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AN ITERATIVE PROCEDURE FOR COMPUTING THE
MINIMUM OF A QUADRATIC FORM ON A

CONVEX SET*

ELMER G. GILBERT

1. Introduction. This paper presents an iterative procedure for com-
puting the minimum of a quadratic form on a compact convex set C. The
sole characterization required of C is the availability of a method for
solving linear programs on C. This characterization differs from the usual
set of functional inequalities given in quadratic programming problems
[6], and is particularly appropriate to the solution of problems in optimal
control. In fact, some of the results presented here arose from an attempt
to provide a convergence proof for the extension by Fancher [5] of a pro-
cedure due to Ho [8]. Section 8 and [1] give several direct applications of
the iterative procedure to problems in optimal control. By using the al-
gorithm of this paper as a means of projecting points into convex sets it is
possible to develop additional algorithms for solving other problems in
programming and control [1], [7].

It should be noted that the iterative procedure of this paper is very
similar to that given in the latter part of the paper by Frank and Wolfe
[6]. However the emphasis and setting of the two papers are quite different,
and the overlap is small.
The paper is organized as follows" in 2 notation, definitions, and a

basic problem (BP) are considered; in 3, 4, and 5 the algorithm for BP
is described, error bounds are derived, and convergence is proved and
investigated in detail; in 6 the algorithm is related to a gradient method
for solving BP; in 7 the previous results are extended to a general quad-
ratic programming problem GP; and in 8 the connection with problems
in optimal control is made.

2. Preliminaries, the basic problem. The following notation is em-
ployed" z (z, ,z) a vector in Euclidean n-space E y.z
i=l Yizi /2

open sphere at x with radius ; f(x; 0) {Yll Y x =< }, the corre-
sponding closed sphere; L (x; y) z z x + o (y x), < <:. },
x y, the line passing through x and y; Q(x; y) Iz z’y x.y}, y O,
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the hyperplane (dimension n 1 through x with normal y; OX, the bound-
ary of the set X.
Now consider some notation and results applicable to a set K c E,

which is compact and convex. Let s(y) maxzK z.y denote the support
function of K. Since K is compact, (y) is defined for all y. Furthermore,
it can be shown that (y) is a convex function on E, a result which implies
that s(y) is continuous on E [3]. Let P(y), y 0, be the hyperplane
{xlx.y (y)}. Sincez.y (y) for allz KandP(y) Kis not
empty, P(y) is the (unique) support hyperplane of K with outward normal
y. For each y 0 the set S(y) P(y) K is called the contact set of K.
It follows that S(y) is not empty, S(y) OK, S(y) S(y) for > 0.
If for every y O, S(y) contains only single point, then K is strictly
coye.

DESOlaTiOn. A function, s(y), defined on E is a contact function of K if
s(y) S(y), y # O, ands(0) K.
From the preceding it my be concluded that s(.) is bounded; s(y)
s(y), > 0; nd v(y) s(y).y. Furthermore, on the set {y ] y[ > 0}

ech of the ollowing is true if nd only if K is strictly convex" s(-) is
uniquely determined, s(. is continuous. The continuity result is proved
in [10].

If for every y there is method for determining point x(y) K such
that x(y).y mxe z.y v(y), then this method my be used to
evaluate contact function of K. Such n evaluation, which corresponds
to the solution of linear programming problem on K (see 1), is essential
to the computing procedure which follows. Consider now the bsic problem-
BP. Given K, a compact convex set in E, find a point z* K such that

Since K is compact nd ]z is continuous function of z, solution z*
exists. The following dditionl results hold"

Solution properties. (i) z is unique, (ii) 0 ff and only if 0 K,
(iii) for z* > O, z* OK, (iv) for z* > O, z z*ifandonly if
z P(-z) K S(-z).

Properties (ii) and (iii) are obvious. Property (i) is proved by contra-
diction. Suppose z and z are distinct solutions. Then by convexity

* $
2 z*Wz= K, whichmens[l z z= But this implies

]which can be written ]z* z 0, n inequality which is only true
for z* z. Consider (iv). The condition z P(-z) K ira-
plies z P(-z) Q(z; z). But Q(z; z) is the support hyperplne for the
closed sphere (0; ]z ) whose outward normal is z nd whose contact
point is z. Therefore Q(z; z) is (separating) support hyperplane for K
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and (0; z I). Thus K l N(0; z I) is empty. Since z K VI _(0; z [),
this implies z z*. The steps of this argument may be reversed to obtain
the converse result.

