we do make one additional assumption about seed points. 
When an object undergoes a rigid-body motion, it is assumed 
that its seed point maintains an object-fixed position. Thus, if 
A is given a rotation TA E SO(n) and a translation SA E R", 
its growth model is 

(TAA -k 
= {TAPA + SA)  + ~ ( T A A  + {SA} - {TAPA + S A ) )  

= {TAPA + S A }  f CJTAz. (8) 

Precise statements of key results concerning the growth 

Theorem 3.1: Assume A, B c 0 have growth models of 

i) g(A, B) is defined by (5), i.e., the minimum exists; 
ii) separation e g(A, B) > 1; penetration ++ g(A, B) < 1; 

iii) ,q(A,B) = 0 e PA = p ~ ;  
iv) g(A + { s } ,  B) increases locally in s. 

Because of i), g is indeed a function g: 0 x 0 + R+. 
From ii) it follows that g(A, B) - 1 is a numerical measure of 
separation and penetration whose sign distinguishes separation 
and penetration. By iii), maximum penetration corresponds to 

function are contained in the following theorem. 

the form (6) ,  (7). Then: 

touching @ g(A ,B)  = 1; 

g(A,  B) - 1 = -1. From ( 5 )  and (8) it is easy to confirm 
that g is symmetric in its arguments and is invariant with 
respect to common rigid body motions of the two objects: 
g(A, B )  = g(B,  A )  and g(TA + {s}, TB + { s } )  = g(A, B). 

The convexity of A(a*) and B(a*) gives additional mean- 
ing to their geometric configuration. In particular, they are 
separated by a hyperplane. See Fig. 4(b) and the last paragraph 
of Appendix A. 

While (5) has a nice geometric interpretation, its set theo- 
retic nature sheds little light on the computation of g(A, B). 
Actually, g(A ,B)  is often determined by the solution of a 
simple, convex optimization problem. Consider an example 
where A C R3 is an ellipsoid and B c R3 is a truncated 
circular cylinder: A = {zlzTQz 5 1},Q E R3x3 is positive 
definite; B = {xi0 5 z1 5 2,4(~~)~ + 4(z3)2 5 1). Then 
suitable, centered choices for the seed'points are PA = 0 and 
p~ = (1 0 O I T .  Hence, A(cJ) = a 2  = {xIx = oI1l,:TQ?E 5 
I} = {zlz T Qn: 5 a 2 } ,  and B(cJ)  = p~ + CJB = {xIz = 

p~ + a;, (T1)' 5 1, 4(?E2)2 + 4(Z3)' 5 1) = { ~ I ( x '  - 1)2 5 
a', 4(~')~ + 4(x3)2 5 a'}. The condition A ( a )  n B ( a )  # 0 
is satisfied if and only if there exists an z E R3 such that 
z E A(o) and z E B(n) .  Thus, g(A, B) = CJ* is determined 
by solving the convex programming problem as follows: 

minimize CJ with respect to (a ,  x) E R4 satisfying 
zTQz 5 CJ' ,  (xl - 1)' 5 02, 4(z2)' + 4(z3)' 5 a'. 

(9) 

Obviously, the simple ideas expressed in the example can be 
extended to a great variety of objects in 0. The resulting 
optimization problems are generally convex and can be solved 
by well-developed, efficient algorithms. The special case of 
polytopes is treated in detail in Section V. 

A completely general approach for setting up an optimiza- 
tion problem is to exploit the Minkowski distance functions of 
A and B. Technical details can be found in Appendix A. Given 
A and x E R", the Minkowski distance function, kx(z), 
is the smallest value of X E R+ such that x E AA. It is 
shown in Appendix A that A(a)  = {z lpx(x  - p ~ )  5 o}. 
Thus, g(A, B )  = a* is obtained by minimizing CJ with respect 
to (a ,  x) E subject to the constraints px(z - PA) 5 
a, p ~ ( z  - p ~ )  5 G-. While the Minkowski functions are not 
particularly useful for computations, they are valuable tools in 
the proofs of our basic theorems. 

Finally, it is important to determine how g changes when A 
and B undergo general rigid-body motions. For this purpose 
let the quadruple P = (TA,sA,TB,sB) E (SO(n)  x Rn)' 
denote the rotations and translations assigned to the objects A 
and B. Then the dependence of the growth function on P is 
expressed by 

G ( P )  = g(TAA+ {SA},TBB + {SB}). (10) 

A key result is that G is Lipschitz continuous. To state this 
result precisely, a metric on ( S O ( n )  x R")' is needed. It is 
obtained [18] by imbedding ( S O ( n )  x Rn)' in (RrLx" x 
Since 

- 

- 

p(p,p) = llTA - FAIlF + llSA - SA112 f 1 1 %  - FBIIF 

+ / IsA - SA112 (1 1) 
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is a metric on (RnXrL x Rn)’, it becomes a metric on 
(SO(n) x Rn)’. 

Theorem3.2: Assume A , B  c 0 have growth models of 
the form (6), (7). Let Q = { P  E ( S O ( n )  x Rn)21 I I s A ~ ~ z  I: 
CA, 11s~:112 5 CU}, where CA and CB are arbitrary positive 
constants. Then there exists a k > 0, which depends on CA and 
c B ,  such that P , P  E Q implies IG(P) - G(F)I 5 kp(P,p) .  

The Lipschitz continuity implies that G ( P )  is (Frechet) 
differentiable almost everywhere in Q [7]. This property is 
crucial in developing algorithmic procedures for the separa- 
tion of intersecting objects, a subject which is discussed in 
Sections VI1 and VIII. 

IV. THE GROWTH DISTANCES 

It is (evident from Theorem 3.1 that g(A, B) - 1 provides a 
distance-like measure of separation and penetration. However, 
g(A, B)-1 is a dimensionless quantity related to thefractional 
growth of A and B. As such it does not conform to our 
intuitive concept of a distance measure; it must be scaled in 
some vvay according to the size of A and B. Let SAB > 0 
be the <scaling coefficient. Then the separation and penetration 
growth distances are defined by 

dg(A, B) SAB(g(A, B )  - I), g(A, B) 2 1 

= o ,  .9(A,B) < 1 (12) 

= 0 ,  g(A,B)  > 1. (13) 

d$(A, B) =SAB(g(A, B) - I), g(A, B) 2 1 

The precise value of SAB is not too important‘as long as 
the distances between objects of different size and shape are 
handled in a consistent, reasonable way. As will be seen, The- 
orem 4.1 quantifies the notion of “reasonable” by establishing 
bounds between growth distances and translational distances. 

