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Divide columns 2n + 1, 2n + 2 . . 3n by 3! .  Continue in this fashion 
through to columns (N - 1)n + 1, (N - I)n + 2,  . . . Nn divided by 
N ! .  ii) Multiply rows 2r + 1, 2r + 2,  . . . , 3r by 2 ! .  Multiply rows 3r + 
1 ,  3r + 2,  . . . , 4 r  by 3!.  Continue in this fashion through to rows Nr + 
1 ,  Nr + 2,  . . . , (N + l)r( = r2 + 2r) multiplied by N .  The matrix 
obtained is W,:. 

Now let us perform the next sequence of elementary row and columns 
operations on W,!,.. Multiply rows r + 1, r + 2, . . e ,  2r by ( -  1). 
Multiply columns n + 1, n + 2, . . . , 2n by (- 1). Multiply rows 3r + 
1, 3r + 2 ,  . . . , 4r by ( -  1). Multiply columns 3n + 1 ,  3n + 2 ,  . . . 3n 
by ( - I ) .  Continue in this fashion through to rows Nr + 1, Nr + 2 ,  . . . 
(N + I)r (or, if N is even, through to rows (N - I)n + 1, (N - l ) r  + 
2, . . . Nn) multiplied by ( -  1). The matrix obtained is W,. 

Example: 
1) The system 

First we see that SE - A = [ - A  - ; I  and thus (2 .  Ib) is satisfied. Also. we 
have C = [ 1 01. CE = [O 11 and CA = [ 1 01. Hence,  the generalized 
controllability matrix W,. 

is surjective and the system is completely controllable. 
Assume now that it is desired to transfer the system from x(0- ) = 

[ -71 tox(1) = [:I. Then, using (3.14) and (2.4) one finds that u * ( t )  = 1 
- 3t' + 2t3 transfers the system along 

x*([)= [ 6r-6r'  ] 
-1+3r2-2r3  ' 

If one increases the degree of the polynomials, one can perform the 
transfer along a "smoother trajectory." 

IV. CONCLUSIONS 

This note has established that c-controllability of singular systems is 
associated with a set of linear algebraic equations from which one can 
explicitly obtain the polynomial control function u( l )  which transfers  the 
system under consideration from its initial position to  the desired target. 
The results which have been obtained in this note provide a direct 
approach to  the solution of optimal control problems bj-  a state 
parameterization approach. 
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Computation of Minimum-Time Feedback Control Laws 
for  Discrete-Time  Systems with State-Control 

Constraints 

S. S. KEERTHI AND E. G. GILBERT 

Abstract-The  problem of finding  a  feedback  law  that  drives  the  state 
of a linear discrete-time  system to the  origin  in  minimum-time  subject to 
state-control  constraints  is  considered.  Algorithms are given to obtain 
facial  descriptions of the M-step admissible  sets.  These  descriptions are 
then  used to characterize  the  complete  class of minimum-time  feedback 
laws.  Moreover,  the  characterization  leads to a  conceptually  simple on- 
line  implementation.  The  main  ideas  are  illustrated  with two simple 
examples. 

I. INTRODUCTION 

The problem of finding a feedback law that drives the state  of  a linear 
discrete-time system to the  origin in minimum time subject to magnitude 
constraints on the control is a classic one. first formulated by Kalman [8] 
and then analyzed in detail by Desoer and Wing [2]-141. Their description 
of the finite-step admissible set is by its vertices. Their main result is a 
switching surface in R" that separates the region of positive and negative 
control. The switching surface is easily developed for second-order 
systems; but for higher order systems its characterization is very 
complicated and difficult to implement. Since [2]-[4] ,  relatively little 
work has been done. Lin [IO] has suggested an alternative method which 
uses a representation of admissible sets by their faces;  and, Gutman and 
Cwikel [5]-[7] extend the vertex representation to problems in which a 
compact polyhedral state-space constraint set is also included. However, 
the algorithms in [IO] and (71 involve rather difficult computations; also, 
the determination of a minimum-time feedback law is not simple. 