3. The iterative procedure for the basic problem. In this section the
iterative procedure for computing the solution to BP is described.
As a first step, let s(. be a specific contact function of K and consider

(z) _fz-- s(--z)l-2z.(z-- s(--z)) if z-- s(--z) 0,(3.1) \o if z s(--z) O,

and

(3.2) \o if z 0 or Izl O,z.s(--z) <- O.

Thus (.) and v (.) are functions which are defined on K. Their geometric
significance is as follows: x z + (z) (s(-z) z) is the point on the
line L(z; s(--z) with minimum Euclidean length; v(z)z is either the point
L(0; z) P(-z) or the origin, depending on whether or not L(0; z)

P(-z) is on the line segment connecting z and the origin. The func-
tions (.) and (.) have the following properties.
TEOREM 1. Let K be the set described in BP and restrict z to K. Then

(i) (z) => 0,

(ii) (z) 0 if and only if z z*,
(iii) 0 <= (z) -<_ 1,

(iv) if 0 K, "(z) O,

(v) if 0 K, ,(z) 1 if and only if z z*,

(vi) " z is continuous.

Proof. In this paragraph z always denotes a point in K. In 4 (inequality
(4.5)) it is shown that 0 =< z. (z s z) ). Hence, (i) and (iii) follow
from (3.1) and (3.2). For the time being assume z* > 0. The conditions
/(z) 0 and ,(z) 1 both imply z-(-z) s(-z).(-z) v(-z)
which requires z P(-z). Sincez ff K, solution property (iv) yields z z*.
Reversing these arguments completes the proof of (ii) for z*l > 0 and
of (v). Now take z*l 0. Inequality (4.4) then implies s(-z).z <- 0
which by (3.2) yields (iv). If fl(z) 0, then it must follow from (3.1)
thats(-z).z Izl Because ofs(-z).z -< 0thisimpliesz 0 z*.
Since z z* 0 also yields/(z) 0, the proof of (ii) is complete. For
zl _-> z*l > 0, the continuity of (z) follows from (3.2) and the eonti-
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FIG. 1. Geometric interpretation of the iterative procedure (0 origin)

nuity of the support function (y) s(y).y. For z* 0, it is trivially
true from (iv).

It is of interest to note that (. may be discontinuous on K, even
though s(. is continuous on K. See Example 3, 5.
The iterative procedure defines a sequence of vectors {z} by

(3.3) zk+l z + a(s(-zk) z), t O, 1, 2,...,

where z0 is an arbitrary point in K and the scalars a are selected arbi-
trarily from the closed interval I (z),

I(z) [min {t(z), 1}, min{(2 t)(z), 1}],
(3.4)

0 < fixed number =< 1.

Fig. 1 gives the geometric interpretation of the iterative procedure for the
case wherei 1 anda I(z) reduces toak sat(zk) (sate0 o,
0 -<- o -<- 1;sat o 1, 0 > 1). If (z) > 0 an improvement is obtained
on the kth step, i.e., z+l < z l; if (z) 0, z z* and the iterative
process is finite, i.e., the solution has been obtained in k steps. From Fig. 1
it is also clear that ]zk ’(z) -<_ ]z*l =< ]z I. Thus on each step upper
and lower bounds on z*l may be computed. Notice that in applying the
iterative procedure it is not necessary to know beforehand whether or not
0 K. A more precise and complete statement of results is contained in
the following theorem.
THEOREM 2. Let s (.) be an arbitrary contact function of the set K specified

in BP. Take Zo C K and, by neans of (3.3) with a I(z), generate the
sequence {z}. Then for tc >= 0 and k ---> "
(i) zk

_
K,

(ii) the sequence {I z I} is decreasing and lz --+ z*l,
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(iii) z -- z

(iv) z I’Y(z) <- z*l and z ’(z) "-->

(v) zk z* <= "V/1 "),(zk) z land "Vq ")’(z) z "-- O,

(vi) s(-z) z* <= s(-z) "(z)z

Since the bounds given in parts (iv), (v), and (vi) are computable as
the iterative process proceeds, they may be used to generate stopping cri-
teria for the termination of the iterative process. Example problems show
{I z ,(zk)} is not necessarily increasing. Thus
is more satisfactory as an upper bound for

z I/(z). Since examples also show that {] z z* I} and
{I s(-z) z* I} are not necessarily decreasing, it is not possible to im-
prove similarly the bounds given in (v) and (vi).

