
IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 2, APRIL 1988 193

A Fast Procedure for Computing the Distance
Between Complex Objects in

Three-Dimensional Space
ELMER G. GILBERT, FELLOW, IEEE, DANIEL W. JOHNSON, AND S . SATHIYA KEERTHI

Abstract-An efficient and reliable algorithm for computing the
Euclidean distance between a pair of convex sets in Rm is described.
Extensive numerical experience with a broad family of polytopes in R 3
shows that the computational cost is approximately linear in the total
number of vertices specifying the two polytopes. The algorithm has
special features which makes its application in a variety of robotics
problems attractive. These are discussed and an example of collision
detection is given.

I. INTRODUCTION
N ROBOTICS and other fields, such as computer-aided I design and computer graphics, it is important to know if two

objects, characterized by mathematical models in three-
dimensional space, intersect or are in near proximity. The
most natural measure of proximity is the Euclidean distance
between the objects, i.e., the length of a shortest line segment
joining the two objects. In this paper we present an approach
for computing this distance. It applies to a complex family of
shape models and is particularly convenient when the objects
are subject to changes in position and orientation. Because the
approach is highly efficient, we expect that it will become a
useful tool in solving collision detection problems and path
finding problems (see, e.g., [3], [6], [8], [IO] and [4], [5],
[12], [21], [28]). Our own applications have been to optimal
path planning in the presence of obstacles [151, [171, [181.

The key element of the approach is an algorithm for
computing the distance between convex sets in m-dimensional
space. The algorithm is designed to be particularly efficient
when m = 3 and the convex sets are polytopes defined by
their vertices. While it is iterative, the algorithm terminates in
a finite number of steps when the sets are polytopes.
Numerical experience with such problems is most encourag-
ing. For a wide variety of examples the computational times
are nearly linear in the total number of vertices, M = MI +
M2, required to specify the two polytopes. Moreover, the
coefficient of linear growth is quite small.

Manuscript received October 24, 1986; revised July 27, 1987. This
research was partially supported by the Center for Research in Integrating
Manufacturing at the University of Michigan.

E. G. Gilbert is with the Department of Aerospace Engineering, University
of Michigan, Ann Arbor, MI 48109.

D. W. Johnson was with the Department of Aerospace Engineering,
University of Michigan, Ann Arbor, MI 48109. He is now with Martin
Marietta Aero and Naval Systems, Baltimore, MD 21220.

S. S.. Keerthi was with the Department of Aerospace Engineering,
University of Michigan, Ann Arbor, MI 48109. He is now with the
Department of Computer Science and Automation, Indian Institute of Science,
Bangalore 560 012, India.

IEEE Log Number 8718909.

There is an extensive literature concerning the polytope
distance problem, so we will be content to give a brief review
of some representative papers. Thebroblem is in the field of
computational geometry [20]. Consequently, many algorithms
are specifically designed to achieve bounds on the form of the
asymptotic computational time. For two-dimensional prob-
lems, Schwartz [27] gives an O(log2’M) algorithm, and more
recently, O(log M) algorithms have been exhibited [9], [13].
The three-dimensional problem has been considered in [24]
and [l l] with respective times of O(M log M) and O(M).
Because of their complexity and special emphasis on asymp-
totic performance, it is not clear that the algorithms in the
preceding papers are efficient for practical problems where M
is large, but not exceedingly large. Unfortunately, very few, if
any, computational experiments have been done. Other
schemes have also been described: Red [25] presents a
program which uses a projection/combinatoric approach for
polyhedra with facial representations, the authors of [5] and
[7] are concerned with “negative” distances for intersecting
objects (more about this later), Meyer [23] considers boxes,
Lumelsky [22] considers line*segments. It is also possible to
convert the distance problem to a quadratic programming
problem and apply any of the well-developed computer
programs which are applicable.

Unlike the procedures of the previous paragraph, our
algorithm has its origins in mathematical programming and
treats directly the specification of the convex sets in terms of
their support properties (for polytopes these properties are
obtained easily from their vertices). The algorithm is in the
same family as the algorithms described originally by Barr,
Gilbert, and Wolfe [I], [2], [29] and may be viewed as a
descent procedure which works on the distance between
elementary polytopes contained in the convex sets. We have
devised a special subalgorithm for evaluating the distance
between the elementary polytopes. It contributes significantly
to the overall efficiency of the algorithm. An important feature
of the algorithm is its very general initialization features.
When used to detect collision along a continuous path in the
configuration space which describes the position and orienta-
tion of the objects, they allow significant reductions in the total
computation time. The algorithm has good numerical proper-
ties and a thoroughly tested Fortran subroutine is available.
An early version of the algorithm due to Johnson was used in

I Contact E. G. Gilbert.