Two measures for the size of a set are the radii of inner 
and outer spheres. Specifically, {ZA} + N’(TA) and {ZA} + 
N ~ ( R A )  are, respectively, inner and outer spheres for A E 0 if 

{ Z A }  + N 2 ( T A )  c A c { X A }  + NZ(RA). (14) 

For a given ZA E int A, it is clear that values of T A  and RA 
exist such that 0 < T A  5 RA. In fact, it i s  possible [I91 to 
maximize T A  and minimize RA subject to (14). The resulting 
extreme values for TA and RA depend on the choice of XA, 
and there are best choices in the sense that T A  is maximized 
or RA is minimized. Simple examples of A C R2 show that 
best choices of “A for each of the two objectives need not be 
the same. In addition, the optimum choices may be difficult 
to compute. However, for most physical objects it is possible 
by inspection to choose XA so that the ratio rA/RA is at or 
near its maximum value. If A is slender, the ratio rA/RA is 
necessarily small: if A is rotund, rA/RA 2 1; if A is a sphere, 
choosing XA as its center gives T A  = RA. 

If A and B are spheres it is clear how the seed points 
and scalings of g(A,B)  - 1 should be selected. Let A = 
{ L A }  + N ~ ( R A )  and B = { r g }  + N ~ ( R B ) .  Obviously, the 
translational distances between A and B are dg(A, B) = 
~ ~ x A - - B ( ~ ~ - ( R A + R B )  for ~ ~ . ~ A - Z ~ ~ ~ Z - ( R A + R B )  > 0 
and @,(A, B) = - J I . c A - x B ~ ~ ~ + ( R A + R B )  for I I . E A - - x ~ ~ ~ ~ -  

( R A S R B )  < 0. It is easy to see that &(A, B) and d$(A, B )  
match these distances if and only if PA = XA,PB = XB and 
SAB = RA + RB = TA + T B .  For nonspherical objects there 
exist bounds relating the translational and growth distances. 

Theorem 4.1: Assume that A, B E 0 have seed points 
which satisfy the conditions 

{PA} + NZ(TA) C A  C { P A }  + Nz(RA) and 

{ P B }  + N2(7-B) c B c { P B }  + W R B )  (15) 

where 0 < TA 5 RA and 0 < T B  5 RB.  Let SAB = RA+RB 
and define a = (TA  + T B ) / ( R A  + Rg).  Then 

adZ(A,B)  I d i ( A , B )  5 dZ(A,B) and 

&(A,  B) I dE(A,  B). (16) 

Assume further that dg(A,  B) 5 T A  + T B .  Then 

adg(A, B) 5 d$(A, B). (17) 

Several points deserve emphasis. The assumption 
d$(A, B )  5 T A  + T B ,  added for (17), appears to be overly 
strong. Actually, (17) rarely fails when d$(A, B) > TA + T D .  

The bounds (16) and (17) are tightest when the coefficient a 
is at its maximum value. This condition is approximated when 
the seed points P A  and P B  are picked so that the ratios T A / T B  

and TB/Rg are near their maximum values. Thus, Theorem 
4.1 provides a guideline for centering the seed points. When 
the objects are both rotund, it is possible to have a E 1 so 
that the translational and growth distances are approximately 
equal. For a pair of slender objects, a is necessarily 
small, and the translational and growth distances can be 
expected to differ significantly. Choices for SAB in the range 
T A  +TB 5 SAB < RA + RB are also appropriate. They modify 
(l’6) and (17) in obvious ways. For example, SAB = T A  + T B  

gives dg(A,  B) I d i (A ,  B )  5 a-ld:(A, B). 
It is clear from the results of Section I11 that dE(A, B) 

and d$(A,B) share the key properties of the translational 
distances d i (A ,B)  and dg(A,B): dZ(A,B)  > 0 
separation; @(A,  B) > 0 ++ penetration; they are symmetric 
functions of A and B. They remain invariant with respect 
to common rotational and translational motions of A and B; 
when positive they are, respectively, locally increasing and 
decreasing with respect to relative translations of A and B. 
From Theorem 3.2 and the piecewise definition of d g ( A ,  B) 
and dF(A, B) in terms of y(A,  B )  - 1, the functions 

D g ( P )  =dg(TAA + {SA},TBB f {si?}) 
D g ( p )  = d$(TAA + { S A } ,  TBB f {SE}) (18) 

which describe the dependence of the growth distances on 
changes in the configurations of A and B, are Lipschitz 
continuous. 

Examples can be used to further substantiate the reasonable 
behavior of the growth distances. One approach is to compare 
variations in the translational and growth distances as one 
object is moved relative to the other. Fig. 5 shows such 
a comparison when A is given a translation s relative to 
B. Fig. 5(a) defines an ob,ject pair in R2. For both objects 
the best inner and outer Fpheres have common centers at 
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Fig. 5. Level curves for translation of A by .s. Dashed curves show separa- 
tion distances; solid curves show penetration distances. (a) Objects A and B. 
(b) Growth distances. (c) Translational distances. 

the origin so that the natural choice for the seed points is 
P A  = p g  = 0. With this choice, RA = ~ , T A  = I ,RB  = 
m , r B  = 0.3,a 0.529. Assume SAB = RA + RB. 
Fig. 5(b) shows how the growth distances change as a function 
of s; level curves are shown in the s-plane for the functions 
d g  ( A  + { s } ,  B) and d g  (A+ { s}, B) . As expected, the deepest 
penetration occurs for s = 0 and is equal to R A  + Rg E 
2.458. Fig. 5(c) shows the corresponding level curves for the 
translational distances d: ( A  + { s }  , B) and d$ (A + { s }  , B). 
Fig. 6 is like Fig. 5 ,  except B is rotated by 45". 

In both Figs. 5 and 6 the level curves for the growth and 
translational distances are similar. For d i  = d2 P = 0 and 
d g  = d$ = 0 they are exactly the same. This is because these 
conditions correspond to those translations which cause the 
objects to touch. For d$(A + {s), B) there is more than one 
translation, s ,  where the penetration is deepest. This lack of 
uniqueness is common when at least one of the objects has 
parallel edges or faces. For d$ there is only one translation 
of B which produces the deepest penetration. This result is 
true for all A, B E 0: by part iii) of Theorem 3.1, A + {s} 

1 - - s  

Fig. 6. 
distances and (b) translational distances. 

Level curves resulting from a rotation of B by 45': (a) growth 

and B have their deepest penetration, SAB, if and only if 
s = p g  - P A .  For both the translational and the growth 
distances, the level sets in Figs. 5 and 6 are convex. This 
result also remains valid for all A, B E 0. The proof for 
the growth distances follows immediately from the convexity 
of g(A + { s } , B )  in s;  see Appendix A. Figs. 5 and 6 
also confirm the locally decreasing (increasing) property of 
penetration (separation) growth distance. For example, when 
d$(A + {s), B) > 0 there exist small changes in s which 
cause d$(A + {s}, B) to decrease. 