This note offers  a new approach to the problem in which a facial 
description of the M-step admissible sets is also  used.  However,  the 
computations are more systematic and straightforward and problems with 
joint state-control constraints can be treated.  Furthermore, in our 
approach, the complete class of minimum-time feedback laws is charac- 
terized. The description of the admissible set and the feedback law is 
entirely different from the  ones of Desoer and Wing and, while more 
complicated, is more likely to yield feasible on-line implementations. The 
main limitation is the dimensionality of the facial representation of the M- 
step admissible sets, which can become very large for high-order systems. 

We conclude this section with some notations and definitions. Let N 
denote the set of positive integers; for Z C Nlet card I = cardinality of I. 
For z E RP and P E RqxP: z' denotes the ith component of z ;  P' is the 
ith row of P; and P' denotes the transpose of P. I, E RqxQ is the identity 
matrix. A set Z C RP is polyhedral convex if 3 q  E ?V, P E R Q x p  and y 
E RqsuchthatZ = { z  E R P : P z  + y 5 O).Thenotationa:=  bmeans 
that the value of a is replaced by that of b. 0 denotes the empty set. 
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II. THE MINIMUM-'l"E PROBLEM 

Consider  the  linear  system with constraints 

x&'=AXk+Buk, (Xk, u*) E z, O S k l M - 1 ,  (2.1) 

xo=a, x.v=o (2.2) 

whereXk E R", Uk E R", A E R"'", B E R n x m ,  

Z={(X,  u )  : EX+Fu+XsO) (2.3) 

E E Rix", F E R i x m  and X E R'.  For meaningfulness, we need the 
following. 

Assumption A: (0, 0) E Z ,  i.e., maxl.iri X' 5 0. 
Assumption A will be assumed throughout this note without further 

mention. For M > 0, the set of admissible intial states is 

X ( M )  = { a  : 3 { (Xk, U,)} that  satisfies (2.1) and (2.2)). (2.4) 

Also, let X(0)  = { O } .  Clearly, 0 E X ( M )  and X(M) C X ( M  + l), M 
2 0. It is easy to  see that the maximal admissible set is given by X = 
UMsO X ( M ) .  While X ( M )  is closed for each M z 0, it is easy to give 
examples where X is open [ 7 ] .  The minimum-time problem can now be 
precisely formulated. 

Minimum-Time  Problem: For x E X ,  find the minimum time 

M(x)=min { M  : x E X ( M ) } .  (2.5) 

Also, find a feedback law, p : X  .+ R m  which satisfies p(0) = 0 and 

(X, p ( ~ ) )  E 2, Ax+Bp(x) E X ( f i ( ~ ) - l ) ,  X E X ,  x#O.B (2.6) 

The feedback law p is, in general, nonunique. For problems with 
control constraints, this has been noted by Desoer and Wing [ 2 ] .  For M 
2 1 let 

W(X; M).= { u : ( x ,  u )  E Z ,  Ax+Bu E X ( M -  l)}, x E X ( M ) .  (2.7) 

Clearly p is a minimum-time feedback law if and only if p(0) = 0 and 

p(x)  E W(x; M(x)), x E x, X # O .  (2.8) 

Thus, by obtaining a representation for W ( - ;  M )  we can characterize  the 
class of all minimum-time feedback laws. By (2.7), this depends on the 
finding of a representation for X ( M ) .  An algorithm for obtaining a 
representation of X ( M )  is discussed in Section IV. The ideas given there 
are based on results in Section III. Section V describes  the implementation 
of p; examples are given in Section VI. 

m. THE PROJECTION  ALGORITHM 

We now present an algorithm for projecting a polyhedral convex set  on 
to a subspace. It is a slight modification of a method of solving linear 
inequalities, first developed by Fourier in 1826 and which later  came  to be 
known as the Fourier-Motzkin elimination method [12]. 

Problem 3. I: Consider the set 

X = { X  E R" : 3u E R m  3 G x + H u + $ S O }  (3.1) 

where G E Rsx", H E R r x m ,  and 4 E RE. Find: r E N ,  P E Rrx", 
and y E R' such that 

X={X E R" : Px+y<O}. (3.2) 

We begin by considering the  case m = 1. The algorithm for this case 
will lead to a solution for the  case m > I .  For the  case m = 1, note that 
H E Rsxl .  