Suppose ]z* > 0 and s(. is continuous in a neighborhood of -z* (the
latter is certainly implied if K is strictly convex). Then it follows from the
continuity of ,(. and (iii) that the upper bound in (vi) converges to
zero. Thus {s(-z)} may be used as an approximating sequence, an ap-
proach which may be advantageous in some situations (see 8). In addi-
tion it is clear from (iv) that

(-z)l z*l _-< (-z)l m_ z (z),

where the right side converges to zero. Therefore meaningful stopping
criteria are available.

4. Proof of Theorem 2. First, some basic inequalities are stated. From
z P( ), 0 K, and s(-y)
definition of P (.) that

(4.1) z .z <__ z.z

(4.2) s(--y).y <= z.y,

These inequalities lead to

(.3)

(4.4)

(4.5)

(4.6)

(4.7)

P(--y), y O, it follows by the

z*l <= s(-y).z*, 0 K,y En;
s(--y).y <= z*.y, y E;
s(-z).z <= z[, z K;

Y--Z*l2-t-z*’(y-z*) <=y.(y--s(--y)), yE’;

z z*l <- z’(z s(--z)), z K, 0 $_ K.

Inequalities (4.3), (4.4), and (4.5) are deduced from (4.1) and (4.2) by
obvious substitutions. From the identity
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Y z* [2 + z*. (y z*) + y. (z* s(--y)) y. (y s(--y)),

(4.6) follows by (4.4). Inequality (4.7) follows from (4.6) by use of (4.1).
Part (i) of the theorem depends on ak I(zl) which insures 0 =< ak -<_ 1.

Thus from (3.3), s(-z) K, and the convexity of K, z K implies
Zk-+-I K.

Consider now the inequalities in (iv), (v), and (vi). From (4.4) and
the Schwarz inequality, s(-y).y <= Y ]’lz*l Thus (iv) follows from
(3.2). The proof of the inequalities in (v) and (vi) makes use of z z K.
For s(-z).z > O, z. (z s(-z)) z (1 -,(z)) and from (4.7) the
inequality in (v) is true. Now consider s(-z).z <-_ O, which corresponds
to ,(z) 0. Forz* 0, ,(z) 0 (Theorem 1) and (v) holds as an
equality; for z* O, the inequality in (v) follows from (4.1) which insures

Iz- Izl -ez. +el -I _-< Iz
If z* 0 the inequality in (vi) is trivially true. Consider now z* O.
If s(-z).z <- O, (vi) reduces to -2s(-z).z* + z* <- 0 which is true
by (4.3). The following identity is easily verified"

(-z) * s(-z) .(z)z + z I-(s(-z).z)

Assuming s(-z).z > 0 and
]z l-2(s(-z).z) =< z* . Thus

using s (-z). z

+ z* 2s(-z).z*.
--< zl’lz*l yields

(-z) z* <= I(-z) .(z)z + 2(I z* s(-z).z*)
and by (4.3) the inequality in (vi) follows.

In order to complete the proof of the theorem, the function

(.S) r(z) [z z* z z* + *. (z z*)
is introduced. For 0 ( K inequality (4.1) gives

(4.9) 0 -< Iz--z*l -< r(z), z K,

a result which is obviously true for 0 K. In the following paragraphs it
will be shown, that P(z)} is decreasing and r(z) - 0. By (4.8) and (4.9)
this proves (ii) and (iii). The remaining results in (iv) and (v) follow from
the known value of /(z*), the continuity of /(. ), and (iii).
For simplicity let

(4.10) a(z; ) r(z) r(z + (s(-z) z)),

and assume tacitly in what follows that z K. Then from (4.8),

(4.11) A(z;a) 2a( z 12 s(--z).z) a z s(--z)].
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Because the coefficient of a is not positive, minex(z) A(z; a) is attained
at one of the end points of I (z). It is readily shown that

(z; (z)) (z; (2 )(z)).

