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Linear Systems with State and Control Constraints: 
The Theory and Application of Maximal 

Output Admissible Sets 
Elmer G. Gilbert, Fellow, IEEE, and Kok Tin Tan, Student Member, IEEE 

Abstract-The initial state of an unforced linear system is 
output admissible with respect to a constraint set Y if the 
resulting output function satisfies the pointwise-in-time condi- 
tion At)  E Y ,  t 2 0. The set of all possible such initial condi- 
tions is the maximal output admissible set 0,. The properties of 
0, and its characterization are investigated. In the discrete-time 
case, it is generally possible to represent O,, or a close approxi- 
mation of it, by a finite number of functional inequalities. 
Practical algorithms for generating the functions are described. 
In the continuous-time case simple representations of the maxi- 
mal output admissible set are not available; however, it is shown 
that the discrete-time results may be used to obtain approximate 
representations. Maximal output admissible sets have important 
applications in the analysis and design of closed-loop systems 
with state and control constraints. To illustrate this point, a 
modification of the error governor control scheme proposed by 
Kapasouris, Athans, and Stein [6] is presented. It works as well 
as their implementation but reduces the computational load on 
the controller by several orders of magnitude. 

I. INTRODUCTION 

N this paper, we are concerned with characterizing those I initial states of an unforced linear system whose subse- 
quent motion satisfies a specified pointwise-in-time con- 
straint. Such characterizations have important applications. 
Consider the following example. A linear discrete-time time- 
invariant plant is given together with a linear control law 

x ( t  + 1) = A x ( t )  + B u ( t ) ,  U ( t )  = K x ( t ) .  (1.1) 

In addition, there may be physical constraints on either or 
both the state and the control variables or on linear combina- 
tions of them. If the constraints are violated for any t serious 
consequences may ensue, for example, physical components 
may be damaged or saturation may cause a loss of closed-loop 
stability [1]-[3]. By an appropriate choice of matrices C and 
D and a set Y ,  all constraints of the type mentioned may be 
summarized by a single set inclusion 

c x (  t )  + Du( t )  E Y .  (1.2) 
Typically, the set Y is convex and contains the origin. For 
instance, it may be a polytope or a product set of balls 
associated with various norms. With (1.1) and (1.2) speci- 
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fied, it is desired to obtain a safe set of initial conditions, i.e., 
a set Z such that x(0) E Z implies (1.2) is satisfied for all 
integers t L 0. 

The problem just cited, as well as many others of practical 
interest, can be stated equivalently as a problem involving an 
unforced linear system with pointwise in time output con- 
straints. Specifically, we are given a triple, A E &? n x n ,  

C E &? p x  ', and Y C 9? p ,  and are to determine if the motion 
of the discrete-time system 

x ( t  + 1) = A x ( t ) ,  x ( t )  E g n ,  y ( t )  = C x ( t )  (1.3) 

satisfies the output constraint 

Y ( t )  E y (1.4) 

for all t E ,a+, where 9+ is the set of nonnegative integers. 
Problem (1.1)-( 1.2) fits this format by making the assign- 
ments A + B K + A ,  C + D K + C , a n d  Y +  Y .  

To assist our subsequent discussions, we introduce some 
terminology. The state constraint set associated with A ,  
C ,  Y is 

X ( C ,  Y )  = { X €  gfl: CXE Y } .  (1.5) 

A set Z c &? is A-invariant if AX C Z; it is A ,  C ,  Y 
output admissible if CA'Z C Y for all t E 9+. In the future 
we may omit specific reference to A ,  C and Y in these and 
other situations, when by context it causes no confusion. The 
same ideas and terminology extend to the following continu- 
ous-time system and output constraint: 

x ( t )  = A x ( t ) ,  x ( t )  E &?n, y ( t )  = C x ( t )  E Y ,  

t l t e  9?+ (1.6) 

where &?+ is the set of nonnegative reals. In the definition of 
output admissible it is required that CeA'Z C Y for all 
t E &?+. 

If Z is output admissible and x(0) E Z ,  x(0) is a safe 
initial condition in the sense that (1.4) is satisfied for all 
t E 9+ (discrete time) or for all t E 9?+ (continuous time). 
Output admissible sets have many important applications in 
the areas of stability analysis and controller design. They 
have appeared before in a variety of contexts, often without 
explicit mention. See, e.g., [3]-[13]. 

Much of the prior literature is based on the idea of 
positively invariant sets. A set Z C 9? is positively in- 
variant for a dynamical system s, if for every initial state 
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x(0) E Z, the subsequent motion x( t ) ,  t > 0 belongs to Z. If 
Z is positively invariant and Z C X ( C ,  Y), it is obvious that 
Z is output admissible. This observation has been used in 
several different contexts to produce output admissible sets 
[3], [9]-[13]. Assume, as is common in these papers, that S 
is the discrete-time system x(  t + 1) = Ax( t ) ,  A is asymp- 
totically stable, and X is a polyhedron containing the origin 
in its interior. Use ' to denote matrix transpose. Let V( x) = 
x' Px be a Lyapunov function for the system (1.3), generated 
by solving A'PA - P = - Q, where Q' = Q > 0. Then 
P' = P > 0 and it is clear that [ 141 the set W = { x E 2 n :  

V( X) 5 c } ,  c > 0, is positively invariant. Clearly, c may be 
selected so that W C X and W is output admissible. Even if 
c is maximized subject to W C X ,  this approach is likely to 
be very conservative in the sense that much larger output 
admissible sets exist. The difficulty is that the ellipsoid W 
may not fit tightly into the polyhedron X [3]. This has led to 
the consideration of conditions which imply that a specified 
polyhedral set W is positively invariant [9]-[13]. The condi- 
tions have been applied with special assumptions on C ,  D, 
and Y to closed-loop systems of the form (1. l ) ,  (1.2). This 
leads to techniques for finding K such that (1.1) is asymptot- 
ically stable and (1.2) is satisfied for all initial conditions in 
W.  For the techniques to work the prespecified W must be 
sufficiently small and, as is the case with ellipsoidal W ,  much 
larger sets of safe initial conditions may exist. 

It is worth noting that the approaches taken in [9]-[13] 
apply to discrete-time systems, but not to continuous-time 
systems. The reason is apparent: for discrete-time systems, 
positive invariance of Z is equivalent to A-invariance of Z. 
Thus, the positive invariance required in the various develop- 
ments of the papers is expressed simply in terms of the 
algebraic properties of A .  The situation for continuous-time 
systems is certainly more complex: Z is positively invariant 
if and only if Z c eA'Z for all t E gR+. 

As a final point of interest, it is easy to give examples of 
output admissible sets which are not positively invariant; 
such sets have received little if any attention in the literature. 

This paper departs from past lines of research in that it is 
concerned with the investigation of maximal output admissi- 
ble sets. For the discrete-time and continuous-time systems 
these sets are defined, respectively, by 

(1.7) 
and 

O , ( A , C ,  Y) = { X E  g': CA'XE Y V t E J + )  

O : ( A , C ,  Y )  = { X E  g': CeA'xE Y VtE 2 + } .  (1.8) 
Our emphasis will be on the discrete-time case because of its 
relative simplicity and the susceptibility of 0, to algorithmic 
determination. However, we shall also examine the relation- 
ship between O,(eAT, C ,  Y) and O;(A, C ,  Y) where T E  
&+. As T + 0 the first set approximates the second set, a 
result which allows us to apply discrete-time computational 
techniques to continuous-time systems. References to maxi- 
mal output admissible sets have appeared previously in con- 
nection with several nonlinear feedback control scheme which 
take into account control and state constraints; see [15] for 
the discrete-time case and [6]- [8] for the continuous-time 
case. 

We have introduced 0, and 0: in the context of output 
admissibility because of the close connection between output 
admissibility and the way in which physical constraints are 
expressed. It is also possible to introduce 0, and 0: in the 
context of positively invariant sets. From (1.7) and (1.8) it 
may be verified that if 0, and 0: are not empty they are 
positively invariant. Thus, over the class of positively invari- 
ant subsets of X ( C ,  Y) they are maximal. To our knowl- 
edge, such maximal positively invariant sets have not been 
studied previously. 