Figs. 5 and 6 confirm the upper and lower bounds in 
Theorem 4.1. As s takes on all values, the translational 
distances in Fig. 5 are bounded from above and below by 
coefficients of 0.814 and 0.529 applied to the corresponding 
growth distances. For Fig. 6 the coefficients are 0.982 and 
0.697. Thus, the coefficients of 1.0 and 0.529 provided by the 
theorem are quite tight. 

v. COMPUTATIONAL FORMULATIONS FOR POLYTOPES 

Physical objects are commonly represented by convex poly- 
topes. The resulting object models have simple data structures 
and, as an abundant literature demonstrates, they are well 
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suited to a variety of computational objectives. These advan- 
tages also apply to the growth distances. In what follows it is 
assume'd that reasonably placed seed points have been selected 
and that by shifting the origin we have obtained the polytopes 
A = A - { P A }  and B = B - { p  B } .  

In our first computational approach, we model 2 and B by 
linear inequalities 

- - 

- 
A = { x ] $ x  5 l , i  E I A }  
- 

B 1 {"c~$z 5 l , i  E I B } .  (19) 

Here, IA  = { 1 , . . . , m ~ }  and IB = { m ~  + l,...,m,~ + 
mg},,rrLA and mg are the number of half-spaces whose 
intersection defines 2 and B, and the y; are (nonzero) outward 
normals to the half-spaces. Note that the representations are 
consistent with the requirements, 0 E int 2 and 0 E int B, 
stated in Section 111. To obtain the computational procedure 
for ,y(A,B) we proceed as in the derivation of (9). From 
(6) it follows that x E A(a)  if and only if x satisfies 
$(z -- P A )  I C J ,  i E IA. More generally, x E A(cJ) n B ( a )  
if and only if 

(20) 

where Si = y T p ~ , i  E I*,Si = $pg,i E IB  and m = 
m A  + mg is the total number of half-spaces. Therefore, 
g(A ,B)  = a*, where ( a * , x * )  solves the LP problem as 
follows: 

minimize a with respect to (a ,  z) E Rnf l  satisfying 

$ x  - a 5 6 i ,  i E / = / A  U IB = (1,. . . , m}  

the constraints (20). (21) 

While this LP problem i s  of low dimension (3 or 4), m 
depends on the complexity of the object pair and may be 
large. Algorithms are available [24] which solve (21) in O ( m )  
time. Moreover, the special structure of (21) permits an easy 
determination of an initial feasible point. Given any ? E R", 
compute 

6 = max{y'J: - 6;Ii E I}. (22) 

Then (6,Z) satisfies (20) and 6 is as small as possible, given 
the choice of 2.  

In our second approach, 2 and -B are represented by their 
vertices: U ;  E E", i E , /A  and U; E R", i E I B .  Specifically, 
A and 
- 

are defined by the convex hulls 

+ UTna 2 0, . ' ' 1 AWL, 2 0 ,  
X I  + ' .  ' + A,, = 1} 

. . .  ,Am,+mB 2 O , A m a + l  +. . .+  Xma+mB = 1). 

- 

B = . [ z = X  m.h+lvm,+1+ Ama+mB IXm,+l 2 0, 

(23) 

Clearly, x E A(a) requires x = p~ + [v 
+a:" = CJ and a\ 

Using a similar expression for z E B ( m ) ,  it follows that 
IC E A(cJ)  n B ( m )  if and only if 

-1 - vTnA+nLB]  -1 [:::I [: : : :  1 

Thus, g(A,B)  = a* is obtained by solving the LP problem 
as follows: 

minimize CJ = [I . . . I ]Q>~  with respect to 

( Q A ,  Q B )  E RmA+mgsatisfying the constraints (24). (25) 

While this LP is of relatively high dimension, m~ + rng ,  
it has only n. + 1 constraints. It is of interest to note that the 
dual [l],  [12], [19] of (25), which is an LP obtained by a 
simple rearrangement of the data in (24), has dimension n + 1 
and m =  LA + mg constraints. Thus, (25) has an underlying 
complexity O(m),  where mn is the total number of vertices 
in the two objects. There is no obvious, simple procedure for 
finding an initial feasible point for either (25) or its dual. Thus, 
a two-phase LP approach [l]  is needed. 

VI. NUMERICAL ISSUES 

In our numerical work on polytopal objects we have em- 
ployed the first of the two approaches described above. This 
choice is in part motivated by the availability of the simple 
initialization procedure, (22). Stated computational times are 
for the solution of (21) and do not include the times required to 
prepare supporting data. These latter times are relatively small. 
Well-located seed points can usually be located by object 
inspection, and RA and RB are determined by the vertices 
of 2 and which are farthest from the origin. Moreover, the 
supporting data need to be determined only once and are not 
changed as the objects take on different positions. 

Of course, many algorithms are available for solving (21). 
Those designed to guarantee the best asymptotic computational 
time, O ( m ) ,  are not likely to be as efficient in practice 
as traditional algorithms which typically have O ( m )  perfor- 
mance. We have used the active set approach [l], [12] since it 
provides several advantages in data manipulation. For instance, 
it can be applied directly to (21) without introducing the 
additional artificial variables required by the simplex method. 
Our computational programs follow closely the plan outlined 
in [ l]  and do not exploit in any way the special structure of 
(21). 

The number of steps taken by the LP algorithm is likely 
to be less if the initial feasible point approximates (cJ* ,  z*). 
This suggests that 5 in (22) should approximate r*. Obvious 
choices for 5 lie along the line segment joining P A  and 
p ~ .  A simple choice of this type is the halfway point 5 = 
1 / 2 ( p ~  +JIB) .  Generally, it causes one constraint to be active, 
namely the index in (22), which yields the maximum. We have 
also tried the phase-one, LP approach to generating a feasible 
initial point. It more than doubles the total time of solution 
for (21). 

Many numerical computations have been performed with 
two computers. They involved a variety of different objects in 
R3 with vi ranging between 8 and 400. The characterizations 
of (19) were minimal in the sense that removal of any 
inequality forces a change in or B. All objects were 
contained within outer spheres of radius 5. For each object 
pair the growth distances were computed for 50 random 
placements. Object rotations were generated by using a Euler 
angle parameterization of SO(3) and choosing the angles 
from a uniform distribution on [ -T ,  T ] .  Translation vectors 
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were generated by choosing their components from a uniform 
distribution on [-3,3]. These choices provided a rich family 
of separation and penetration configurations. 

FORTRAN code, with an optimal run-time compilation, was 
run on an HP-Apollo 400 and on a Silicon Graphics Extreme 
(150 mHz). Respective LINPAC bench marks [11] are 1.9 
MFLOPS and 24 MFLOPS. For each of nearly 100 object 
pairs, run times were averaged over the random placements. 
Unlike the situation with translational distances, the average 
times did not differ for separation and penetration cases. Data 
for the Silicon Graphics machine are shown in Fig. 7. There 
is some scatter, but the general dependence on m is nearly 
linear with the average time given approximately by 4 m 
microseconds. The corresponding data for the HP-Apollo give 
100 m microseconds. 