Algorithm 3.1. Solution of Problem 3.1 for  rn = I :  
Step I: Identify the following subsets of { 1, . . . , s}: Io = { i : H i  = 

O } , I +  = { i : H '  > 0) andZ- = { i : H i  < 0). Letso = cardZo,s+ = 
card I -  and s- = card I - .  Go to  Step 2 .  

Step 2: Let C = [ G  I)] E RSx("-I).  Form the matrix [ P  71 E 
RrX("+') ,  r = so + s+s-, whose rows are the elements of the sets: { C':  i 
E Io) and {(H'Cj  - HJC'), i E I + ,  j E I - ) .  Stop. 

Prooj? Zf s- = 0 or s- = 0 or s' = s- = 0 it is obvious that the 
rows of [ P y ] are the elements of { C': i E IO).  Hence, assume hereafter 
thats+ > Oands- > 0. Define: C = ( z  E R " + ' : ~ u  E R 3 Cz + HU 
s O } , s o t h a t , X = { x : z = ( x , a ) , a =  l , z E C } . L e t : T E R S X S b e a  
diagonal matrix whose ith diagonal element is ( 1  H i  I ) - '  if i E I+ U I - ,  
and 1 if i E Io; and S = TC. Clearly then, all the elements of the vector 
( T H )  are either 1, - 1, or 0. Also, 

S = { Z  : 3u E R 3 S Z + T H U ~ O ) .  (3.3) 

Define: a(z) = maxiel+ S'z; and b(z) = max,E,- S'z. This, together 
with the  structure of ( T H )  allows (3.3) to be rewritten as 

S = { z :  S'zsO, i E Io, 3u E R 3 a ( z ) s  - u ,  b(z ) su} .  (3.4) 

B y e x a m i n i n g t h e s e t & = { ( u , b ) : g u E R 3 a <  - u , b < u ] C R Z , i t  
is easy to  see that & = {(a, b):a + b 5 0). Using this in (3.4) we get 

C = { z :  S'zsO, i E Io, a(z)+b(z)sO) 

= { z  : S'zsO, i E I o ,  ( S ' + S J ) Z S O ,  i E I + ,  j E I - } .  (3.5) 

It is then easy to verify Step 2 of the  algorithm. 
For m = 1 ,  Problem 3.1 consists of eliminating the real variable, u ,  

from the representation for X in (3.1) to obtain (3.2). When M > 1 ,  the 
algorithm for m = 1 can be repeated m times, eliminating one component 
of the vector u at a time. To make this  precise,  define: 

Xm={(x,  U) E R"+": G x + H u + $ ~ O } ,  (3 4 

and for j = m - 1, ..e, 0, let x, = (x, u I ,  ..., u j )  E R"+j  and 

X ' = { X ~  E R"+J : 3 ~ ' ~ '  3 R (X,, u J + ' )  E X / + ' } .  (3.7) 

Clearly, X o  = X ,  where X i s  the set in (3.1). To obtain (3.2). proceed by 
the following steps. 

Algorithm  3.2  Solution of Problem 3. I for m > 1: 
Step I :  Let: H,,, = mth column of H1 G ,  be given by [ G,,, H,,,] = [ G 

H I ;  and I),,, = 4. Then by (3.6) and (3.7), we get, f o r j  = m - 1, 

X J =  {xJ E R n + J  : 3uj-I E R 3 G J _ l ~ J + H J _ ~ U J c ' + ~ j - ~ ~ 0 } .  (3.8) 

Let j = rn - 1 and go to Step 2. 

obtain Pj and y j  such that 
Step 2: Given (3.8), eliminate uJ-l using the algorithm for m = 1 to 

XJ=(x, E R"-j : PJxJ+.y,<O}. (3.9) 

Go to  Step 3. 
Step 3: I f j  = 0 then let: P = Po, y = yo and stop. Otherwise go to 

Step 4. 
Step 4: Let Hj be a vector and Gj be a matrix such that [ G, H,] = P,; 

also let = y j .  Then by (3.9) and (3.7), (3.8) holds for ( j  - 1). Let  j 
:= j - 1 and go to  Step 2 .  