Thus from the definition of I(z),

f(z; (z)) if (z)=< -,
(4.12) min A(z;a) [A(z; 1) if (z) > -1.aEI(z)

Equation (4.12) is now used to obtain a lower bound on A(z; a), a I(z).
From (4.11) and (3.1) it follows that

(z; (z)) z s(-z)l-[z (z s(-z))]( ).(4.13)

Let

(4.14)
Zl,z2EK

denote the diameter of K and recall that 0 < 5 -< 1. Then

(4.15) A(z; (z) >= t-:[z (z s(--z) )]:.
From (4.8) and (4.6),

(4.16) F(z) --< 21z z* -+- 2z*. (z z*) <= 2z. (z s(--z)

(for z* 0 this may be sharpened to P(z) <= z. (z s(--z))). Thus

(4.17) A(z; (z)) =>. t-2F(z).
For (z) =>- 1, z. (z s(-z) >= z s(-z)l and consequently

A(z; 1) 2z.(z s(-z)) -Iz- s(-z)] _>- z.(z s(-z)).

Therefore (4.16) yields

(4.18) A(z; 1) => -F(z), (z) =>- 1.

Finally, utilizing (4.17) and (4.18) in (4.12) yields

(4.19) A(z; a)li( => rain {}tt-F(z), 1/2F(z)}.

Letting z z in (4.19), using (3.3), and returning to (4.10), it is seen
that

(4.20) r(z) r(z+) => min{-}-"tr"(z), 1/2r(z)} => 0.

Therefore the sequence {F (z)} is decreasing and, since it is bounded from
below by zero, has a limit point. Thus passing to the limit on the left side
of (4.20) gives zero and therefore from the right side Y (z) -- 0.

5. Nature of convergence. This section gives further results on the
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convergence of the iterative procedure. Theorem 3 establishes upper bounds
cn the elements of the sequences {I zk I} and {I zk z 1}. Several example
problems are analyzed to demonstrate still more fully the nature of con-
vergence. Finally, a few numerical results are given. Emphasis is on the
case 0 K, since it appears that it is most important in applications.
THEOREM 3. Let

(,.) 0o(1 + ,-a00z)-, 0o zo z* ,
and assume that Zo 12 <- z* - 2ta-1. Then if {zkl is generated by the
iterative procedure, the following inequalities hold for k >= O"

(.2) z =< v/o + I* ,
(5.3) z-z I_<_
The assumption on z0[ is often met in practice. For example, it is easily

shown that it must be satisfied if z* <- 1/2 2-1 1)g. In any case, z0 may
be interpreted as a suitable intermediate point in the iterative process, and
inequalities (5.2) and (5.3) may be used to estimate the subsequent rate
of convergence.

For z* > 0 and lc >= 1 inequalities (5.2) and (5.3) imply

(5.4) zk z*l < 2g z* -1-]c-1,
Z* 2#-1/]C-1/2,(5.5) z- <

results which conform closely to (5.2) and (5.3) for ]c sufficiently large. In
Examples i and 2, which appear later in this section, it is demonstrated that
within a constant multiplicative factor it is impossible to obtain bounds on

zk z*l and zk z which approach zero more rapidly than those
given in (5.4) and (5.5).

Proof of Theorem 3. Since z0 ]2 =< ]z* 12 -t- 2ti-1, it follows from the
previous section that F(zk) _--< F(z0) _--< 22i-1, ] _--> 0. From (4.20) thi
implies

F(zk+i) --<_ F(zk) t-2tiF(zk), / _>-- 0.

Since

for all r >__ O, it is possible to write

(5.6) F(zk+l) =< F(zk)(1 + g-tiP(zk))--1,

But substitution shows that Ok is the solution of
--2 --1

0k-4-1 Ok(1 + itOk)
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with 00 z0 12- z* 12 F(z0). Thus comparison of (5.6) and (5.7)
yields F(zk) =< 0k, l 0. Finally, (5.2) and (5.3) follow from (4.8) and

The complexity of the difference equation (3.3) makes it difficult to ob-
tain more specific analytic results than those obtained in Theorem 3. Thus
the remainder of this section is limited to the presentation and discussion
of three, somewhat specialized, example problems and a few numerical
results.
Example i. Take I and let K be the convex hull of three points in

2-space, (1, ), (--1, ), (0, 1 ), where 0. Clearly z (0, )
and z*] . Simple inspection shows that the iterative process is finite
(Zl z*) if and only if z0 is on the line segment connecting (1, u) and
(-1, ). Moreover when the process is not finite, zk, ]c >= 1, is determined

--1by the scalar Ck zk I(zk Thus the second order nonlinear difference
equation (3.3) may be replaced by a first order difference equation in k.
It is not difficult to show that

(5,8) Ck+l k(1 )(1 + ’k + 2k2)-1 /C > 1

For 1 this equation is approximated by k+l (1 - 2k)-1, an
equation of the same form as (5.7). These observations and some tedious,
but straightforward, computations lead to (the notation o() means

--1lim0 o() 0)

(5.9) z*l +
z (2])-1%//1 + 2 + o(]-).