08824967/88/0400-0193$01.00 O 1988 IEEE

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 3, 2010 at 09:54 from IEEE Xplore. Restrictions apply.

1 94 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 2, APRIL 1988

the optimal path planning computations described in [181. This
paper is similar to [16].

The plan of the paper is as follows. In Section 11 we consider
the distance between a pair of objects taken from a general
family of nonconvex objects and suggest how our algorithm
may be applied to its computation. We also review what
happens to the distance when the position and orientation of
the objects is specified by a set of configuration variables.
Section I11 reviews some results from convex analysis, and
shows how the problem of computing the distance between
convex sets can be reduced to the basic problem of finding the
distance between the origin and a single convex set. Section IV
describes the theoretical algorithm for solving the basic
problem; Section V presents the distance subalgorithm for
elementary polytopes; and Section VI introduces modifica-
tions in the overall algorithm to account for the effects of
numerical errors. Many numerical experiments have been
carried out; these are reported in Section VII. In Section VIII,
the algorithm is applied to a collision detection problem due to
Canny [8]. A conclusion summarizes the key contributions and
indicates some extensions. An initial overview of the paper
can be had by reading Sections 111, IV, VII, and VIII.

11. OBJECT REPRESENTATIONS AND DISTANCE
Given two objects A and B in three space, it is convenient to

represent them by compact sets: KA , K B C R 3 . In particular,
the points in KA and KB describe, respectively, the space
occupied by the objects A and B. For z = (zl, z2, z 3) E R 3 ,
let IzI denote the Euclidean length J (Z ’) ~ + (z ~) ~ + (~ 9 ~ .
The distance between the objects A and B is defined by the
closest points in KA and KB:

d(KA, KB)=min {Ix-yI : x E K A , ~ E K B } . (1)

While computational considerations may suggest the use of
other metrics in (l), the Euclidean distance Ix - yl is the
most natural. It conforms with the “physical” notion of
distance and makes d invariant with respect to different
choices for the origin and orientation of the coordinate system.
Because KA and KB are compact, the minimum in (1) exists
and d is defined.

It is only for simple object pairs such as a sphere and a line
segment that formulas for d may be given [19]. Since our
algorithm allows d to be computed for convex polytopes, a
much wider class of object pairs is permitted. In fact, it is
possible to treat conveniently a rich family of nonconvex
shapes: objects which are the union of convex polytopes and
their spherical extensions.

Suppose A and B are each the union of several objects.
Then d(KA, KB) may be computed in terms of the distances
between the constituent objects. Specifically, let

K A = U Kl KB= U Kj (2)
I€[* J E I B

where the K,, i E Z = (1, * . a , N } are compact sets in R 3 ,
and ZA and ZB are disjoint index sets in Z. Then

d(KA, KS)=min {dij : i E ZA,j E Z B } (3)

W
Fig. 1 . An example of object representation. The near point pair v i , v4 for

K, and K4 is the near point pair for KA and KB; thus d(K, , K B) = d14.

where

dJ=min { Ix -y I : x E K,, y E K J } =d(K, , KJ). (4)

S e e the example in Fig. 1.
If the distance between objects A and B is known, so is the

distance between their spherical extensions [18]. The r-
spherical extension of K C R 3 is defined by

K ‘ = { x : I x - y l s r , y E K } , r z 0 . (5)

It is easy to verify that

d (K 7 , K z) = (~ (K A , KB) - r ~ - r B) + (6)

where (a)+ = a, a > 0, and (a)’ = 0, a s 0. More
generally

KA= U K ; KB= U K: (7)
I E JA ~ € 1 6

implies

d(KA, KB)=min {(dlJ-rl-r,)+ : i E ZA,j E IS} (8)

where the d,J are given by (4). If the K, are convex polytopes,
(7) is the promised family of nonconvex shapes. Moreover,
the polytope algorithm may be applied to the d,, .

Spherical extensions are valuable for several reasons. They
may be used to cover an object with a shell of safety: if x
K‘, it is clear that the distance between x and K exceeds r.
More importantly, they may lead to economical representa-
tions of complex objects. Object A in Fig. 1 is a simple
example. It is the union of two spheres (extensions of points)
and a circular cylinder with spherical end caps (an extension of
a line segment). Another example is a solid rectangular plate
of thickness 2r with round edges; it is modeled by an r-
spherical extension of a planar polytope with four vertices.
Similarly, more general wire-frame objects can be given
rounded representations.

Often the position and orientation of the objects K, in (2) are
specified by a configuration vector q E R“. For instance, if A
and B are interacting manipulators whose links and payloads
are the K, , the components of q are the joint variables for the
two manipulators. Our approach to object representation

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 3, 2010 at 09:54 from IEEE Xplore. Restrictions apply.