The results of this paper are organized in the following 
way. Section I1 deals with basic issues concerning the dis- 
crete-time case: Y-dependent properties of Om, the determi- 
nation of 0, by a finite number of operations, the characteri- 
zation of Y and 0, by functional inequalities, simplifica- 
tions which occur when C, A is unobservable and/or A is 
unstable. A condition for finite determinability, which is 
given in Section 11, leads to algorithmic procedures for the 
computation of 0,. These procedures are presented along 
with some simple examples in Section 111. In Section IV it is 
shown that 0, is finitely determined i f  A is asymptotically 
stable, the pair C ,  A is observable, Y contains the origin in 
its interior and is bounded. If A is only Lyapunov stable, it 
often follows that 0, is not finitely determined. However, if 
the only characteristic roots of A which have unit magnitude 
are at X = 1, an approximation of 0, is finitely determined. 
These matters are taken up in Section V. Section VI treats 
continuous-time systems and proves the approximation result 
mentioned above. In Section VI1 some additional conditions 
on Y ,  called the Minkowski assumptions, are considtred. 
With these assumptions some of the results of the previous 
sections are strengthened. In Section VI11 we introduce a 
modification of the error governor control scheme of [6] 
which is based on 0, rather than 0:. An example applica- 
tion shows that it is simple, fast, and effective. Section IX 
contains some final remarks. 

The following notations and terminology will be used. The 
identitymatrixin 2"" is I,,. Let  YE 9?, r e  @, X E  9?', 
A E 9? m x n ,  and Z, Z,, Z, c 2 ". Then: xi is the ith com- 
ponent of x ,  I I X I J  = Jm, I I A I I  = rnax{IIAxII:IlxIl 
= l } ,  S(r) = { x :  JIxI( I r}, a Z  = { a x :  X E Z } ,  - Z = 
(-l)Z, Z, + Z, = { x l  + x,:  xl E Z , ,  x,EZ,}. Z is 
symmetric if Z = -Z.  The boundary and interior of Z are 
denoted, respectively, by bdZ and int Z. The product set of 
Z with itself k times is Zk.  

We assume hereafter that 0 E Y. This assumption is satis- 
fied in any reasonable application and has nice consequences. 
In particular, 0, and 0: are nonempty and contain the 
origin. 

11. BASIC RESULTS FOR THE DISCRETE-TIME CASE 

Imposing special conditions on Y often imposes corre- 
sponding conditions on 0,. Some implications of this type 
are summarized in the following theorem. 

Theorem 2.1: 
i) Each of the following properties of Y are inherited by 

0,: closure, convexity, symmetry. 
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ii) Suppose C ,  A is observable and Y is bounded. Then, 
0, is bounded. 

iii) Suppose A is Lyapunov stable (the characteristic roots 
of A satisfy the following conditions: I hi( A )  I I 1, i = 
1; a ,  n,  and I h i ( A )  I = 1 implies hi (A)  is simple) and 
0 E int Y .  Then, 0 E int 0,. 

iv) Let  cy^ g. Then O,(A,C,  a Y )  = a O , ( A , C ,  Y ) .  
Proof: The results in i) are easily verified from the 

H' = [C' A'C' ... (A')"-'C'] E g n x n p  

The observability assumption implies that H has rank n. 
Thus, if Hx = z has a solution, the solution is unique and is 
given by x = H t z  where Ht = ( H ' H ) - ' H ' .  Define 

O , ( A , C , Y )  = { x E & " n : C A k x E Y f o r k = O ; . . , t } .  

definition of 0,. To prove ii) define 

(2.1) 

Clearly, 0, C ON- ,  = { x :  H X E  Y " }  = H t  Y " .  Since Y 
is bounded, so is H i  Y " .  Thus, ii) follows. The assumption 
of Lyapunov stability in iii) implies that there exists a con- 
stant yt > 0 such that for all x E LJ? and t E y+, I (  CA'x \ (  
5 y, I (  xII. Choose y2 > 0 so that S(y2) C Y .  Then, y I  11 x I I  
5 y2 implies CA'x E Y for all t E 9+. Hence, S(y, /y,) C 
0, and 0 ~ i n t  0,. Result iv) is obvious for cy = 0, so 
assume cy # 0. Then, O,(A, C ,  a y )  = { x :  CA'cy - 'x~  Y 
v t  E 9'} = { cy (a - 'x ) :  cA'(cy- 'x)  E Y V t  E S'} = 
cyO,(A, c, Y ) .  0 

Remark 2.1: The identity in iv) shows that 0, is scaled 
in direct proportion to the "size" of the output constraint set. 
There is no change in its shape. 

Obviously, the set Of( A ,  C ,  Y )  satisfies the following 
condition: 

0, C Of2 C 0,, v t , ,  t ,  E 9+ such that t ,  I t , .  (2.2) 

We say 0, is finitely determined if for some t EY', 
0, = 0,. Let t* be the smallest element in 9+ such that 
0, = Ot*. We call t* the output admissibility index. From 
(2.2) it follows that 0, = 0, for all t 1 t*. 

Theorem 2.2: 0, is finitely determined if and only if 
0, = O,+ , for some t E 9+. 

Proof: If 0, is finitely determined the equality holds 
for and t 1 t*. From 0, = 0,+1 it is easily confirmed that 
x E 0, implies that Ax E 0,; thus, 0, is A-invariant. Also, 
0, C X .  Hence, 0, is output admissible and 0, C 0,. 

0 
Finitely determined maximal output admissible sets gener- 

ally have a simpler structure than those which are not. 
Moreover, they can be obtained by finite recursive proce- 
dures. These matters, and conditions which imply finite 
determinability, are discussed in subsequent sections. 

Next, consider the situation where Y is defined by func- 
tional inequalities: 

Y =  { y ~ g ~ : f ~ ( y )  1 0 , i =  l ; .* ,s} .  (2.3) 

Property (2.2) completes the proof. 

Under what circumstances is 0, defined in a similar way? 
Theorem 2.3: Suppose A is Lyapunov stable and that for 

i = 1 ,  * * e ,  s the functions f i :  !% + 9 are continuous and 

satisfy f j (0 )  I 0. Then: i) the functions g i :  g " --* g given 
bY 

g i ( x )  = sup { f , ( C A ' x ) :  t E Y + }  (2.4) 

are defined, ii) 0 E 0, and iii) 

Proof: Let x E .!2 '. Using the notation defined in the 
proof of Theorem 2.1, it follows that for all t E Y'+, CA'X E 
S(y l  (1 X I ( ) .  Thus, by the compactness of S and the continuity 
of the f j ,  the sequence f i (CA'x) ,  t E 9+, is bounded from 
above. Therefore, the supremum in (2.4) is defined for all 
X E  g". Results ii) and iii) are a direct consequence of 

0 f j ( 0 )  I 0 and the definition of 0,. 

0, = { X E  g": f i (CA'X) I O ,  

When Y is given by (2.3) and 0, is finitely determined 

i ~ { l , - * * , ~ } ,  t E { O ; * - , t * } } .  (2.6) 

Not all of the s * ( t*  + 1) inequalities in (2.6) may be active 
in the sense that there exists and x E 0, such that f j (CA'x)  
= 0. The active inequalities have a special structure which is 
given in the following theorem. 

Theorem 2.4: Suppose 0, is given by (2.6). Then there 
exists a nonempty set of integers S* c { 1 , .  . * , s} and in- 
dexes t', ~ E S * ,  such that i) t* = max { t ,: i E S * } ,  

ii) 

0, = { X E  g ' " : f i ( c ~ ' x )  I 0 ,  i E S * ,  tE {o;.., t ? } }  

(2.7) 

iii) for all iES* and t E (0 ;  e ,  ti*} there exists and 
X E  0, such that f i (CA'x)  = 0. 