Equation (5.9) demonstrates that it is impossible to obtain an upper
bound on z z* which approaches zero more rapidly than (const.)
For large/ the upper bound in (5.4) is conservative by a factor of sixteen.
This factor can be traced to two sources each of which contributes a factor
of four: in (4.15), t is an unsatisfactory estimate of zk s(-zk)l, in the
derivation of (4.6) the term y. (z* s(y)) has been omitted. For this
example the upper bound in (5.5) is a poor estimate because it is order
/c-1/2 rather than order/-1.

It is also possible to show that

(5.11)

(5.12)
z*l (z)l z (2pk)-1 -- o(]-1),
%/1 --’(z)lz tc-1/ + o(lc-1/)

By comparing (5.11) with (5.9) and (5.12) with (5.10) it is seen that in
Theorem 2, part (iv) provides a reasonably good stopping criterion while
(v) does not.
Example 2. Take ti 1 and let K be the convex hull of three points in
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3-space, (1, 0, ,), (--1, 0, ,), (0, 1, ), where > 0. Thus z* (0, 0, )
and z*l . The iterative process is much the same as in Example 1, the

--1points zk K, /c => 1, being determined by the scalar Ck z ](z
The first order difference equation for is (5.8) with , 0. By using the
fact that 0(1 + 40k)-/ is the solution of + (1 + 4)-1/

and that (1 + 4)/ 1 + 2 for 1, the following results cn be
derived"

(5.13) z z* (8)- + o(-),
(2/ - (-1/),(5.14) ]z-- z + o

(5.15) z* (z) z 3(8k)- + o(-1),

(5.16) i --(z)Iz (2k)-/ + o(-/:).

Equation (5.14) shows that the asymptotic behavior of z z
mtches the bound given in (5.5), except for a multiplicative factor of
eight. The bound given in (5.4) is conservative by multiplicative factor
of 64. Comparison of (5.15) with (5.13) nd (5.16) with (5.14) shows
that (iv) and (v) of Theorem 2 both provide reasonable stopping criteria.
Example 3. Tke 1 and in n-spce let

1 ix2--I
Z(5.17) K= {zz + (z)h 2,}, ,,h,...,X>0.

i2

In the neighborhood of z* (, 0, 0, ..-, 0), OK is the elliptic hyperpa-
raboloid

1 (z)h

where , h re the principal rdii of curvature t the vertex z*. For
mny convex sets K, OK in the neighborhood of z* my be closely pproxi-
mted by such an elliptic hyperprboloid. Thus this example is of more
general interest thn the previous examples.
Fory < 0nd

kY i(Y) < ,
2 i----2

it is easy to show that

1 -, -2(Y) h(y:)
(5.1s)

\--1.
s (y) i ,...(y) hiy,

Let max,=:...... {h} and assume the conditions
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(5.19)

are satisfied, which in turn imply

1 (yl)-2(y)2 < ,.
2 i-2

Thus (5.19) defines a set on which (5.18) is valid. Using this fact, z =>
for z K, and (3.1)gives

(5.20)

(z) ((z--)-f (z--)A-
i=. (1 + l(zl)-lh) (z)

(z- )+ 2 [ + (z)-x + (z)-x + (z)-x’]

(5.21)

(z) >

z #z*,z K, Iz < .
( ) + ()

i-2

5 X--2 p--2(Z1 p)2 .. (1 -- XP-1 + E (Zi)
i--2

=t, z # z*,z K, z < .->- 5 X-2 -21 +X- +
Because (z*) 0 this inequality implies that (z) is discontinuous on K
at z
By starting with (4.13) and repeating the derivation of 4 with

[z. (z- s(-z))]lz- s(-z)l- (z) _-> ,
it can be shown that

(5.22) F(zk+) =< r(z)(1 1/2_), z Z*.
For z z*, F(z+l) 0 and (5.22) is trivially true. Thus

F(z) =< F(Zo)(1--1/2ti), k->_ 0, Zo K, Zol <i’.

Using (4.8) and (4.9) this leads to

(5.23) zk z* =< 1/2 -0o (1 1/2ti),
k/2(5.24) z z* < %//; (1 ti)
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TABLE 1

Number of iterations to satisfy error criteria

First column" first k for which zkl z* <=
Second column: first k for which z* "(zk)l z <=

Case

X...