Remark  3.1: It usually turns out that the matrix [ P  y ]  given by 
Algorithms 3.1 and 3.2 contains many redundant rows that are not needed 
to represent the set X .  A row may be tested for redundancy by solving a 
linear programming problem in which: a) the tested row determines the 
cost, b) the remaining rows form  the constraints [ I  I]. See [ I ]  for  an 
efficient procedure. 

w. REPRFSENTATIONS FOR X ( M )  AND w(X; M )  

We now describe the representations for X ( M )  and W(x; M )  and 

Theorem 4.1: i)  For M 2 1: 3rM E N, P.w E Rrl+fx" and y,,, E Rr.W 
describe an algorithm for finding them. 

such that 

X ( M ) = { x  E R" : P,r,xty,wSO}. (4.1) 

ii) ForM 2 1: 3sM E N, G,,, E RS-+", H,w E Rs.wxm and I).~, E RS,+f 
such that 

W(X; M ) = ( u  : H,Mu< -GG*~x-$,~},x E X ( M ) .  (4.2) 
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iii) The data in  i) and ii) are obtained by the following steps. polyhedral convex. Suppose X is polyhedral convex. Since X C { x : ( x ,  
Step 1: Let: ro = 2n, Po = [ I ,  - I,] ‘, yo = 0 and define X ( 0 )  by U) E Z ) ,  X is a compact polyhedral convex set; SO it can be represented 

(4.1). Set M = 0. as the convex hull of its vertices, X;, i = 1, . . . , t .  For 1 5 i 5 t ,  let A?; 
Step 2: Define = min { M : f ;  E X ( M ) ) .  the minimum time from X;. Since 2; E X ,  Mi 

i s f in i t e .Le tA?=max{M, : l= i I t } . I t i s theneasy tove r i fy tha tX  
,-. f X ) I” ,\ = xcm. W 

dPLEMENTATION OF MINIMUM-TIME FEEDBACK LAWS 
Step 3: Let 

Z = { ( X ,  u )  : G . ~ + ~ x + ~ ~ f - ~ u + $ w + ~ ~ O } .  (4.4) 

Then 

X ( M +  1)= { x  : (x ,  u )  E 2) .  (4.5) 

Apply Algorithm 3.1 or 3.2 to (4.5) to obtain PM+ I and ~ y . ~ +  I .  

[PM+ Y.~+ I ]  which are not needed to represent X ( M  + 1). 
Step 4: Use  the idea in Remark  3.1 to remove redundant rows of 

Step 5: Set M : = M + 1  and return to Step 2. W 
Proof: Note that 

Z={(x, u )  : (x ,  u )  E z, Ax+Bu E X ( M ) } .  (4.6) 

Then it is clear that the steps recursively define X ( M ) ,  M 2 1. The 
result (4.2) follows from (2.7), (4.6), (4.3), and (4.4). W 

Remark 4.1: The representation (4.1) is a facial description of the 
polyhedral convex set, X ( M ) ;  the rows of P,w denote the normals of the 
hyperplanes that contain the faces of X ( M ) .  Our algorithm is entirely 
“facial.” The algorithm of Gutman and Cwikel [7] is more involved 
because it goes back and forth between facial and vertex representations. 
Also, [7] does not give a method for developing a minimum time feedback 
law. 

Remark 4.2: for the  scalar control case (rn = l), (4.2) can be 
simplified. When m = 1, note that Hw E R5.wx I ,  Let I +  = { i: H i f  > 0) 
and I -  = { i : H L  < 0 ) .  Define the functions q,;,:X(M) + R and 
q;:X(M)  -+ R as follows: 

Then 

W(x;  M ) = { u  : q.;(x)su5q‘;f(x)] ,  x E X ( M ) .  (4.9) 

Remark 4.3: The main problem with our algorithm is the growth of 
r.w. Because of the combinatoric calculations in Step 2 of Algorithm 3.1 
(case rn = I) ,  it is possible that r,w grows horrendously with M. For 
example, if rjw is large and the worst case situation occurs (s+ = s- z s/ 
2 in Algorithm 3.1), then rMLl  z ( r , ~ / 2 ) ~ .  For problems with 
compactness constraints on  the state, we have generally observed that 
such a growth of rM does not occur; see, for instance the two examples in 
Section VI. 