Proof: Let S* = { i :  3 t E { 0,  - -, t*} and x E 0, such 
that f j (CA'x)  = 0 ) .  If i # S* it follows that f j  is inactive in 
(2.6), i.e., f i (CA'x)  < 0 for all t E ( 0 ,  * * , t*}  and x E 0,. 
For i E S * ,  define t? = rnax{tE{O;..,t*}: 3 ~ ~ 0 ,  such 
that f , (CA'x)  = 0} . Then it is obvious that (2.7) holds. 
Result iii) follows from (2.7) and the definition of t'. 
Clearly, there exists X E  0, such that f i ( C A t f x )  = 0. This 
implies f i (CAt?- 'x( t ) )  = 0, t = O,..., t?, where x ( t )  = 

0 
Remark 2.2: Suppose there exists an i E { 1, * a ,  s} such 

that f i (Cx)  < 0 for all x EX(C, Y ) .  Then it is obvious that 
i#S*.  Even when such trivial situations are excluded, it is 
possible that S* # { 1 ,  - * a ,  s} . Consider, for instance, the 
example: n = p = 1, A = [-0.81, C = [l], f l  = y - 1 ,  
f, = - y  - 2 then S* = (1) and t: = t* = 1 .  

Remark 2.3: Result iii) states that all the inequalities in 
(2.7) are active. This does not exclude the possibility that 
some of the inequalities may be redundant in the sense that 
they can be removed from (2.7) without destroying the 
characterization of 0,. For example, redundant inequalities 
in (2.3) lead to redundant inequalities in (2.7). If such 
redundant inequalities are excluded, it is still possible to give 
examples where there are redundant inequalities in (2.7). 
However, these examples appear to be structurally unstable, 
i.e., small changes in A ,  C or the f i  eliminate redundant 

A'x. By (1.7), x( t )  E 0, for all t ~9+. 
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inequalities. Thus, from a practical point of view it appears 
that (2.7) offers the most economical representation of 0,. 

Remark 2.4: Because of Theorem 2.4, (2.4) and (2.5) can 
be replaced by 

(2.8) g i ( x )  = max{f,(CA'x): tE { O ; . . ,  t:}} 

and 

0, = { X E  g n :  g i ( x )  5 0 ,  ~ E S * } .  (2.9) 

These simplification in (2.4) and (2.5) are valuable in control 
applications where it is necessary to have an efficient compu- 
tational procedure for testing whether or not x E 0,. 

A change in state coordinates for the system (1.3) produces 
a simple transformation of 0,. To see this let U E &? be 
the nonsingular matrix which describes the change in coordi- 
nates. Then it can be verified from (1.7) that 

Om( A ,  C ,  Y )  = UOm( a, e, Y )  

where 2. = CU, A" = U-'AU.  (2.10) 

Because of this relationship, we shall feel free in our subse- 
quent derivations to express the pair C ,  A in whatever 
coordinate system seems most natural. This path is accept- 
able for both theoretical developments and the computation 

The most obvious application of this idea is to unobserv- 
able systems. Choose the coordinate system in the usual way 
[16] so that C ,  A has the form 

of 0,. 

- 

C =  [C1 01, A = 1;: 12] (2.11) 

where C ,  E 9 p x m ,  A ,  E 9 m x m ,  A ,  E 9(n-m)x(n-m) 7 A3 
E g ( n - m ) x m  and the pair C , ,  A ,  is observable. The appli- 
cation of (1.7) then shows that 

O , ( A , C ,  Y )  = O , ( A , , C , ,  Y )  x gn-'". (2.12) 

Thus, 0, is a cylinder set whose determination depends only 
on the triple A , ,  C , ,  Y .  Stated in a coordinate-free way, 0, 
is a cylinder set which has infinite extent in those directions 
which belong to the unobservable subspace. Another conse- 
quence of (2.12) is the necessity of the observability condi- 
tion in result ii) of Theorem 2.1 

Finally, we consider systems (1.3) which are observable 
but have divergent motions. Define L = { X E  g n :  the se- 
quence A'x, t E Y + ,  is bounded}. Clearly, L is a linear 
space. It is determined by the direct sum of the invariant 
subspaces of A which are associated with those eigenvalues 
that satisfy I hi( A )  1 < 1 ,  together with the span of the 
eigenvectors of A which correspond to I hi( A )  I = 1 .  We 
will not dwell on the details, but it is possible to determine a 
basis for L numerically from the real Schur form [17] of A .  
Let m = dimension of L. Choose a basis for g n  in the 
following way: let the first m basis vectors be a basis for L ,  
let the remaining n - m basis vectors be a basis for the 
orthogonal complement of L. In this basis it is easy to see 
that the pair C ,  A has the form 

where A ,  E 9 m x m  is Lyapunov stable and CA'x diverges 
on Y+ unless the last n - m components of x are zero. 
Now assume Y is bounded. Then it is obvious that 

O , ( A , C ,  Y )  = O m ( A l , C , ,  Y )  x ( 0 ) .  (2.14) 

A coordinate-free interpretation of (2.14) is that Om C L.  
Remark 2.5: With respect to the determination of 0, the 

consequences of the preceding two paragraphs are clear. It is 
possible to successively eliminate from the representation of 
C ,  A the "unobservable" and "divergent motion" sub- 
spaces. Hence there is no loss of generality in restricting our 
attention to systems which are observable and (if Y is 
bounded) Lyapunov stable. This observation is important 
because several of our key results depend on the assumptions 
of observability and Lyapunov stability. 

111. THE ALGORITHMIC DETERMINATION OF 0, 

Theorem 2.2 suggests the following conceptual algorithm 

Algorithm 3.1: 
Step 1: Set t = 0. 
Step 2: If O,,, = 0,, stop. Set t* = t and 0, = 0,. If 

0, + , # O,, continue. 
0 

Clearly, the algorithm will produce t* and 0, if and only 
if 0, is finitely determined. There appears to be no finite 
algorithmic procedure for showing that 0, is not finitely 
determined. Fortunately, as subsequent developments show, 
it is often possible to resolve the issue of finite determination 
by other means. Algorithm 3.1 is not practical because it 
does not describe how the test O,,, = 0, is implemented. 
The difficulty can be overcome if Y is defined by (2.3) and 
the hypotheses of Theorem 2.3 are satisfied, for then Step 2 
leads to a set of mathematical programming problems. 

for determining t* and 0,. 

Step 3: Replace t by t + 1 and return to Step 2. 

Algorithm3.2: 
Step 1: Set t = 0. 
Step 2: Solve the following optimization problems for 

i = l ; . . ,  s: 

maximize Ji( x) = fi( CA'+'x) ( 3 4  

subject to the constraints 

f j ( C A k x )  5 0 ,  j = l ; . . ,  S ,  k = O ; . . ,  t .  (3.2) 

Let J: be the maximum value of Ji(x). If J: 5 0 for 
i = 1 ; * - ,  s, stop. Set t* = t and define 0, by (2.6). 
Otherwise, continue. 

0 
Remark 3.1: After Algorithm 3.2 has terminated, it is 

possible to obtain S* and the indexes ti* by solving a 
sequence of mathematical programming problems. Let J z  = 
max f i (CA'x)  subject to the constraints f j ( C A k x )  5 0, j = 
l ; . . , s ,  k = O ; . * , t * .  For each i ~ { l ; . * , s }  determine 
?EY+ sothat J z  < 0 for t = i + l ; . . ,  t* and Jji = 0. If 
this is possible, i E S *  and ti* = f. If J,, < 0 for t = 

O ; . . ,  t*, i # S * .  
The success of Algorithm 3.2 depends on the existence of 

effective algorithms for solving the rather large mathematical 

Step 3: Replace t by t + 1 and return to Step 2. 
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programming problems which arise. This presents some dif- 
ficulty because global optima are needed. Even when the fi, 
i = 1; a ,  s, are convex, the difficulty remains because the 
programming problems require the maximum of a convex 
function subject to convex constraints. When Y is a polyhe- 
dron, the difficulty disappears. Then, the programming prob- 
lems are linear and efficient computer codes for obtaining the 
global maxima abound. 

Remark 3.2: Suppose the optimization algorithm used in 
Step 2 is not guaranteed to provide a global minimum. 
Algorithm 3.2 may still produce a useful result. If it has been 
determined that for some x and t in Step 2 that (3.2) is 
satisfied and Ji( x )  I 0, i = 1 , .  * e ,  s, then 0, = 0,. Of 
course, there is not guarantee that Algorithm 3.2 will stop 
when 0, is finitely determined. Moreover, if Algorithm 3.2 
does stop, it is possible that t may be greater than t*. 