10-3
10-
10-5
10-6

3
5
5
5

28
31
38
41

20
27
30
37

100

100

59 18
59 35
74 58

111 58

1000

1000

216 83
250 88
290 162
340 215

100

27
52
73
81

14
26
51
51

229
267
298
359

1000

82
125
167
218

where 00 is given as before in (5.1). Since > 0 inequalities (5.23) and
(5.24) guarantee that the convergence of {1 zk ]} and {] zk z ]} is geo-
metric. However, the guaranteed rate of convergence is not rapid if a3 << 1,
i.e.,
Table 1 presents some numerical results for Example 3, 1, n 3,

and z0 (6, 2, 2). Similar results are obtained for different z0. The extent
of K has been increased beyond z* 2 so that (5.18) is valid even though
(5.19) is violated. Note that convergence is slow when << X. Although
the bounds derived in the preceding paragraph follow the same pattern it
may be concluded from Table 1 that they are not sharp estimates of actual
convergence rate. Better estimates than (5.23) and (5.24) have been ob-
tained but their derivation is too lengthy to present here. It is interesting
to note that Cases 3 and 4 exhibit rates of convergence which are respec-
tively similar to Cases 5 and 6. Thus /X seems to be the key parameter
while X3/X2 has little effect. This is not true when the gradient method of
the next section is used (},3 >> X2 corresponds to a "ridge" of f(y)).

Fig. 2 shows the details of Case 5. The irregularity of the sequences
shown is typical. Various methods for accelerating convergence (based on
different rules for selecting a I (z), the results of the next section, etc.)
are being investigated and will be reported in a later paper.

6. Relation to a gradient method. The iterative procedure described in
the preceding sections is related to gradient method, which is similar in
pproch to certain gradient based methods which have been proposed
for the solution of a vriety of problems in optimal control [2], [4], [9],
[10], [11]. The purpose of this section is to illustrate both the differences
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10-

I0 20 30 40 50 60 K

FI(. 2. Numerical results for Case 5of6: (A) Izkl Iz*l, (B) zk-- z’I, (C)
z* mxi<= zi I’(z). For k <= 14, z z* --- z/ z* I.

and strong connections between the two approaches. For brevity the
developments which follow are presented somewhat superficially and
without proof.
THEOREM 4. Assume 0 K and let J {y y.s(-y) > 0}. Then for

y J the scalar function
(6.1) f(Y) Y 1-2(y’s(-y)) "r(Y)l Y
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is defined and has the following properties"

(i) 0 <f(y) <= ]z*l,
(ii) f(y) z*l if and only if y

Further assume that K is strictly convex. Then"

(iii) s(-oz*) z > O,

(iv) the gradient of f(y) exists and is given by

Vf(y) Y I-ls(--Y) ]Y I-3(Y "s(-y))y,
(v) Vf(y) 0 if and only if y pz*, p > O.

Theorem 4 forms the basis for the gradient method. A sequence of vectors
yk} is generated by

(6.2) yk+l yk + aVf(y), y0 J.

If K is strictly convex, 0 K, and the positive numbers a are appropri-
ately chosen, it can be shown that yk J, ] >= 0,/f(Y)} is increasing, and.
yk -- pz p > 0, for k -- . Strict convexity of K also assures that s(y)
is continuous on J. This, s(y) s(y) for > 0, and solution property
(iv) (2) guarantee that /s(-y)} is an approximating sequence for z

Z
$

i.e. s(--yk) -- Disadvantages of the gradient method, relative to the
procedure of 3, are" K must be strictly convex, methods for choosing the
values of a: may be cumbersome and time consuming, the selection of a

y0 in J may be difficult. On the other hand it is conceivable that the gradi-
ent method may yield more rapid convergence, particularly when variations
of (6.2) are employed.

Consider now a modified version of the gradient method. Since from
(iv) of Theorem 4, Vf(p-y) pVf(y), p > 0, the difference equation

(6.3) z+l p+lp-[(zk + o’p2Vf(zk)), Zo Yo C J,

with p0 1 and p > 0,/ > 0, yields a sequence {z} such that z py,
/ => 0. Thus s(-y) s(-zk), k >= O. By letting

I-1(1 (z))]

(6.4) ak o-pp+ ]z ]-1, ]c >= O,

it is easy to show that (6.3) becomes (3.3). Thus if z0 K 1 J, (3.3)
realizes the modified version of the gradient method, where the selection
rule for ak is (6.4) rather than (3.4). If the a as obtained from (6.4)
happen to be in I(z), lc >= O, then all the results of Theorem 2 follow; in
particular {z}, whose elements are in K, is also an approximating sequence.
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In any case the iterative procedure described in 3 takes "steps" in the
same direction as those indicated by the modified gradient method. The
"step size" prescribed by (3.4) may be much larger than that prescribed
by (6.4). Thus with (3.4) the sequence/f(zk)} is not necessarily increasing.