GILBERT et al. : DISTANCE BETWEEN COMPLEX OBJECTS IN 3-D SPACE 195

handles such situations conveniently. To be more specific, K;
is obtained by translating and rotating a compact set Ci:

such that aff E = aff Y. The set CO Y is a convex polytope
whose vertices are contained in Y. Suppose X belongs to the
translate of a linear space X. The Caratheodory theorem [26]
states that there is no loss of generality if in (12) I is restricted K;(q)={ Ti(q)w+pi(q) : w E Ci}. (9)

Here p i (q) E R 3 is the translation, T(q) E R 3 x 3 is the
(orthogonal) rotation matrix, and C; describes Ki in its
reference position. In practice, there are various ways of
obtaining p i (q) and Z(q). For example, they may be
extracted from the usual 4 x 4 homogeneous transformation
matrix. If Ci is a polytope with vertices wu E R 3 , j = 1, - -,
M;, the corresponding vertices of Ki(q) are given by zu =
Ti(q)wu + pi (q) , a simple computation. It follows from the
orthogonality of T;(q) that the reference object for a spherical
extension is independent of q; i.e.,

Kl' (q)={Ti (q)w+pi(q) : w E Cl'}. (10)

In [15] the dependence of du on q has been examined in
detail. Suppose the elements of Tk(q) andpk(q), k = i, j are
continuously differentiable in q. Then it follows [15] that
du(q) is Lipschitz continuous and has a gradient (Frechet
derivative) almost everywhere. It is easy to give examples (K;
and Kj may be convex) where at a specific q, du(q) does not
have a gradient. If do(@ > 0 and the nearest points vk E
Kk(q) , k = i, j, are uniquely determined, du(q) does have a
gradient at q. In particular [15], we have V,du(q) =

w; = Tz(q) (vk - pk(q)) , k = I , j, and the super Tdenotes
matrix transpose. Once vi and uj have been found (by the
distance algorithm) the evaluation of this expression is
relatively easy to carry out. We have used V,du(q) in an
optimum path planning procedure [15], [17], [NI, but its
general value in anticipating collision is evident.

VqlTi(q>w~ + pi(4) - q(4):; - Pj(q)1, 4 = 4, where

sothat1 I d i m X + 1.
A nearest point in X to the origin v (X) is determined by

v (X) E X, Iv(X)l =min (1x1 : x E X}. (13)

In general, there may be several points v (X) satisfying (13).
If X is convex, it is well known that v (X) is uniquely
determined [26].

By (12) it is obvious that the unique point Y(CO X) has a
representation of the form

I
v (c o X) = C X'X;,X~ E X, Ai>O, X ' + . * * + X ' = l . (14)

i= 1

Often, the X i , the xi , and I are not unique. However, it is
always possible to obtain a representation with: a) 1 s m + 1
when Y(CO X) = 0 and I 5 m when v(co X) # 0, b) {XI,

- e , X I } affinely independent.
The first part of a) is obvious from the Caratheodory

theorem. In the second part of a), Y(CO X) is in the boundary
of CO X. Thus v(co X) E H f l CO X where H is a support
hyperplane of CO X [26]. Since dim H = m - I the
Caratheodory theorem implies I I m. If (14) holds and { X I ,
* - * , xl} is affinely dependent it is always possible to eliminate
some of the xi and obtain an affinely independent subset; the
procedure for doing this is the same as the one used in the
usual proof of the Caratheodory theorem.

The support function of X, hx: R" --* R, is defined by

hx(q)=max { x q : x E X } . (1 5)

We use ~ ~ (1) to denote any solution of (15). Specifically,
sx(q) satisfies

m. PRELIMINARIES

In this section we introduce some notations and basic results
which are required for the algorithm. Everything is stated in hA1) =Sx(1) - 1 sx(1) E X . (16)
R ", because the results are not restricted to m = 3. We use
x-y for the inner product of x, y E Rm and IxIz = x-x. For

denotes the Minkowslu set sum or difference. Throughout the

Since it is easy to prove that hx = h,x and sx = S,X,

hmy(q) and sWu(q) can be determined by a simple enumera-
tion of inner products:

X I , Xz C R", X I k 52 = {XI k xz : x i E X i , XZ E X2}

section X C Rm is compact and Y C Rm is a finite set of
points { A , -.-,U,}.

hwy(q)=hy(q)=max {y i - q : i = l , - e * , U}

The affine and convex hulls of X are given by ~ , Y (~) = S Y (V) = Y ~ , Uj * v = ~ Y (v) - (17)

Thus (17) provides a simple procedure for evaluating the
support properties of the polytope CO Y.