Using the above ideas it is possible to characterize 0, for 
complex finitely determined systems. In this section, we are 
content to apply them to some simple examples. Our purpose 
is to illustrate how various A ,  C ,  and Y affect both the 
determination of Om and the properties of Om. 

The data for the examples, along with t* and the charac- 
teristic roots of A are summarized in Table I. Examples 
3.3-3.10 are particularly simple and it is possible to obtain 
t* and Om by hand calculations. In Example 3.1, Algorithm 
3.2 was implemented by linear programming. Example 3.2 
requires the maximization of quadratic functions subject to 
quadratic inequality constraints; these nonlinear program- 
ming problems were solved numerically using the optimiza- 
tion program VMCON [18]. Fig. 1 shows Om for Examples 
3.1 and 3.2. In each example, 0, is determined by func- 
tional inequalities of the form f,(CA'x) I 0. The dots on 
the boundary of 0, show where two inequalities are simulta- 
neously active; the number adjacent to the intervening arcs 
show the value of t for which the corresponding inequality is 
active. Note that A is asymptotically stable in Examples 
3.1 - 3.6 and only Lyapunov stable in Examples 3.7 - 3.10. 

Example 3.1  is taken from [ 1 11. The double shaded region 
shows the A-invariant subset of X obtained in that paper. 
The maximal output admissible set 0, is obviously much 
larger. Example 3.2 illustrates the fact that Y need not be a 
polyhedron as in the prior literature devoted to the determina- 
tion of A-invariant subsets of X .  The boundary segments of 
0, are sections taken from three ellipses. Examples 3.3-3.6 
show that 0, may or may not be finitely determined when Y 
is unbounded or contains the origin in its boundary. In 
Example 3.7, A has its characteristic roots on the unit circle. 
Because CA' is periodic in t with period t = 4, it is easy to 
see that Om is finitely determined. In Example 3.8, the 
characteristic roots are again on the unit circle but CA' never 
repeats itself for t E J+. In fact, for t E Y+, \I CA'\) = 1 and 
CA' takes on essentially all directions. Thus, Om is not 
finitely determined and Om = S(1). In Examples 3.9 and 
3.10, A has a characteristic root at X = 1 .  Again, both 
possibilities with respect to finite determination exist. In 
Example 3.10, it is easy to see that 0, = { x: 1 [l  l ] x  1 I 1 ,  
1 [ I  O]x 1 I 1) , a very simple set despite the fact that 0, is 
not finitely determined. 

2 

60'o 2 

-0.6' " " " " " " " " 
-0 .8 -0 .8 -0.4 -0 .2 0.0 0.2 0.4 0.6 0.8 

x '  

(b) 
Fig. 1 .  (a) 0, for Example 3 .1 .  (b)O, for Example 3.2 

IV. CONDITIONS FOR FINITE DETERMINATION OF Om 

It is desirable to have simple conditions which assure the 
finite determination of Om. Our main result in this direction 
is the following theorem. 

Theorem 4. I :  Suppose the following assumptions hold: i) 
A is asymptotically stable ( I Xi( A )  1 < 1 ,  i = 1; . , n), ii) 
the pair C ,  A is observable, iii) Y is bounded, iv) 0 E int Y .  
Then, Om is finitely determined. 

Proof: It is apparent from ii) and iii) and the proof of 
Theorem 2.1, that there exists an r > 0 such that 0, C S ( r ) ,  
t E J+, t I n - 1 .  Moreover, by i), CA' + 0 as t + + 00. 
Thus, by iv), there exists a k e  9+, k L n - 1 ,  such that 
CAk+'S(r)  C Y.  Hence, CAk+'Ok C Y.  This result and 
(2.1) imply that Ok+, = 0, and by Theorem 2.2 the proof 

Remark 4.1: The k in the proof is an upper bound for t*. 
There is a simple test for obtaining it. Choose y so that 
S(y) c Y .  Then, I\CAk+'II I r - ' y  implies CAk+'S(r)  C 
Y and t* 5 k .  

While the conditions in the theorem are sufficient for finite 
determinability, Examples 3.3, 3.5, 3.7, and 3.9 show that 
they are not necessary. On the other hand, Examples 3.4, 
3.6, 3.8, and 3.10 illustrate difficulties in sharpening the 
sufficient conditions. As has been noted in Remark 2.2, 
Assumption ii) is not really a limitation. It is possible by 
making additional assumptions on C and A to eliminate 
assumptions iii) and iv). We will not pursue the investigation 

is complete. 0 
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TABLE I 
DATA FOR EXAMPLES 

Example A C Y Xi t* 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

0.5 
1 .o 

0.3 

0.3 

-0 .3  

0.2 

cos - -sin - 

[sin i cos i] 
[;;; -sin11 

cos 1 

[ -1.0 

[ ::: 
[ ::: 
[ 1.0 

[ 1.0 

[ 1.0 

0.21 

- l.OI 1.0 

O.O 1 .o 1 
0.01 

1.01 

1.01 

[ 1.0 1.01 

[ 1.0 1.01 

[-0.5,5.0] 

W) 

[-1.0, +m) 

x(--, 1.01 

[-1.0, +m) 

[O.O, 1.01 

[o.o, 1 .o] 

[ -  1.0,1.0] 

[ -  1.0, 1.01 

0.6,0.3 

0.76,0.6 

0.5,0.3 

0.5,0.3 

0.58, - 0.28 

0 .5 ,0 .2  

3 

00 

3.9 1.0,0.5 0 

3.10 [ 1.0 1.01 [ -  1.0,1.0] 1.0,0.5 m 

1.0 0.0 0.0 

0.0 0.0 0.6 
4.1 0.0 0.5 1.0 [ 1.0 1.0 1.01 [-1.0,1.01 1.0,0.6,0.5 00 

of such assumptions here. Instead, because it has greater 
practical interest, we will investigate the relaxation of i). 

In particular, we consider systems where A is Lyapunov 
stable. By Remark 2.3 this represents no loss of generality 
when Y is bounded. The most common situation, and the 
one which we treat here, is where the only characteristic 
roots of A that are on the unit circle are at X = 1 .  The 
Lyapunov stability of A implies that these roots are all 
simple. Thus, by doing a block diagonalization of A ,  where 
each block corresponds to a distinct eigenvalue of A [16], it 
is possible to find a choice of coordinates which puts A ,  and 
consequently C ,  into the form 

Here, the partitioning of C and A is dimensionally consis- 
tent, d is the number of characteristic roots at X = 1 ,  and 

g ( n - d ) x ( n - d )  is asymptotically stable. The representa- 
tion (4.1) simplifies our developments. 

Theorem 4.2: Suppose A ,  C has the form (4.1) and Y is 
closed. Define 

X ,  = { x :  [ C ,  O ] X E Y }  C g n .  (4.2) 

Then: i) 0, C X, ,  ii) Om(A, C ,  Y )  = Om(A, C, Y x Y )  
Proof: Result i) implies ii) because if it holds, the 

additional condition [ CL 01 x E Y ,  which is contained in the 
augmented triple A ,  C ,  Y x Y ,  is satisfied automatically. 
Suppose, contrary to i), there exists an x E Om( A ,  C , Y )  such 

that C, x # Y .  Since Y is closed, this implies the existence of 
an r > 0 such that for all w E S ( r ) ,  C , x  + 
w # Y .  Because x E Om( A ,  C ,  Y ) ,  it follows that y( t )  = 
CA'x = [C ,  O]x + [0 C,A',]xe Y for all ~ E Y + .  From 
the asymptotic stability of A ,  there exists a k E Y+ such 
that 11 [O C, A:] x I( < r .  Thus, y( k )  # Y and this contradic- 

Consider the application of the theorem to Example 3.10. 
The matrices C and A already have the form (4.1) with 
d = 1 ,  so no transformation of coordinates is necessary. It is 
easily confirmed that while Om( A ,  C ,  Y )  is not finitely 
determined, Om( A ,  C ,  Y x Y)  is. Unfortunately, the trick 
of replacing A ,  C ,  Y by A ,  C ,  Y x Y does not work gener- 
ally. See Example 4.1 in Table I. Again, this system satisfies 
(4.1) with d = 1 .  But now neither Om( A ,  C ,  Y )  nor 
Om( A ,  C ,  Y x Y )  is finitely determined. 