7. Extension to more general quadratic forms. The iterative procedure
for the Basic Problem can be extended without great difficulty to the
general problem"
GP. Given C, a compact convex set in E", and the quadratic form

(7.1) q(x) Ix la d- g.x,

where Ix I x.Gx, G is a symmetric nonnegative definite m X m matrix,
and g is an m-vector in the range of G, find a point x* C such that

q (x*) q* min q (x).

Clearly a solution x* exists. In order to obtain its essential properties
and derive the iterative procedure it is convenient to write q(x) as

(7.) q(x) Hx a + qo,

where H is an n X m matrix, n rank G, G H’H (the’ denotes matrix
transpose), a 1/2 (HH’)-IHg or equivalently g 2H’a, and

q0 lal minq(x).
xE Em

The existence of such a representation is a consequence of the hypotheses
in the statement of GP. Introducing the set K /z z Hx d- a, x C1
it is clear that

(7.3) q* rain z [2 d- q0 z* + qo,
zK

where z* is defined as before. Furthermore since z* K is unique it follows
that F {xlHx + a z x C} is the set of all solutions of GP. Since
F may sometimes contain more than a single point, x* is not necessarily
unique.
The iterative procedure for GP is developed from the results of 3 by

noting that for every point x C there is, by means of

(7.4) z Hx + a,

a corresponding point z K. Thus, for example,

max y.z max y. (Hx + a) sc(H’y).H’y + y.a y. (Hs(H’y) + a),
zEK E C

where so(. is a contact function of C. Therefore a contact function of K is

(7.5) s(y) Hsc(U’y) d- a.
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Using this result and H’(Hx -- a) Gx + 1/2g, it is further seen that the
equation

(7.6) x+ x + (s(-Gx 1/2g) x)

when transformed by (7.4) yields the same sequence as (3.3). Hence if
ak I(Hxk A- a) and x0 C, (7.6) yields a sequence {xd with elements
in C such that q(xk) converges downward to q*. This and other results are
summarized in the following.
TUEORE 5. Let so(. be a contact function of the set C specified in GP.

Define
(7.7)

(7.8)

(7.9)

(7.10)

(7.11) x+=x+(s(-v)-x), xoC, I.
By means of (7.11) generate {x}. Then >= O, t > 0; and 0 implies
x F. Furthermore, for t >= 0 and t -- "(i) xkC,

(ii) q (x) is decreasing and q (x) ----> q

(iii) there is a convergent subsequence of {x} and every convergent subsequence

of x} has its limit point in F,
(iv) ")’k2q(x) + (1 3,:)qo <= q* and 2q(x) + (1 2)qo q*,
(v) x--2la (1--,)(q(x)--qo) for all 2 F and

(1 v)(q(x) qo) O,
(vi) sc(--v) 21o N sc(-v) xlo + (1 )g.(sc(--v)
x (1 qo for all 2 F.

Proof. Part (iii) follows from (i), (v), the definition of F, and the com-
pactness of C. The remaining parts follow from Theorems 1 and 2 by
straightforward substitutions.

If C is strictly convex and q* > q0, the upper bound in (vi) converges
to zero and {sc(--v)} serves as an approximating sequence (see remarks
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after Theorem 2). Also the results of 5, 6 may be extended in an obvious
way. For most applications the hypothesis that g is in the range of G holds.
When it does not hold, by a different line of attack it is still possible to
derive a theorem similar to Theorem 5.
The approach taken by Frank and Wolfe [6] to the concave programming

problem can be extended to give a direct proof of (i), (ii), and (iii) of
Theorem 5. A lower bound for q(xk) is also obtainable but it is not as sharp
as (iv).