It is difficult to make precise comparisons with compu- 
tational times for translational distances. There are many 
differences in the algorithms, computer hardware and soft- 
ware, representations of the polytopes (vertex, half-space, full 
geometric structure), and the selection of example problems. 
We have made comparisons for separation distance using the 
widely disseminated FORTRAN code by Gilbert et al. [14] 
which we believe is as fast as any of the codes which are based 
on algorithms that use only vertex [14] or half-space [2], [34] 
representations of the polytopes. For identical object pairs on 
the same machine, the average times for d: were about half 
those required for d i .  Few computational results are available 
for d$ when n = 3 [5], [6]. They are limited to very simple 
examples, and comparisons are difficult to make because of 
differences in computer hardware and software. Adjusting as 
best as is possible for the differences, it appears that the times 
are at least an order of magnitude greater than those required 
for d g .  In view of the known [31] bound, O(m210gm), the 
situation should be much worse for large problems. Thus, from 
the standpoint of computational speed, growth distance is a 
very much preferred measure of penetration. 

In a variety of applications it is necessary to compute the 
distance between pairs of objects as they move continuously 
along a specified geometric path. For example, d i  has been 

used to determine where collision occurs along the path [ 141, 
[21], [22] or to assure that the path remains collision free 
as the path is adjusted for optimality [13]. And, as will be 
described in Section VIII, we have used d$ to solve path- 
finding problems. In all of these applications it is necessary 
to carry out distance evaluations on a closely spaced grid of 
points along the path. It has been noted [14], [21], [22] that 
the closeness of the grid points may be exploited to reduce 
the total computational time. 

The idea is to use data from the computation of the 
distance at grid point k to initialize the distance algorithm 
for the computation at grid point k + 1. Suppose the growth 
function, as given by (7), has been computed at P = 9. 
Let (a; , zz )  denote the solution of the corresponding LP. 
The inequality constraints which are active at the solution are 
known. As equalities they form a linear system which (D:,  zz) 
satisfies. See the next section for additional details. If P,+1 

is close to 4, it is highly likely that the constraints which 
are active at the optimal solution remain the same. Thus, an 
excellent candidate for x;+~) is determined by solving 
the linear system associated with P,+1 and the same index 
set. The presumed optimality of the candidate is tested by the 
optimality conditions: positivity of the Lagrange multipliers 
and satisfaction of the inequality constraints (20). On those 
infrequent occasions when the optimality conditions are not 
satisfied, i.e., when the set of constraints active at k + 1 
is different from the set at k ,  the LP algorithm is brought 
into play. We call this scheme maintaining active constraints 
(MAC). 

Fig. 8 confirms the expected pattern of behavior of MAC 
when it is applied to a simple example run on the HP-Apollo 
400. Object A (a cylinder with decagonal ends, mA = 12) 
moves along a straight line path while rotating at a constant 
rate; object B (an irregular polytope, m~ = 14) is fixed. 
The need to check the optimality condition increases the 
overhead time of the LP algorithm from about 1 millisecond 
to 1.4 milliseconds. For most of the 100 grid points the trial 
candidate succeeds, and the corresponding time is essentially 
the overhead time (approximately 1.4 milliseconds). When the 
number of grid points falls below 50, the speed advantage of 
MAC begins to decrease significantly. 

As it has been described, MAC takes O ( m )  time because 
testing optimality requires verification of the constraints (20). 
Lin and Canny [21] argue that their algorithm for d i  has a 
more favorable outcome. When the number of grid points 
is large, the computational time is independent of vi. The 
reason is a more elaborate data structure for representing the 
polytopes. Geometric adjacency of the constraints is ,stored so 
that optimality can be tested using only adjacent constraints. 
Adjacency information can be used in similar ways for the 
computation of g(A,B)- = U * .  We are currently exploring 
alternative data structures and algorithmic details and will 
report results in a later paper. 

VII. EVALUATION OF MOTION DERIVATIVES 

When A and B undergo rigid-body motions, as described by 
TAA + { S A }  and TBB + { s B } ]  the resulting growth function 
is given by o* = G ( P )  in (10). In this section a procedure 
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Fig. 8. Computatienal times at each grid point for MAC procedure. HP computer. 

for computing derivatives of G ( P )  is developed when A 
and B are polytopes. Similar procedures apply also to more 
complex object pairs such as the ellipsoid/cylinder example of 
Section 111. Generally, the procedures are more efficient and 
accurate than finite-difference methods. 

For polytopes, G ( P )  is evaluated by introducing an obvious 
change of variables in (1 9) or (23).  We limit our attention to the 
half-space representation (19), although a similar development 
holds for the vertex representation (23). Clearly, a* solves 
(21) with (20) replaced by 

rT(T,'(X - SA) - f3 5 St, 'l E 

~ : T B ( X  - S B )  - a 5 S,, z E I,. (26) 

Evaluating the derivative of G( P )  = a* is a more complicated 
question. It has been noted in Section 111 that G(P)  has an 
ordinary (Frechet) derivative almost everywhere. There are, 
however, special points where the ordinary derivative does 
not exi9t. At these points more general notions of the deriva- 
tive are needed [7], [25]. Here we emphasize the important, 
and technically less difficult, question of characterizing the 
0rdinar.y derivative where it exists. 

To simplify our notations, we focus our attention on the 
partial derivative with respect to one of the several configura- 
tion variables which may determine the relative position and 
orientation of the object pair. Denote the variable by 8. Then 
P = P(8)  = ( T A ( ~ ) ,  s~(d),T~(8), s ~ ( 0 ) ) .  It is assumed that 
P(8)  is defined and continuously differentiable on an open 
interval of R. This is certainly a valid assumption in practical 
problems where P is a smooth kinematic function of physical 
variables such as joint angles. Let +,(e) 1 T~(s)y,,!~(d) = 
6, + +?(o)s~(Q),i E IA  and + L ( 0 )  = TB(~)Y~,&(~) = 
6 , + + ~ ( 0 ) s ~ ( H ) ,  i E 1,. Then, G(P(0))  is obtained by solving 
the LP problem 

mino,  ( ~ , o )  E R'"', TT(6')z - a 5 $ , (e ) ,  z E I .  
(27) 

Let the solution of (27) be ( a * ( 8 ) , ~ * ( 8 ) ) .  Then G(P(8))  = 
.*(e). We wish to obtain da*/dO. 