To see why, examine Fig. 2 ,  which shows x2-x3 sections 
of Om( A ,  C, Y )  taken for several values of x' E [0, 11. 
Because Om C { x :  I x' 1 I l }  = X ,  and is symmetric, 
there is no need to consider values of x' outside [0, I]. Each 
of the sections is a polygon. At x' = 1 ,  the section of 
Om(A, C ,  Y )  is a polygon with only 6 vertices; but as X' 

approaches 1 from below, the number of vertices in the 
polygon near the origin increases. Note the differences in 
scale for Fig. 2(a) and 2(b). A detailed analysis shows that if 
x' is sufficiently close to 1, the number of vertices may be 
arbitrarily large. Thus, Example 4.1 is vastly more com- 
plicated than Example 3.10. The characterization of 
Om( A ,  C, Y )  requires the intersection of an infinite number 
of half spaces and there is no way that Om( A ,  C ,  Y )  can be 
finitely determined. 

tion completes the proof. 0 
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-3 -2 -1 
- 2 . 0 1  " " " " " " 

I' 

(a) 

@) 
Fig. 2. Sections of 0, for Example4.1. (a) x' = 0.0, 0.5, 0.75, 1.0. (b) 

x' = 0.9, 0.95, 0.99, 0.999. 

The sections displayed in Fig. 2 do show an interesting 
property. The number of vertexes becomes very large only 
when x1 is very close to 1.  This suggests that Om( A,  C,  Y )  
can be approximated _closely by Om( A , C ,  Y )  r l  { x :  I x' 1 
I 1 - E }  = O,(A,C, Y ( E )  x Y )  where Y ( E )  = [ - 1  + 

E ,  1 - E ]  and 0 e E is, small. As will now be seen, the 
approximation Om( A ,  C, Y ( E )  x Y )  has the advantage that 
it is finitely determined. 

v. THE APPROXIMATION OF 0, FOR LYAPUNOV STABLE 
SYSTEMS 

Assume that Y is given by (2.3). Then there is a natural 
choice for Y ( E )  

Y ( E )  = { y : f i ( y )  I - E ,  i = 1 , . . .  , s}. (5.1) 
Define 

= -max{fi(0): i = l ; - . , s } .  (5.2) 

Theorem 5.1: Suppose C ,  A,  and C are given by (4.1) 
and (4.2), C, A is observable and A s  is asymptotically 
stable. Assume: i) the functions fi: 9 + 9, i = 1; - a ,  s, 
are continuous, ii) E,, > 0, ii9 Y = Y(0)  is bounded. Then, 
for each E E (0, e o ] ,  Om( A ,  C ,  Y ( E )  X Y )  is finitely deter- 
mined. Furthermore 

O , ( A , C ,  Y(E) )  c Om(A,C, Y(E) x Y )  c 

Om(A,C, Y ) .  (5.3) 

Pro08 Note that 

0, = O,( A ,  C, Y ( E )  x Y )  

= [ x : f i ( [  c, O ] x )  5 - 6 ,  

f i ( [ C L  o ] x +  [ o  C s A : ] x )  5 0 ,  

i =  l ; . . , s , k = O ; - .  A } .  (5 *4) 

Clearly, 0, is nonempty. As in the proof of Theorem 4.1 
there exists an r > 0 such that 0,- C S( r). Suppose x E 
On- l .  Then IIxII 5 r and f i ( [CL Olx) 5 - E .  Since A$-* 
0 as t --* + 00 and f i  is continuous, there exists a ICE Y+, 
which is independent of x E On-, and i = 1; * - ,  
s,, such that &.([CL O]x + [0 C,A:+']x) 5 0. Thus, 
CA~+'O, , - ,  c Y ( E )  x Y .  Consequently, CA~+'O~ c 
Y ( E )  x Y and, by the reasoning used in the proof of Theo- 
rem 4.1, Om is finitely determined. The right inclusion of 
(5.3) follows from part ii) of Theorem 4.2 and Y ( E ]  C Y .  
Again by Theorem 4.2, Om( A ,  C ,  Y ( E ) )  = Om(A, C ,  Y ( E )  

0 
A: Example 4.1 shows, the output admissibility index for 

A ,  C ,  Y ( E )  x Y may increase without bound as E -+ 0. The 
inclusions of (5.3) provide a way of judging whether or not 
for a gjven E the approximation of Om( A ,  C, Y )  by 
Om(A, C ,  Y ( E )  x Y )  is sufficiently good. They state, in 
effect, that the approximation is no worse than what would 
happen if the constraint set Y were replaced by Y ( E ) .  

In most applications, an acceptable choice for E is clear. 
This is certainly true in Example 4.1. Table 11 shows how t* 
changes with E. For E = 0.05, there is a reasonable compro- 
mise between t* and the accuracy of the approximation. 
There are several ways to measure this accuracy. By (5.3) 
the reduction in Om is no worse than what would be obtained 
by replacing Y = [ - 1 ,  + 11 by the slightly tighter constraint 
set Y = [ - 0.95, +0.95] and using the corresponding in- 
finitely determined Om. Alternatively, by applying result iv) 
of The2rem 2.1, it follows that 0.950m(A, C, Y )  C 
Om(A, C ,  Y(0.05) x Y )  C Om(A, C ,  Y ) .  Note that for 
small E, t* appears to increase logarithmically with respect 
to E - This result can be confirmed by a detailed analysis of 
the example. 

x Y ( E ) )  and the left inclusion is obvious. 

VI. CONTINUOUS-TIME SYSTEMS 

The characterization of 0: is difficult, even for simple 
systems of low order. As can be seen from (1.8), there is a 
continuum of constraints and generally they are active over 
all t E 9'. This means that the powerful finite determination 
results of the preceding sections do not apply. However, 
there are some connections between the discrete-time and 
continuous-time systems which can be exploited. The most 
obvious of these is the easily verified inclusion 

O:(A,  C ,  Y )  C Om(eAT, C ,  Y ) ,  T E  9+. (6.1) 

Actually, it turns out that when T > 0 is sufficiently small 
the inclusion becomes an approximation. Thus, our ability to 
evaluate Om(eAT, C, Y )  becomes a tool in characterizing 
O:( A ,  C, Y ) .  Before making these comments precise, it is 
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TABLE I1 
EXAMPLE 4.1: t* VERSUS 

E 1.0 0.5 0.25 0.10 0.05 I x 1 x 1 x 1 0 - ~  1 x I x  IO-^ 

t* 2 3 3 4 5 I 10 13 16 19 

worth noting that some of our prior results extend, with little 
modification, to continuous-time systems. 

Remark 6.1: Theorem 2.1 applies to O:( A ,  C ,  Y) with 
no change except for the obvious modification in the defini- 
tion of Lyapunov stability (Re Xi( A )  5 0, i = 1, .  . . , n and 
Re Xi( A )  = 0 implies Xi(  A )  is simple). The line of reason- 
ing is exactly the same as before except for part ii) where the 
following steps are used: there exists a T > 0 such that 
C ,  eAT is observable [16], by Theorem 2.1 Om(eAT, C ,  Y) 
is bounded, (6.1) implies O:(A, C ,  Y) is bounded. Simi- 
larly, Theorem 2.3 and its proof go through with minor 
changes. Specifically, 0: replaced Om in (2.5) and gi  is 
defined by 

g i ( x )  = sup { f i ( C e A ' x ) :  t~ &"}. (6.2) 

Finally, (2.10) extends to 0:. Therefore, (2.11)-(2.14), and 
Remark 2.5 are also valid for 0:. 