8. Application to problem in optimal control. Consider the dynamical
system

(8.1) 2 A(t)x + f(u(t);t), x(O),

where x is the m-dimensional state vector, 2 is its time derivative, x(0) is
the initial state; u(t) is an r-dimensional vector control function, admissible
if measurable on the control interval [0, T], 0 < T < , with range in a
compact set U; A (t) is an m X m matrix function continuous on [0, T];
f(.;.) is an m-dimensional vector function defined and continuous on
U X [0, T]. For every admissible control u(t) there is an absolutely con-
tinuous solution function, x(t)(t)= x(t), which satisfies (8.1) almost
everywhere in [0, T]. It is desired to find an admissible control u*(t) such
that q (x, (T)) q* <- q (x (T)) for all admissible controls u (t), where
q(. is prescribed in GP, 7. This optimal control problem has a number
of practical applications [1].
Under the conditions just stated, Neustadt [12] has shown that the set

C {xlx xu(T), u(t) admissible}

is compact and convex. Thus if a method for evaluating a contact function
of C exists, the iterative procedure of 7 can be used to obtain approxima-
tions for x, (T) x* and q*.
To obtain a contact function of C, so(" ), note that

(8.2) w.x(T) (0; w).x(O) + (z; w)f(u(z); z) dz,

where b(t; w), defined on [0, T] X E, is the solution of the adjoint differ-
ential equation

(8.3) -A’ (t), (T) w.

d
Equation (8.2) follows from (8.1) by integrating d ((t;w).x,(t)).

Suppose there exists an admissible control u(t; w) such that almost every-
where in [0, T],
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(8.4) (t; w).f(u(t; w), t) max (t; w).f(, t).

Then from (8.2) it is clear that w.x(t; o)(T) >-_ w.xu(t)(T) for every
admissible control u(t). Thus from the definition of C a contact function
of C is

(8.5) s(w) x(; (T).

This result agrees with the well-known fact that boundary points of the
reachable set C must "satisfy" the Pontryagin maximum principle. For
all but the most elementary systems (8.1), so(. is the only reasonable
means for numerically characterizing the set C.

In most practical problems it is not difficult to obtain a function u(t;w)
which satisfies (8.4). Consider, for example, the case wheref(u; t) B (t) u,
B(t) is an m X r matrix function continuous on [0, T], and U is the
unit hypercube {u lull =< 1, i 1, ..., r}. Notice that (8.4) may not
uniquely define u(t; w) almost everywhere in [0, T]; suppose for instance
that in the example of the preceding sentence B’ (t)(t; w) has at least one
component which is identically zero on [0, T]. This is of no concern, since
different choices for u(t; w) will at most lead only to different contact
functions of C. Previous computational procedures [2], [4], [9], [10], [11]
have required assumptions which correspond to a unique determination
of. u(t; w) by (8.4). Such "unique maximum" assumptions imply strict
convexity of C.
Computer evaluation of so(. entails three steps: evaluation of (t; w)

by solving (8.3) backwards from -: T to 0, determination of u(t; w)
from (t; w) by (8.4), solution of (8.1) with u(t) u(t; w) from t= 0
to T. Thus when the iterative procedure is applied to the optimal
control problem each iteration involves the sequential solution of two
differential equations. This situation is handled efficiently by a hybrid
computer which includes both digital and analog elements.
The details of applying the iterative procedure should be clear. There is

no difficulty in choosing x0 C, it is only necessary to set x0 x0(T)
where u (t) is an arbitrary admissible control. In the sense of Theorem 5,
{xk} and lq(xk)} (and if C is strictly convex and q* > q0, /sc(-v)} and
{q(sc(-v))}) re approximating sequences and error bounds may be
computed.
The issue of finding admissible control functions corresponding to x or

sc(-v) remains. The control corresponding to sc(-vk) is u(t; -v), i.e.
sc(-v) x(t;-v)(T).

Finding an admissible control which produces the terminal state x is
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more difficult. From (7.11) it follows that
k--1

+ x 0,
i-----1

where )i (}, 0 < i </c, and - },i 1. Suppose uk(t) is an admissible
control such that almost everywhere in [0, T],

k--1

f(uk(t), t) f(u(t; --v); t) + hof(u(t) t).
i=l

Then from the form of (8.1) it may be deduced that xuk(t)(T) x. If for
all [0, T] the sets f(U; t) are convex such a choice is possible. If this is
not the case an additional approximation process, the construction of
chattering control, is necessary [1]. For f(u, t) B(t)u and U convex it
follows that

u (t) x u(t; +  ouo(t)
i=l

or equivalently

U+l(t) u(t) + a[u(t, --v) u(t)], i 0, ...,/c 1.

For additional details on application of the iterative procedure to a
variety of problems in optimal control, see [1].
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