As indicated above, the derivative may fail to exist even 
though -;/%(e) and & ( H )  are differentiable. An example is 

40* 

Fig. 9. Example where growth function is not differentiable. 

shown in Fig. 9. A is fixed and 8 is the rotation angle of 
B about the fixed center of B. For - ~ / 2  < 8 < 7r/2 the 
derivative, d a * / d 0 ,  exists everywhere except at 0 = 0. The 
derivative fails to exist there because the qualitative nature 
of the geometric contact between A(0*(0)) and B(a*(O)) is 
in transition. For -n/2 < 8 < O,x*(8),  is uniquely and 
smoothly determined. It is the upper left vertex of B(a*(8)).  
However, for 0 < 8 < ~ / 2 , x * ( 8 )  is the lower left vertex 
of B(a*(8)). It is this transition from one contact vertex 
to another that causes the trouble. Note that x*(O) is not 
unique; it can be any point in the left side of B(rr*(O)). 
The derivative may fail to exist in entirely different geometric 
situations. Consider, for instance, a similar example in R2 
where the contact between A(a*(O)) and B(a*(O)) consists 
of the touching of two vertices. Then x*(O) is unique, but the 
separating hyperplane between A(a*(O)) and B(a*(O)) is not. 
This situation again causes a contact transition to occur. 

The nature of the geometric contact at z* (8) is determined 
by the constraints which are active in the LP at the optimum. 
Assume hereafter that the representations ( 19) are minimal, 
i.e., there are no redundant inequalities. Let I* = I; U 1; be 
the index set of constraints active in (27) at .*(e), a*(H), i.e., 
those L for which the inequalities are satisfied as equalities. The 
sets I; and I;, which correspond to the active indexes taken 
from IA  and I B ,  are both nonempty because A(a*) and B(a*)  
must have only boundary points in common; see Appendix A, 

It is the cardinality of I 1  and the cardinality of 1; that 
determine the nature of the geometric contact. Consider the 
case where n = 2 .  Then, the cardinality of 1: must be either 
1 or 2. One active constraint means .*(e) belongs to an 
open edge of A(.*(#)); two active constraints mean x*(H) 
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is a vertex of A(o*(Q)) .  Similarly, the cardinality of 1; is 
either 1 or 2. When n = 3 the situation is more complicated. 
Possible cardinalities of I; and 1; are 1, 2, or I 23. One 
active constraint means .*(e) belongs to an open face, two 
active constraints means %*(e)  belongs to an open edge, and 
I active constraints means .*(e) is a vertex. Clearly, 1 is the 
number of faces which meet at the vertex. It can be shown 
that any three of the 1 inequalities written as equalities form a 
linear system which uniquely determines the vertex. 

Intuitively, the ordinary derivative exists at those values 
of 8,  where the contact between A(o*(B)) and B(o*(B)) is 
regular, i.e., where the positioning of A(a(0) )  and B(a*(8)) 
is generic. 

When n = 2 nongeneric contacts are edge+dge (open 
edge intersecting open edge, as in Fig. 9 at 0 = 0) and 
vertex-vertex. These contacts are delicate; arbitrarily small 
changes in P can produce several different edge-vertex con- 
tacts. Thus, the derivative may fail to exist at such points of 
contact. Regular contacts are edge-vertex contacts. They occur 
when there are exactly three active constraints, one from one 
object and two from the other object. The linear system which 
is obtained by writing the three active constraints as equalities 
is nonsingular and remains so for small changes in 8. From 
the differentiability of P(8)  it follows that .*(e) and a*(@) 
are uniquely defined and are differentiable. 

When n = 3 the regular contacts are face-vertex (open 
face of one object contains only a vertex of the other object) 
and edge-edge (open edges intersect at one point). In a face- 
vertex contact there is one active constraint from one object 
and 1 2 3 active constraints from the other object; in an 
edge-edge contact there are exactly two active constraints 
from each object. In both cases the linear system resulting 
from the active constraints again shows that .*(e) and .*(e) 
are uniquely defined and are differentiable. 

While the above statements are intuitively obvious, their 
precise justification requires a somewhat lengthy argument 
which is not be pursued here. Note that when (27) has 
been solved, regularity is easily determined by examining the 
number of active constraints taken from IA  and I B .  

The computation of the derivative can now be addressed. 
Suppose the contact is regular at 0 = 6'0. Then the set of 
active constraints remains the same for small changes in 6'. 
Hence, there exists an t > 0 such that 

q:(B)x*(B) - .*(e) 
' = & ( e ) ,  i E I * ,  for all I @  - 801 < E .  (28 )  

By the above discussion this system has a unique solution 
~ ( 6 ' )  = ( c ~ * ( e ) , x * ( Q ) )  E Rn+' at 6' = 6'0. Except for a face- 
vertex contact where n = 3 and 1 > 3, there are n+ l  equations 
in n -/- 1 unknowm. When 1 > 3, three equalities can be 
selected to determine the vertex. Thus, (28) can be written 

C(Q)z(6')  = c ( Q ) ,  18 - 801 < t (29) 

where .(e) = ( a * ( e ) , x ( Q ) )  E Rn+l, the components of 
c ( Q )  E Rn+l are & ( e ) ,  and the rows of C(0)  E R("+l)x('L+l) 
are [ - 1 .iil (e)']. By our assumptions, the elements of e( 6') and 

C ( e )  are differentiable, and c(6'0) is nonsingular. Differenti- 
ating (29) at @ = BO gives 

The derivatives on the right side can be computed from the 
formulas just above (27). Moreover, the solution of (27) at 
6' = 00 gives C(&)  and .(e,). In fact, the active set method 
of solving the LP automatically provides Cpl (e,) [I], [ 121. 
Thus, the additional computational effort required to obtain the 
derivatives of .*(e) and x*(8) is small. Computation of the 
kinematic derivatives is likely to consume most of the time. 

Derivatives of the growth distances, D g ( P ( 8 ) )  and 
D g ( Q ) ) ,  are easily determined from the derivative of 
G ( P ( Q ) )  = a* by using (12), (13), and (18) and taking 
into account the piecewise nature of the definitions (12) and 
(1 3). Respectively, for penetration and separation 

If .*(e) = 1, the objects touch and the distance derivatives 
may not exist because of the piecewise character of (12) and 
(13). 

Distance derivatives are valuable when it is necessary 
to adjust a separation or penetration situation. A common 
example is in path optimization, where d i  has been used 
in penalty terms to avoid object collision; see, e.g., [13]. In 
such applications d$ may be replaced by d z  with savings 
in time for both the computation of the penalty terms and 
their derivatives. When object models are in collision, it is 
often useful to generate a move which separates them. For this 
purpose efficient computation. of DF ( P )  and its derivatives is 
especially advantageous. 