While X ( M ) ,  M > 0, can be described using Theorem 4.1, it is 
usually difficult t: find a represfntation for the maximal admissible set, 
x. If x = X ( M )  for some M ,  then 8 is polyhedral convex and its 
description becomes easy. The following theorem gives conditions under 
which this may occur. 

Theorem 4.2: i) 3f isuch that 8 = X ( m  if and only if X ( f i  + 1) = 
X(&?); ii) if { x : ( x ,  u) E Z }  is compact, 3A?such that 8 = X ( m  if and 
only if X is polyhedral convex. W 

Proof: If X = x(A?) then x(M + I )  = x(A?) since x(W c 
X(A? + 1) C 8. Now suppose X(& + 1) = X ( W .  Let IM = A. Then 
from (4.3) and (4.4) with M : = M + 1 it follows that X ( M  + 2) = 
X ( M  + 1). Using this result inductively for M 1 &completes the proof 
of part i). 

Now consider part ii). If 3A? such that X = X(&?), then clearly X is 

In general the representations for X ( M )  and W(x; M ) are computed 
off-line. Then (4.1) and (4.2) are used to give a simple on-line procedure 
for implementing a minimum-time feedback law, p ( - ) .  Given x E X ,  
p(x) is computed in two steps: 1) find the minimum time, M(x); 2) 
compute p(x) E W(x;  M(x) ) .  The first step can be achieved by the 
following algorithm. 

Algorithm 5.i: Finding &?(x) given x E X .  
Step I: If X = 0, let I@(x) = 0 and stop. Otherwise go to Step 2. 
Step  2: Compute &‘(x) = min { M :  M 2 1, P,wx + y,v 5 0) as 

follows. 
Step 2a: Let M = 1 and go to Step  2b. 
Step 2b: Compute bif  = PJ& + -&. If fiif > 0 for any j E { 1, 

. . . , r.w}, go to  Step 2d. Otherwise go  to Step 2c. 
Step 2c: Let M ( x )  = M and stop. 
Step 2d: Let M : = M + 1 and go to  Step  2b. 

Once the minimum time &‘(x) is computed, the second step in the 
feedback law implementation involves the determination of p(x) E Rm: 
p(x) E W(x; &‘(x)). This  can be done using (4.2) as follows. Let M = 
&‘(x) and compute 6 = - G.wx - Then obtain p(x)  to be any 
feasible point in the set “(x; M )  = { u:H,,u 5 6 ) .  This  can be done 
efficiently using special procedures in linear programming [l 11. Since m, 
the dimension of u, is  usually small. the above computation is  not difficult. 
In particular, when rn = 1, W(x; M )  simplifies to (4.9) and finding a 
feasible point in that set becomes very easy. 

Both Algorithm 5.1 and the determination of p(x)  permit efficient use 
of computer pipelining and parallelism. Because of this and the simplicity 
of the required computations, rapid on-line implementations may be 
possible even though r,>, and the resulting data storage requirements may 
be large. 

VI. NUMEFXAL EXAMPLES 
The first example that we consider is a double integrator system, 

described by the following state equations: 2’(r) = x’(t),  x2(t) = u(t), t 
1 0. Using a zero-order hold with T = 1 gives a system of the form (2.1) 
where xk = (xl(kT  )x2(kT ) ) I ,  

Let 2 = { ( X ,  u ) : \x ’ l  5 25, \xz\ I 5, I u \  5 1 ) .  Let 

I?=( ‘T +) a n d F = (  4). 
Then  it is easy to  see that Z is given by (2.3) if we  let: I = 6; E = (I? - 
I?‘)’: F = (F‘ - p‘)’; and X‘ = - 1, 1 5 i 5 6. 

For this example, it turns out from numerical calculations based on the 
algorithms presented above that the conditions of Theorem 4.2 are 
satisfied, and 8 = X(15). The admissible set X ,  together with X ( M )  for 
M = 3,  7, 1 1 ,  and 15 are shown in Fig. 1. An interesting observation can 
be made from these sets.  The number of faces in X(:W) ,  r,>,. does not 
necessarily increase with 1M. for instance, r? = 20 and rI5 = 14. A 
minimum time trajectory from the initial condition. x. = (25 O ) ’ ,  
developed using the expressions in (4.7)-(4.9) is also indicated on the 
phase plane in Fig. 1. 