Theorem 6.1: Assume C,  A is observable, A is Lya- 
punov stable and assumptions i)-iii) of Theorem 5.1 hold. 
Then for each E E (0, eo]  there exists a T ( E )  > 0 such that 

Om(eAT(E) ,  c,Y(E)) c o:( A ,  C ,  Y )  c om(eAT(' ) ,  C ,  Y ) .  
(6.3) 

Proof: The right inclusion follows from (6.1). We be- 
gin the proof of the left inclusion by establishing several 
technical facts. By the Lyapunov stability, there exists a 
y > 0 such that 11 CeA'((  I y, t E &?. By the observability 
of C ,  A there exists a To > 0 such that for all T E  
(0, To], C ,  eAT is observable [16]. Hence, by Theorem 2.1 
there exists an r > 0 such that Om(eATo, C ,  Y(E)) c S(r) .  
Let = j -  ' To where j E .Y+ and j > 0. It is then clear 
that for all such j ,  Om(eAq,  C ,  Y(E)) c Om(eATo, C ,  Y(E)) 
C S(r) .  Let 6, > 0. By the continuity of the f i ,  Y is 
compact and therefore Y + S(6,) is compact. Because of the 
compactness the f ,  are uniformly continuous on Y + S(6,) 
and, in fact, there is a single modulus of continuity & ( E )  

which holds for i = 1; e ,  s. Now let X E  Om(eAT, C ,  Y(E)). 
We need to show that there is a T > 0, independent of x and 
i ,  such that for all t E 2+, fi(CeA'x)  I 0. Stated differ- 
ently, we must find T such that for all k E J+ and U E [0, TI ,  
f i (CeAkTx + Ay(a)) I O ,  where Ay(u)  = CeAkT(eAu - 
1,Jx. Noting that f i (CeAkTx)  5 - E ,  and applying our above 
series of facts, leads to the desired result. Choose T = T, = 
T ( E )  so that 

y l leAu-- I , l ( r lmax{Go,6(E)}  V U E  [0, T I .  (6.4) 

The analyticity of eAu shows that (6.3) is satisfied if j is 

Remark 6.2: Of course, Om(eAT('), C,  Y(E)) is an output 
admissible set for the continuous-time system and is eAT(')- 
invariant. In general, it is not A-invariant or positively 
invariant for (1.6). 

While the theorem shows that a sensible discrete-time 

sufficiently large. 0 

approximation of 0: exists, it does not provide a practical 
scheme for obtaining T ( E ) .  Verifying the left inclusion of 
(6.3) by a series of guesses for T ( E )  is a workable idea, but it 
presents serious computational difficulties. In particular, the 
testing of the left inclusion of (6.3) for each T requires the 
solution of the following optimization problems: maximize 
F;.(x) subject to X E  Om(eAT, C ,  Y(E)) where 

c ( x )  = sup { f i ( C e A ' x ) :  t~ g+), (6.5) 

The inclusion holds if and only if for i = 1, * * * , s the 
resulting maxima satisfy F;* I 0. While the constraint X E  
Om(eAT, C ,  Y(E)) can be represented easily by using an 
obvious modification of (2.5)-(2.7), the evaluation of e.( x )  
is computationally troublesome because it involves a supre- 
mum over 9?+. Certain simplifications occur when Y satis- 
fies the Minkowski assumptions (see the next section). At the 
very least, the proof of the theorem supports an obvious 
intuitive criterion for the choice of T.  In particular, (6.4) is 
satisfiedif ITAi(A)I a l f o r i = l ; * . , n .  

VII. THE MINKOWSKI ASSUMPTIONS 

Many of the prior results are strengthened when Y satisfies 
the following Minkowski assumptions: a) 0 E int Y, b) Y is 
compact, c) Y is convex. Under these assumptions there is a 
corresponding Minkowski distance function, defined by 

p y ( y )  = inf{a:  CY > 0, ~ E C Y Y } .  (7.1) 

The key properties of the distance function are summarized 
in the following theorem. (See, e.g., [19].) 

Theorem 7.1: Suppose YE i?? satisfies the Minkowski 
assumptions. Then i) p,:  !2 + is defined and p y ( 0 )  = 

0; ii) p y  is convex; iii) for all y E 9 and CY E .@, p y ( c r y )  

+ p y ( y 2 ) ;  v) there exist r l ,  r2 > 0 such that for all y E &? , 

for all CY > 0, p a y  = CY- p y  and a Y  = { y :  p y ( y )  5  CY}.^ 
Properties i)-v) show that the distance function is very 

much like a norm. In fact, if Y is symmetric, p y  is a norm. 
The constraint set considered in [6] satisfies the Minkowski 
assumptions because there p y  is the infinity norm in p .  

Most practical physical constraints lead to constraint sets Y 
which satisfy the Minkowski assumptions and whose distance 
functions are readily determined. Key consequences of the 
Minkowski assumptions are contained in the following theo- 
rem. 

Theorem 7.2: Assume C ,  A is observable, A is Lya- 
punov stable, and Y satisfies the Minkowski assumptions. 
Then Om( A ,  C ,  Y) and O:( A ,  C ,  Y) satisfy the Minkowski 
assumptions and their distance functions are given by 

= W A Y ) ;  iv) for all Y1, Y2 E gp9 P Y ( Y I  + Y 2 )  5 P Y ( Y A )  

r,Ilyll I p Y ( y )  I r2lIy/l; vi) Y =  { y : p Y ( y )  5 11; vii) 

po,(x) = Sup(pr(CA'x): t € J + } ,  (7.2) 

p o L ( x )  = sup{py(CeA'x):  t~ g+}, (7.3) 
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Proof: It is an immediate consequence of Theorem 2.1 
and Remark 6.1 that Om( A ,  C ,  Y )  and O:( A ,  C ,  Y )  satisfy 
the Minkowski assumptions. By the definitions of the 
Minkowski distance function and Om and parts vi) and iii) of 
Theorem 7.1, po_(x)  = inf{a > 0: a - ' x ~ O , }  = inf{a 
> 0: CA'a-Ix E Y ,  V t  E J+) = inf {a > 0: py(CAt 
a - l x )  I 1, v t E Y + }  = inf{a > 0: pT(CA'x) I a, vtE 
Y'}. From this, (7.2) is evident. The proof of (7.3) is 
essentially the same. U 

Remark 7.1: Result (7.2) may be interpreted as a special 
case of Theorem 2.3 where s = 1, f, = p y  - 1, and g ,  = 

Pom - 1. 
Remark 7.2: The characterization of Y by f , ( y )  = 

p L y ( y )  - 1 I 0, may be used to define Y ( E )  in Theorem 5.1 
and 6.1. Then, by part vii) of Theorem 7.1 

Y(E) = { y : p y ( y )  I 1 - E }  = (1 - E)Y. (7.4) 

Thus, by part iv) of Theorem 2.1 

Om(A,C,  Y(E))  = (1 - E)Om(A,C ,  Y ) .  (7.5) 

When this identity is substituted into (5.3) and (6.3) Theo- 
rems 5.1 and 6.1 are strengthened. Specifically, the accuracy 
of the indicated approximations is measured directly in terms 
of Om rather than indirectly in terms of Y ( E ) .  

Remark 7.3: Suppose for a given T > 0 we wish to find 
the smallest E > 0 such that Om(eAT, C ,  Y ( E ) )  C 
O:( A ,  C ,  Y ) .  Using the representation (7.3,  this corre- 
sponds to finding the smallest E such that Om(eAT, C ,  Y )  c 
(1 - 6 ) -  IO:( A ,  C ,  Y ) .  The actual determination of the 
smallest E can be carried out by solving an optimization 
problem. Maximize po2(x)  subject to x E Om(eAT, C ,  Y )  
and let the maximum value be denoted by p*. Then the 
smallest E is given by (1 - ~ ) p *  = 1. The result has an 
obvious application in Theorem 6.1. By solving a single 
optimization problem it is possible to determine, for a speci- 
fied T ,  the tightest inclusion of the form 

(1 - e )Om(eAT,C ,  Y )  c o:(A,c, Y )  

c Om(eAT,  C ,  Y ) .  