Consider the details for a simple separation problem. Sup- 
pose an object TA(B) + s ~ ( 8 )  C R", with a configuration 
vector Q E RP, resides in a field of obstacles B1, . . . , BM c 
RrL. Penetration with the field of obstacles is measured by 

M 

f ( @ )  = d$(TA(e)A + { s A ( Q ) } ,  Bi). (33)  
i=l 

This cost is nonnegative and is zero for all collision-free 
configurations of A. Since the gradient of f ( e )  can be com- 
puted using the chain rule and the methods described above, 
object A can be moved into free space by applying a descent 
algorithm to f ( 0 ) .  There is a possible difficulty. The approach 
fails if descent converges to a positive local minimum of 
f ( 8 ) .  In practice, the difficulty does not appear to be to be a 
serious weakness. It has not occurred in our computations on a 
variety of separation problems. Another concern is the possible 
nonsmooth character of f ( 6 ' ) ;  conventional descent algorithms 
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Fig. 10. (a) Placements of A resulting in collisions. (b) Positions of A after minimizing penetration cost 

may fail to converge to the minimum [7]. Again, our actual ex- 
perience has been favorable. We have employed quasi-Newton 
minimization algorithms [ 121 with excellent success. In fact, 
the exact minimum f ( 0 )  = 0 is usually obtained in a few 
iterations. There is a simple explanation for this remarkable 
behavior. Usually, the set of collision-free configurations has 
a fairly large nonempty interior. Eventually, a descent step 
crosses the set and produces the global minimum. 

Fig. 10 is an example in a two-dimensional square work 
space 131. The configuration 6' has three components: the 
horizontal and vertical translations of A and the rotation angle 
of A.  There are M = 8 obstacles: the three rectangles, 
the triangle, and four overlapping squares that represent the 
boundaries of the square work space. Note that the union of B3 

and B4 represents a single nonconvex object. Fig. 10(a) shows 
ten difi'erent collision configurations for A. Fig. 10(b) shows 
the collision-free configurations resulting from descent. Not 
surprisingly, most of the collision-free positions are relatively 
close to the originating collision positions. 

VIII. PATH PLANNING 
The idea of moving a collision configuration into free 

space generalizes to collision paths in configuration space. 
In principle, the basic approach is simple: form a cost of 
collision along a parameterized path and then minimize the 
cost with respect to the parameters of the path. In this section 
we outline these steps in the simplified setting described in the 
last twio paragraphs of the preceding section. A more general 
and complete treatment can be found in [27] and [29]. 

Let q ( t ,  a )  E R", 0 5 t 5 1 denote a path in configuration 
space of object A, parameterized by a E R N .  For example, 
the components of a might represent the coefficients in spline 
function representations of the components of q( t ,  a ) .  We 
assume that the parameterization is arranged so that specified 
end conditions are met, i.e., y(0,a)  = 40 and q(1,a) = q1 

for all a E R N .  The cost of collision along the path is 
measured by adding penetration costs, (33), evaluated on a 

grid of configurations along the path 
L-1 

J ( a )  = f(q(l/L,a)) .  (34) 
1=1 

Clearly, J (  a )  = 0 if and only if the path is collision free at the 
grid points q( l /L ,  a) .  Collision does not occur on the entire 
path if L is sufficiently large and J ( a )  = 0. 

An initial parameterized path with collisions, q ( t ,  ao), is 
moved into free space by minimizing J(a) .  Again, by using 
the chain rule and results from Section VII, it is possible 
to compute the derivatives of J ( a ) .  Thus, iterative descent 
algorithms for the minimization of J ( a )  can be implemented. 
The numerical problem is much larger than the one considered 
at end of the previous section because N = pK, where K is 
the number of parameters determining each of the components 
of y ( t ,  a) .  If a free-space path exists and the initial path is not 
too far from free space, local minima will not be encountered, 
and a collision-free path in the neighborhood of the initial 
path will be obtained. Usually, if a free space path exists, 
there are infinitely many free-space paths and the minimizers 
of J ( a )  are an open set. As in the object separation problem 
this makes it likely that the iterative descent will stop in a finite 
number of iterations with J ( a )  = 0. As with many heuristic 
methods, there is no guarantee of completeness. The descent 
may converge to a local minimum where J ( a )  > 0. However, 
there are possible strategies for avoiding local minima [29]. 

Fig. 11 shows an example which is based on the same 
objects and work space that are defined in Fig. 10 [3]. Each 
of the three components of 6' is represented by a cubic, 
twice continuously differentiable spline with 1 1 parameters. 
Thus, N = 33. The grid points are spaced by 0.01 so that 
L = 100. The minimization procedure was a quasi-Newton 
BFGS (Broyden, Fletcher, Goldfarb, and Shanno) algorithm 
[12]. It proved to be more reliable and efficient than steepest 
descent and conjugate gradient algorithms. 

The initial path appears in Fig. 1 l(a). It connects the spec- 
ified end points and is described by a linear translation of 
the center of A and constant rotational rate. The resulting 
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(a) 

Fig. 11. Example of path finding: (a) initial path and (b) final path. 

collision-free path is shown in Fig. ll(b). The function J ( a )  
and its derivatives are evaluated only 40 times, an atypically 
small number compared with the dimension of the optimiza- 
tion problem, N = 33. The most likely explanation for this 
exceptional performance is the aforementioned nature of the 
minimum; it is not bowl-like, but instead there is an open set 
of global minimizers. 

We conclude this section with a few general remarks on 
the basic approach. It extends readily to complex 3-D work 
spaces and more general kinematics, such as those found in 
typical industrial manipulators. An example in [29] treats a 
simple 3-D, 3-degree-of-freedom SCARA arm in a moderately 
complex work space. The computational time on the HP- 
Apollo was 29 seconds. Based on the comments in Section VI, 
one would expect this time to be decreased by a factor of at 
least ten on the Silicon Graphics machine. In more complex 
3-D problems and where attention must be given to the issue 
of positive local minima [29], there may be sizable increases 
in the difficulty of the computations. Fortunately, there is a 
potential for considerable improvement in speed. As has been 
pointed out in [29], massive parallelization of the computations 
is achieved easily. The use of simpler parameterized path 
representations is also likely to prove advantageous. For 
example, the number of spline parameters in our example 
could be reduced appreciably, particularly if requirements on 
path smoothness were relaxed. Since the grid points on the 
path must be closely spaced, the adjacency ideas described 
at the end of Section VI should do much to reduce the time 
in computing the growth distance and its derivative-a major 
factor in the total time devoted to the evaluation of J ( a )  and 
its derivative. 

Unlike almost all previously proposed path finding proce- 
dures [ 181, the one sketched here is not restricted to exploration 
of free space. The principle prior exception is the one proposed 
by Buckley [ 5 ] .  Unfortunately, since his procedure depends on 

U 

d$,  it leads to excessively large computational times when n = 
3 .  As Buckley emphasizes, there are unappreciated advantages 
in the “flexible-trajectory paradigm” of adjusting collision 
paths. For instance, they have obvious value when a path 
with minor collisions is known a priori. Such situations occur 
commonly in applications: obstacles in a work space may 
be moved, causing collisions along a path which previously 
had no collisions; or paths generated by an interpolation of 
collision-free way points often exhibit minor collisions be- 
tween the way points. Certainly, the computational advantages 
of penetration growth distances open new opportunities for 
researching the paradigm. 