The above example is also considered in [7]. There, the admissible 
sets. X ( M ) ,  M 2 0. are described in terms of their vertices. The 
computations are more complex and a minimum-time feedback law is not 
given. 

As a second example consider the triple integrator problem, described 
by the following equations: k l ( t )  = x2(r),  X”(t) = x3(r) and 9 ( t )  = u(t), 
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TABLE I 
COMPLEXITY OF x(“ FOR TIUPLE INTEGRATOR WITH T = I 

M 2 3 4 5 6 7  
~~ ~ 

T M + ~  before  Step  4 24  48 246 1128 3546 8382 
r,, I after Step  4 12 30 66 118 186 212 

t 2 0. Consider  a  zero-order hold discretization with period, T = 2, and 
letxk = (x1(kT)x2(kT)x3(kT)) ’ .  Let 2 = {(x, u):lxll I 25, Ixz( 5 
5 ,  lx31 5 1, I uI 5 1 } . Calculations were  done as for the double 
integrator to obtain representations for X ( M ) ,  M 2 0. The convergence 
conditions of Theorem  4.2 are satisfied for this problem too, and x = 
X(9) .  The row dimension of P9 is r9 = 26. In both the examples, r.,,, the 
row dimension of P,%, does not grow rapidly with M. This is mainly due to 
the presence of compactness constraints on the state. 

The above examples may suggest that the development of P,w is easy 
whenever {x:@, u )  E 2 )  is compact. This is not always true. For 
example, consider the triple integrator problem with T = 1. The 
computations are extensive because rJt+ I before Step 4 of Theorem 4.1 is 
large. Moreover, numerical errors become critical in Step 4 because 
many redundant rows of [P,$,- Iy.h.I- I ]  are nearly active. To assure that 
active rows were not erroneously eliminated in our computations, an  error 
tolerance was used in implementary Step 4. Table I shows the results for 
M 5 7. Recently, R. J. Caron has implemented Step 4 using an improved 
version of the algorithm described in [I].  The computations are much 
quicker and permit a higher standard of accuracy in eliminating redundant 
rows. For example, r8 has been reduced from 212 to 56, indicating that 
our computed [& yg] has many redundant rows which were missed 
because of the error tolerance. 
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state constraint sets for discrete-time linear dynarniql systems with bounded 

Abstract-Variable structure systems theory is used to design an 
automatic  controller for active nutation  damping in momentum biased 
stabilized spacecraft.  Robust feedback stabilization of roll and yarY 
angular dynamics is achieved with prescribed qualitative characteristics 
which are  totally  independent of the  spacecraft defining parameters. 

I. INTRODUCTION 

The use of variable structure systems theory (hereafter called VSS) is 
receiving increased attention in the aerospace fieId as referenced in [ I  1, 
[2]. The technique, extensively developed in the Soviet Union and Eastern 
Europe for  a number of years [3], permits the use of a lower order system 
model for generating control commands, and is robust with respect to 
external disturbances as well as vehicle configuration and mass proper- 
ties: indeed, the latter typically are needed only for estimates of the 
required level of control effort for the attainment of a desired ”sliding 
motion” trajectory. The required accompanying switching logic, used for 
overshoot correction, is based only on the designer-selected sliding 
motion, as well as on invariant kinematic equations. 

Recent results on the use of VSS for spacecraft slewing maneuvers are 
found in [ 11, [2],  where global nonlinear methods are employed and in [4] 
where passive damping mechanisms during slewing are taken into 
account. 

In this note, multivariable but linear VSS theory is used for active 
nutation damping. Nutation is defined as  the rotational periodic motion 
exhibited by spacecraft when control or environmental disturbance 
torques perturb its stable spin-free equilibrium position (see also W e m  et 

Nutation damping is accomplished in a passive manner by energy 
dissipation mechanisms such as: fluidic friction, used in connection with 
one or two  degree  of freedom penduli, generation of eddy currents arising 
from relative motion between a conducting plate and a magnet, or free 
rolling ball-in-the tube viscous friction dampers.  On  the other hand,  active 
nutation dampers involve the use of feedback control in order to exercise 
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