Remark 7.4: The optimization problem in the preceding 
remark is, in general, not easy to solve numerically. As 
noted in (7.2), the evaluation po2(x) requires a supremum 
over L%+. Moreover, the problem is not convex because 
it involves the maximization of the convex function poi. 
It is not clear at the present time what computational pro- 
cedure should be used and how the special structure of the 
optimization problem may be exploited. We sketch one 
approach which has worked on simple problems. Suppose, 
Om(eAT, C ,  Y )  is a polytope, determined by Algorithm 3.2. 
This is certainly the situation if C ,  A is observable, A is 
asymptotically stable, and Y is a polytope. Suppose further, 
that all the vertices, U , U,, of Om( e AT,  C ,  Y )  are known; 
algorithms are available for computing them [20] - E221 when 
Om(eAT, C ,  Y )  is defined by a set of linear inequalities. It is 
not hard to show that the optimization problem has its 
solution on at least one of the vertices. Thus for i = 
1, . , N ,  solve the following one-dimensional optimization 

problems: maximize py(CeA'u,) over t E 9+. This can be 
done efficiently by mapping @ onto [0, 11 and applying 
one of the many available algorithms for maximizing a 
function on an interval. Let the maximum values be denoted 
by p:. Then, p* = max {p:, i = 1; e ,  N } .  In general, the 
number of vertices N grows very rapidly with n. Thus, the 
approach is by no means a panacea. 

Remark 7.5: It is easy to see from the A-invariance of 
Om = { x: po,Cx) 5 l} and the fact that porn is a Minkowski 
distance that the sequence pow( x(  t ) ) ,  t E J+, is nonincreas- 
ing on any solution of x(t + 1) = A x ( t ) .  This and property 
v) of Theorem 7.1 make porn useful as a Lyapunov function. 
For example, if A is asymptotically stable, Om is a domain 
of attraction such that the output constraint is not violated. 

VIII. AN APPLICATION OF Om TO THE DESIGN OF A 

NONLINEAR CONTROLLER 
Maximal output admissible sets have important applica- 

tions in system analysis and controller design. A simple 
example of an application to analysis is the regulator control 
system described in the first paragraph of Section I. Suppose, 
for i = 1, * , p ,  the actuator for the ith component of U 
saturates when 1 u i  1 > 1 and it is desired to estimate the 
domain of attraction for the closed-loop system in the pres- 
ence of this nonlinearity. Let (1.2) take the form U( t )  E Y = 
{ y :  (1  y ( ( ,  5 1). Then for any x(0) E Om( A + BK,  K ,  Y )  
saturation is avoided and the motion is described by the linear 
equations (1.1). Thus, if A + BK is asymptotically stable, 
x(t) + 0 and 0, is a subset of the domain of attraction. 

Kapasouris, Athans, and Stein [6]- [SI have more interest- 
ing applications. They allow dynamic compensators and ex- 
ploit the properties of 0: to obtain nonlinear controllers 
which avoid actuator saturation and give a much improved 
overall response to large inputs. Here, we present a discrete- 
time modification of their continuous-time error governor 
scheme [6]. 

Our control system configuration is shown in Fig. 3. To 
avoid any confusion, t represents continuous time and k 
represents discrete time. The error governor generates a 
scalar gain K ,  multiplying the sampled error signal e ( k )  = 
r (kT)  - c (kT) .  We assume, as is in [6], that the plant is 
linear and asymptotically stable and that a linear Lyapunov 
stable compensator has been designed by some methodology 
so that with K = 1 good linear-system closed-loop perfor- 
mance is obtained. If K stays fixed at 1 and 11 u(k)  11 m > 1, 
the resulting actuator saturation may cause a serious degrada- 
tion in the closed-loop response. Reset windup [6] is but one 
example of this sort of difficulty; see [l] for additional 
discussion. The idea of the error governor is to adjust K 

downward if K = 1 has the potential to create immediate or 
subsequent saturation. It is argued in [6] that such gain 
reductions will be relatively infrequent and that when they do 
occur that their effect on the response is much less damaging 
than actuator saturation. 

In our implementation of the error governor, K ( k )  E [0, 11 
is adjusted according to the state of the discrete-time compen- 
sator so that for all k E J+, 11 U( k )  )I 5 1. Assume that the 
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Error Discrete- order Zero- Satwation Continuous-Time 
Governor Time Plant 

Compensator Hold 

I I 
Fig. 3.  Implementation of the modified error governor. 

compensator and error governor are described by 

X c (  k + 1) = A,X,( k )  + B,K (k) e( k) , 

U ( k )  = C , x , ( k ) .  (8.1) 

Set Y = { y :  11 y 11, 5 13 and use Algorithm 3.2 to obtain a 
characterization of Om( A,, C,, Y )  of the form (2.5)-(2.7). 
If A ,  has characteristic roots at h = 1 (assume there are no 
others on the unit circle), it may be necessary to replace 

bounded-input bounded-output stable. The argument is essen- 
tially the same as the one used in [6]. 

We have tested the modified error governor controller on 
the aircraft control problem described in [6]. There, state 
models are given for both the longitudinal motion of the 
aircraft (4th-order) and the continuous-time compensator 
(8th-order). There are two inputs to the aircraft: an elevator 
and a flaperon. The physical limits on both of the inputs are 
+25 degrees. Thus, saturation occurs when )I U )I > 25. 
The compensator in [6] was obtained by adding integral 
control and using the LQG/LTR methodology. Let 
A,, B,, C, denote the system matrices for this continuous- 
time compensator. Our discrete-time compensator was de- 
rived from it by the usual zero-order hold approach: A ,  = 
e*,*, B, = J:eAat dtB,, C, = Ca. The choice T = 0.05 
provided a reasonable approximation to the continuous-time 
controller. A minimal realization of the resulting compen- 
sator, using modal coordinates for the state, is given by the 
matrices 

'.l4l7 0*4709], 0.2167,0.9993,1,1 , 1 0.2642 0.3223 
= diag[ [ -0.3223 0.26421' [ -0.4709 0.1417 

-0.0792 -2.3646 -6.5588 0.5859 -0.2589 0.9062 -0.0319 -0.5221 0.4376 1 ' -2.6526 - 1.0503 1 S410 -4.3306 0.5860 -2.3701 0.0318 BT= [ 
-0.1946 -0.1451 - 1.3393 0.2037 0 
1.2752 -0.0352 -0.2546 -0.3914 -0.0002 

Om( A,, C,, Y )  by an approximation Om( A,, Cc, Y ( E )  x Y )  
as described in Section V. Set 

The characteristic roots of A ,  are evident from its real block 
diagonal form. 

The compensator is Lyapunov stable with two characteris- 

approximation of Om( A,, C,, Y )  was considered. The sys- 
K ( k ) = m a x { K E [ o ~ l l ~ A c x c ( k ) + B c K e ( k ) E O m } .  tic roots of A ,  on the unit circle at h =  1. Thus, an 

( 8 . 2 )  

Then it is obvious that x,( k )  E 0, implies xc( k + 1) E Om. 
Thus, if x,(O) E Om, which is a reasonable assumption for a 
compensator, 11 u ( k )  11 I 1, k E 9+. Moreover, it is certain 
that the maximization problem has a solution because Om is 
closed and A,x , (k)  + B , ~ e ( k )  E Om for K = 0. It should 
be noted that the on-line implementation of (8.2) is straight- 
forward. Since 0, is defined by a system of linear inequali- 
ties, the upper limit imposed on K by each inequality is given 
by a simple formula. The least of these limits is ~ ( k ) .  The 
real-time implementation of the overall control strategy re- 
quires that the computation of ~ ( k )  and x,(k + 1) in (8.1) 
be done in less than T seconds. 

The intuitive basis for the operation of the error governor 
is clear. If x,(k)  E int Om and e ( k )  is sufficiently small, 
~ ( k )  = 1. Consequently, when both r ( t )  and e ( k )  are rea- 
sonably small, the closed-loop system satisfies the linear 
equations of motion. When e ( k )  is large, or when A , x , ( k )  
is near the boundary of Om and B,K e( k )  points toward the 
boundary, ~ ( k )  < 1 and the compensator action is reduced 
to avoid saturation. As noted in [6], the basis for the error 
governor is entirely intuitive. There is no theory which 
actually proves that the error governor has better response 
characteristics. Because of the asymptotic stability of the 
plant it is easy to show that the closed-loop system is 

tem equations already have the form (4. l), so Algorithm 3.2 
was applied to the determination of Om = Om( A,, C,, Y ( E )  
x Y ) .  The set Y was defined by (2.3) with f i ( y )  = 
0.04 1 yi I - 1 and s = 2. Note that the Minkowski assump- 
tions are satisfied and p y ( y )  = 0.04)lyllm. The required 
optimization problems were solved by linear programming 
for several values of E,. Table I11 summarizes the results. It 
appears that Om( A,, C,, Y x Y )  is not finitely determined. 
However, E = 0.004 gives a very good approximation; by 
Remark 7.4, it follows that the error of the approximation is 
at most 0.4 % . The computational time required by Algorithm 
3.2 is not large. For E = 0.004 and an Apollo DN 3500, it is 
6.1 s; for 6 = 0.00004, it is 11.7 s. 