IX. CONCLUSION 

New measures of object separation and penetration, d g  
and d g ,  have been introduced. These growth distances have 
many desirable properties and are closely connected (Theorem 
4.1) to the familiar translational distances, d: and d$. Their 
principal advantage is computational simplicity and speed; for 
a wide variety of object models they can both be evaluated 
by solving a single mathematical programming problem of 
simple structure. The speed advantage is especially large for 
penetration distance. This, together the locally decreasing 
property and the means for evaluating motion derivatives, 
opens up new algorithmic approaches for solving difficult 
collision-elimination problems such as path finding in the 
presence of obstacles. 

When the objects are polytopes, expressed either in terms of 
their faces or vertices, more can be said. Both the distances and 
their configuration-variable derivatives are determined by the 
solution of an LP problem. Asymptotic complexity is O ( m ) ,  
which equals or far betters the known times for translational 
distances, i.e., O ( m )  for separation and O(m210gm) for 
penetration. Numerical experiments, based on standard LP 
techniques, confirm that computational time increases linearly 
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in m. Moreover, the times compare favorably with those 
required for translational distances as they are comparable or 
somewhat better for separation and far better for penetration. 

APPENDIX A 
GROWTH MODELS AND THE MINKOWSKI FUNCTION 

Given an appropriate set, X c R", the corresponding 

(35 )  

Minkowski function is defined for x E R" by 

p x ( x )  = inf{X E R + \ X - ~ X  E x}.  
The following theorem summarizes well-known [ 191 or easily 
proved results needed in our developments. 

Theorem A.1: Suppose X E 0 and 0 E int X .  Then 
pAy is a function from R" into R+ which has the following 
properties. 

i) It is convex. 
ii) For all a E R+ and z E R", p x ( a x )  = apx(z).  
iii) IForall x 1 , z ~  E R " , ~ x ( z I + ~ ~ )  I p ~ ( x 1 ) + p ; y ( x 2 ) .  
iv) For all Q E R+,aX = { x l p . ~ ( x )  5 a } .  
v) i~ E int X if and only if , u ~ ( L c )  < 1. 
vi) ]Let r,y and Rx be chosen so that 0 < rdy I Rx and 

N2(rx) c x c Nz(Rs); then fi,l11.112 I p x ( 2 )  I 
rAkl Il.r112 for all z E R". 

The application of the Minkowski function to growth mod- 
els is evident. Since 2 in (7) satisfies the assumptions of the 
Theorem, px is defined and result iv) yields 

(36)  
From this representation, and the corresponding one for B(a) ,  
it follows from (5) that 

g(A,  B) = min{alpx(z - PA) I 0, p g ( r  - P B )  

A(a)  = {zlpx(x - P A )  I a} .  

5 0,z E R"}. 
Thus 

g(A ,B)  = minFAB(z), x E R" (37) 

where 

F A B ( 2 )  = max{px(z - P A ) ,  kz(z - P B ) } .  (38 )  
Since px and pg are convex, FAB is convex. Hence, any 
local minimizer of FAB determines g( A, B). 

There is another characterization of g(A, B). Note that 
A(a) fl B(a) # 0 is equivalent to 0 E A(a)  - B(c)  which 
is equivalent to JIB - P A  E a(A - z). Since 0 E 2 - B and 
A - B E 0, part iv) of Theorem A.l implies 
- 

g(A, B) = nlin{alp;i-B(pB - P A )  5 0) 

=p- A-B -( P B  - P A ) .  (39) 
While this characterization appears to be very simple, it is 
- computationally complex because it is expensive to determine 
A - from 2 and B. The characterization is useful in 
theoretical developments. For example, it shows immediately 
that g(A+ {s}, B )  = p z - B ( p ~  - p ~  - s) is a convex function 
of s.  

It also provides a simple proof the geometric situation 
shown in Fig. 4(b). Since p x - ~ ( p ~  - PA) = a*,  parts iv) 
and v) of Theorem A.1 imply P B  - P A  E bd o*(A - 3). By 
the convexity of a* ( A  - B) it follows [ 191 that o* (A - B) has 
a support hyperplane passing through p~ -PA,  i.e., there exists 

_ _ _  - _  

- _ _  
q* # 0 such that ~ * ~ ( z + p ~ - p ~ )  I 0 for all z E a*(A-B) .  
From this it is easy to confirm that v * ~ ( ~ A  - Z B )  I 0 for all 
ZA E A ( a * ) , x ~  E B(a*).  Let x* E A(a*)  n B(a*).  Then, 
v * ~ ( ~ A  - x*) 5 0 for all ZA E A(a*).  Hence, A(o*) c 
H ( x * ,  v * ) ;  similarly, B(a*)  c H ( x * ,  -q*). This proves 
the existence of the separating hyperplane P(Lc*, q*). Since 
P(z*,  q*) is a support hyperplane of both A(a*) and B(a*),  
it includes only boundary points of these sets [19]. Hence 
A(a*) and B(a*)  have only boundary points in common, i.e., 
A(a*) n B(a*)  = bd A(a*) n bd B(a*).  

APPENDIX B 
PROOF OF THEOREM 3.1 

Expression (39) proves part i). Part iii) follows from (39) 
and part vi) of Theorem A.l .  Let s = a ( p ~  - p ~ ) .  Then 
g(A+{s} ,  B )  can be obtained by substituting ~ A + Q ( ~ A - ~ B )  

for p~ in (39). Thus, by part ii) of Theorem A.l, g(A + 
{s>, B) = p;i-g((l+ Q ) ( P B  -PA) )  = (1 + a)s(A,  B). This 
shows that g(A  + { s } , B )  > g(A,B)  for all a > 0 which 
proves part iv). 

Now consider part ii). Recall the definitions in the first 
paragraph of Section 11. Because the three states of proximity 
are exhaustive and mutually exclusive, it is sufficient to prove 
the right-directed implications in part ii). Clearly, separation 
implies A( l )  n B(1) = 0 which in turn implies a* > 1. 
Penetration implies the existence of z E int A ( l )  n int B(1). 
Thus, by (36) and part v) of Theorem A.l, px(x - P A )  < 1; 
similarly p g ( x  - p ~ )  < 1. From (37) it follows that a* < 1. 
Touching implies that a* L 1. In fact, o* = 1. Otherwise, 
there exists x* E R" such that FAB(s*) < 1, and by (38), 
p;i(x* - p ~ )  < 1 and p-(z* - p ~ )  < 1. Part v) of Theorem 
A.l then shows that $ E int A ( l )  n int B(l), which 
contradicts the touching condition, int A n irit B = 0. 