The actual characterization of O,(A,, C,, Y ( E )  x Y )  is 
quite simple. For E = 0.004, it is given by the representation 
(2.7) 

Om = {x , :  1 xzl I 24.9, I xtl  I 24.9, 

) C , , A { x , )  125, )C,,AEx,I 5 2 5 ,  

j = 0;  * ,  7, k = 0;*.,9} (8.3) 

where C,, and C,, are the rows of C,. Suppose that the 
C,,Af and C,,A: are precomputed. Then the testing of 
x E Om requires 18 inner product evaluations and 20 compar- 
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TABLE III 
AIRCRAFT CONTROL SYSTEM: t? AND t,* VERSUS E 

E 4 x  IO-^ 4 x 4~ 1 0 - ~  4~ 1 0 - ~  4~  IO-^ 4~ io-' 4~ io-8 4 x 1 0 - ~  

t: 
t2* 

5 7 9 11 13 14 16 17 
8 9 1 1  12 14 15 17 19 

isons. The computational time is dominated by the 18 x 8 = 
144 multiplies which are required. With appropriate precom- 
puted data, the evaluation of (8.2) requires only a few more 
comparisons and multiplies. 

The closed-loop system was simulated with the step input 
r , ( t )  = r z ( t )  = 10. Fig. 4 shows the output response c,(t) 
and cz( t )  for three different situations: i) K = 1 and no 
saturation, ii) K = 1 and saturation, iii) ~ ( k )  determined by 
the error governor ( E  = 0.004). As expected in i), the result- 
ing linear sampled-data feedback system performs well and 
has essentially the same response as the corresponding con- 
tinuous-time system in [6]. The response ii) shows the effects 
of adding saturation to the same system. Both overshoot and 
settling time are badly degraded. With the error governor in 
place saturation does not occur and the response iii) is much 
improved. Fig. 5 shows ~ ( k ) .  For k 2 15(t 2 0.75), ~ ( k )  
= 1 and the system behaves as a linear system. 

The results shown in Figs. 4 and 5 are very close to those 
in [6]. Thus, our discrete-time modification appears to main- 
tain the nice properties of the continuous-time mechanization 
in [6]. However, there is a substantial saving in the computa- 
tional time required for the controller. On a Macintosh 512K 
the simulation of our implementation takes 13.1 s; the corre- 
sponding time reported in [8] is approximately 29,000 s. The 
reason for the large time is not clear from the discussion in 
[8], but it is certainly related to the complexity of testing 
whether or not a point x belongs to OL(A,, C,, Y). On an 
Apollo DN 3500 the simulation takes 1.24 s, which is about 
four times faster than real time. Hence, for systems of 
significant complexity, it appears that the implementation of 
practical on-line controllers is feasible. 

It is perhaps worthwhile to compare briefly the error 
governor approach to some others which have been proposed 
for treating the control of linear plants with state and control 
constraints. The papers [3], [9] - [ 131 are concerned with state 
regulator problems similar to the one described by ( l . l ) ,  
(1.2) where Y is a polyhedron. While they do give attention 
to desirable choices for the state feedback matrix K, the 
positively invariant set of allowed initial conditions must be 
specified a priori and it is, in general, not maximal. Other 
researchers formulate the state regulator problem, with its 
state and control constraints, as an optimal control problem. 
See, e.g., [23]-[25] and the many papers cited in these 
references. The optimal control generated by such an ap- 
proach allows the capture of the largest possible set of initial 
conditions. A serious disadvantage is the difficulty in imple- 
menting the on-line computation of the resulting nonlinear 
feedback control. It appears that feasible implementations are 
only possible for systems of very low order (n I 3). The 
error governor has a number of important advantages: it can 
be applied to systems with time-varying inputs, it begins with 

Error Governor Sqt.C.onlrol!+r. 
C' Mn.or-%ztrrn. 

1 5 . 0  I . .  . .  . .  . .  . .  
....__ : '_ 

. . . . . . . . . . . . . , . .._ _.." .._.... . 

. .  - . .  . .  . .  . .  . .  . .  . .  . .  . .  

0 1 2 3 4 5 
Time (Secs) 

(a) 

Error Governor Sat.Conlrol!+.r.. 
15,  i' L'!!.ar-Syrllrn. , 

:.. .) '. 
. .  
. .  . .  . .  . .  . .  _ _ _ . . . . I .  ...__ 

. .  . _. ..._..' 

0 1 2 Time (Secs) 3 4 5 

(b). 

= 10. 
Fig. 4. Output responses for aircraft control system with step input rl = r2 

Fig. 5. Gain produced by error governor for aircraft control system 
step input r ,  = r, = 10. 

with 

a specified linear design which can be carried out using 
dynamic compensation and the most advanced design meth- 
ods, the nonlinear control strategy is implemented by a 
structurally simple modification of the linear control system, 
it appears feasible to implement the nonlinear control for 
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systems of fairly high order. Unfortunately, relatively little 
can be said theoretically about the dynamic response charac- 
teristics of error ‘governor system. Moreover, when there are 
constraints on the state of the plant, or the plant is open-loop 
unstable, the error governor will not work. These limitations 
can be largely overcome by using different control strategies, 
such as modifications of the reference governor of [7]. 
Results concerning these issues will be reported in the future. 

IX . CONCLUSION 
In this paper, we have developed a general theory which 

pertains to the maximal output admissible sets Om and 0;. 
Our most important contributions concern the algorithmic 
characterization of Om. If Y is bounded, 0 ~ i n t  Y and A 
has no characteristic roots on the unit circle, 0, may be 
determined in a finite number of steps. In most cases, the 
steps can be implemented by solving several easily formu- 
lated mathematical programming problems. When A has 
characteristic roots on the unit circle, it may turn out that the 
computations are not finite. If this happens and the character- 
istic roots on the unit circle are all at X = 1, there is a 
practical way out: by introducing slightly stronger constraints 
a close approximation of 0, may be obtained finitely. While 
many of the properties of 0, carry over to O;, the charac- 
terization of 0: is by no means as simple. A practical 
solution of this difficulty exists too. By taking T > 0 suffi- 
ciently small, it is possible to approximate as closely as 
desired O:(A, C ,  Y )  by O,(eAT, C, Y ) .  Many of the pre- 
ceding results, including the measure of approximation accu- 
racy, are strengthened if Y satisfies the Minkowski assump- 
tions of Section VII. 

When Y is polyhedron the determination of 0, by Algo- 
rithm 3.2 is especially straightforward; it involves the solu- 
tion of a sequence of linear programming problems. With the 
easy availability of good software and powerful computers it 
should, therefore, be possible to treat a variety of interesting 
systems of high order and considerable complexity. When Y 
is not polyhedral, computational difficulties may arise. Here, 
there is need for further research. Perhaps, polyhedral ap- 
proximations of Y will prove useful. 

Using representations of the form (2.7)-(2.9) it is possible 
to test numerically whether or not x belongs to 0,. The 
computational effort is reasonable, even for systems of fairly 
high order, and the structure of computations is suitable for 
parallel processing. This situation makes it feasible to imple- 
ment on-line feedback control laws for linear plants with a 
variety of state and control constraints. The example in 
Section VI1 effectively demonstrates this potential. The error 
governor control methodology of [6] has been modified to the 
discrete-time case and applied to the 12th-order aircraft con- 
trol problem considered in [6]. The resulting nonlinear dis- 
crete-time controller performs in the same effective way as 
the controller in [6] and it reduces computational load on the 
controller by several orders of magnitude. Other nonlinear 
control strategies, which are also based on Om, are under 
investigation. They appear to have certain advantages and the 
details will be reported in the future. 
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