APPENDIX C 
PROOF OF THEOREM 3.2 

By (36), with A replaced by TAA + {SA},  and part iv) of 
Theorem A.l 

(TAA + 
= {.\.E = TAPA + SA + TAZ,  px(5) I a }  

= {ZIpx(T:(.: - "A) - P A )  I a} .  (40) 
Using this expression, the corresponding expression for 
(TBB + { s ~ } ) ( a ) ,  and the obvious generalization of (37) 
shows that G ( P )  = m i n F ( z , P ) , . c  E R", where F ( x , P )  = 
max{p.,(TAT(x-sA)-1)A),CLB(TBT(z-sSg)-pB)}. Let Z* 
be a minimizer of F ( x ,  P ) .  Clearly, G ( P )  I F(5*,  P ) .  

We now obtain a bound for F(5*,  P ) .  By parts iii) and vi) 
of Theorem A.l 
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Thus, the proof is complete. 

APPENDIX D 
PROOF OF THEOREM 4.1 

We begin with a useful notation. For x, y, q E R", 77 # 0 
define 

When S > 0, it is the separation distance between the half- 
spaces H ( z , q )  and H(y,-v) ,  i.e., 6 (x ,y ,q)  = d $ ( H ( x , v ) ,  
H ( y ,  -q)).  When 6 < 0, the half-spaces overlap, i.e., 
H(z , r l )  n H ( y , - q )  is a slab of thickness -6(x,y,v). In 
what follows, notations and results in the last paragraph of 
Appendix A will be used without comment. Without loss of 
generality, jlq*II = 1. 

Consider the separation distance inequalities in (16). They 
hold as equalities for e* 5 1, so assume hereafter that e* > 1. 
Define 

Since L* E bd A(a*) ,  it follows from (6) that XA E 
bd A. Moreover, since P(z* ,v* )  is a support hyperplane 
for A ( e * ) , P ( z ~ , q * )  is a support hyperplane for A. From 
this and the corresponding results for XB it follows that 
A c H ( z A ,  v*) and B c H ( c ~ ,  -q*). These inclusions 
imply 

*T & ( A , B )  > 6 ( J A , X B , r ] * ) = q  ( Z B - C A )  

= (1 - ( a * ) - l ) q * T ( P B  -PA). (46) 

By (6) and (151, N ~ ( ~ * T A )  + {PA} C A(o*) C H(J* ,T~* ) .  
Similarly, N2(o*rg)+{p~}  c H ( z * ,  -7]*). Thus, by obvious 
geometry, r ~ * ~ ( p n  - P A )  L O*(TA + T B )  = a a * ( R ~  + RB).  
Substituting this inequality into (46) proves the first inequality 
in (16). 

Since ZA E A and zg E B, it follows from (3) and (45) that 

d i ( A ,  B) 5 I / ~ A  - 2 ~ 1 1 2  5 11z* - . X A ~ ~ Z  + 115* - 2 ~ 1 1 2  

=(I - (a*)-'(l/z* -PA112 + llz* -PB112). (47) 

By (6) and(l5), 11z*-p~112 5 ~ * R A .  Similarly, Ilz*-p~112 5 
cr* RB. Substituting these inequalities into (47) proves the 
second inequality in (16). 

Next, consider the third inequality in (16). Since it holds 
trivially for cr* 2 1, assume cr* < 1. Clearly, (15) implies 
d$(A, B) 5 RA + Rg. For a* = 0, dg(A, B) = RA + Rg. 
Thus, the inequality holds for a* = 0. Therefore, it is 
sufficient to consider 0 < a* < 1. Since ~ * ~ ( p g  - p ~ )  > 
V * ( T A  + T B )  > 0, (46) shows that S ( Z A , Z B , V * )  < 0. 
Because H ( x A ,  q*) and H ( z g ,  -q*) overlap by a distance 
-6, H ( ~ A ,  v * )  and H ( ~ B  -6v* , -q*) have a common bound- 
ingplane, P ( z A , ~ * ) .  Thus, B+{Sq*) C H(xg-Sv* ,  - v * )  = 
H ( ~ A ,  -v*) .  This and A c H ( z ~ , q * )  imply dg(A,B) 5 
-6. Hence 

& ( A , B )  L v * ~ ( ( ~ A  - z*) - (FB - z*)) , 

5 ((a*)-1 - 1)(q*T(z* - P A )  - q*T(z* -PE)). 

(48) 

Because ~ * ~ x *  = max{v*Tz/z E A(a*)}  it follows from 
(6) and (15) that O*TA < ~ * ~ ( x *  - p ~ )  5 e*R*. Also, 
O * T ~  < - ~ * ~ ( z *  - p ~ )  5 o*RB. Substitution in (48) 
completes the proof. 

In proving (17) it is only necessary to consider the case 
where d$(A, B) > 0. Thus, the characterization shown in 
Fig. 2(b) applies where d$(A,B) = Ilt*ll > 0. Furthermore, 
P(t* ,  t * )  is a support hyperplane for A - B and A - B c 
H ( t * ,  t*).  It is easy to see that these facts imply the existence 
of a* E A and b* E B such that t* = a* - b*,A c 
H(a* ,  t * ) ,  B C H(b* , -t*).  The inclusions, together with 
(15), show that NZ(TA)  + {PA} c H(a* , t* )  and NZ(TA)  + 
Hence, Ilt I /  
{pB + t * }  c B + {t*j  c H(b* +'t*,-t")  = H(a* , - t* ) .  

* -1 *T t ( p ~  + t* -PA) 2 TA + T B  and 

TA + TB - di(A, B) 5 I l t*I / - l t*T(pB - PA) .  (49) 

From A c H ( a * , t * )  it follows that A(a)  c H ( x ~ ( o ) , t * ) ,  
where ICA(C) = PA + cr(u* - P A ) ;  also, B(a)  c 
H ( z g ( a ) ,  -t*), where z g ( a )  = p~ + a(b* - p ~ ) .  Clearly, 
S(zA(a) , zg(a) , t* )  = 0 implies a 5 a*. By (44) this 
equality holds if 

0 = Ilt*lyt*T(cr(b* - a*)  + (1 - a ) ( p B  - P A ) )  

= -cd;(A, B) + (1 - ~ ) l I t * l / - ' t * ~ ( p ~  - P A ) .  (50) 

The assumption d$(A, B) 5 T A  + T B  and (49) guarantee that 
(50) has a .unique root, 0 < cr < 1. Solving (50) for 1 - a 
and using (49) gives 

1 - a* 2 1 - a = (d$(A, B) 
+ I / t * / l - l t * T ( ~ ~  - p ~ ) ) - ' d $ ( A ,  B) 

L ( T A  + r ~ ) - ' d $ ( A ,  B ) .  (51) 

Multiplying by RA + RB completes the proof. Note that 
(51) remains valid if t * T ( p ~  - p ~ )  > 0. It is geometrically 
evident that this condition is usually satisfied, even when 
T A  + T B  I d$(A,B). 
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