Fig. 2 displays some of the above notation and results. Note
v(co Y) has the representation (14) with X = Y, I = 2, x1 =
y5 , and xz = y6.

Consider now the problem of finding du in (4) when Ki and
Kj are compact and convex. For convenience, assume hereaf-

(12) ter that i = 1 a n d j = 2. Clearly

It is easily confirmed that aff X is the translate of a linear K = ~ ~ -Kz. (18)
space. For example, aff Y = Y + {yl}, where Y is the linear
span of {yz - yl , e, yv - y1 }. Y is affinely independent if This seems like a simpler problem than (4), but it is only
dim aff Y = dim Y = U - 1. If Y is not affinely independent, superficially so. While the set difference K = K1 - KZ is
it is always possible to pick an affinely independent set E C Y convex, it is generally more complex than either KI or K2.

(1 1) 1 aff X =

co X = { X;xi : xi E X , A i r 0, A ' + - + A'= 1 .

Xixi : xi E X , X1 + - - * + XI= 1 r i = l

i= I 1
dlz=min { l z l : E K } =

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 3, 2010 at 09:54 from IEEE Xplore. Restrictions apply.

196

CO Y

Fig. 2. An example in R2 showing notation from Section III for Y =
{ V I , Val.

This is apparent when K1 and K2 are the polytopes

K k = C O z k , z k = { z k , : / = I , ” * , Mk}. (19)

Then it is easy to show that K is the polytope

K=CO Z,

Z = { Z ~ ~ - Z ~ ~ : i = l , . * . , M I , J = l , - . . , M 2 } . (20)

Since Z has M1M2 elements, K is much more complex than
either Kl or K2. This complexity appears in [21] and in the
work of others who have used the set difference.

Our algorithm determines dI2 by solving the problem (18).
Its steps require only the evaluation of h K and sK. Despite the
complexity of K , these functions are easy to compute from K1
and K2:

h K (7) = h K i (r]) + h K 2 (- 71, s K (7) ‘ S K I (7) -sK2(- 7)- (21)

For the polytope case, (17) and (21) show that the computa-
tional effort associated with hK and sK is proportional to MI +
M2, not MlM2 as might first be expected.

In our subsequent description of the algorithm it simplifies
matters to base everything on K and avoid specific reference to
Kl and K2. Let us indicate how this can be done. When the
algorithm stops, it produces the following data: / 5 m + 1 , hi
> O,yi E K , i = 1, a . . , 1,

I

As input the algorithm uses initial points from K1 and K2 and
evaluations of hK and sK by (2 1). Hence, y; = y1 - A; , y1 E
Kl , y2j E K2, and (22) yields

v(K)=v1(K1, Kd-vz(K1, K2) (23)

where
I

YI(KI, K 2) = x X‘YI;
I = I

are, respectively, near points in K I and K2. If v1 (KI , K2) and
v2(Kl, K2) are in “parallel sides” of Kl and K2, they may not

EEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 2, APRIL 1988

be unique (even though v (K) is unique). In case of nonunique-
ness, the pair of near points provided by the algorithm has no
special properties.

IV. THE THEORETICAL A L ~ R I T H M
We now present the algorithm for determining v(K) when K

C Rm is compact and convex. If K is a polytope, it is shown
that this algorithm terminates after a finite number of steps.

The basic idea is due to Barr and Gilbert [11, [2] : generate a
sequence of polytopes CO V , contained in K such that their
near points v(co V k) converge to v(K) . It is necessary to
compute the v(co V k) , but this takes little time because the
polytopes have at most m + 1 vertices. See the next section.

To state the algorithm, we first introduce criteria for descent
and optimality and establish a bound on approximation error.

Theorem 1: Let K C Rm be compact and convex and define
g K : Rm + R by

= 1x1 + h K (--XI. (25)

Suppose x E K. Then 1) if gK(x) > 0 there is a point z in the
line segment CO { x , sK(- x) } satisfying IzI < 1x1; 2) x =
v(K) i f and only i f g K (x) = 0; 3) I X - v(K)I2 5 &(x).

For completeness, a proof of the theorem is given in
Appendix I; its details have appeared in similar contexts
before [141, 1291.

D i s t a n c e Algorithm: Given a compact convex set K C Rm
andinitialpointsyl, - - - , y u E K, 15 U 5 m + 1,perform
the following steps:

1) set Vo = {yl, - * , y v } and k = 0;
2) determine vk = v(co V k) ;
3) if g K (v k) = 0, set v (K) = vk and stop;
4) set V k + l + P k U { s K (- Y;,)}, where V;, c v;, has rn

elements or less and satisfies vk E CO p k , increment k,
and proceed to step 2).

Clearly, Vk C K and v;, E K for k L 0. If the algorithm
does not stop in step 3), then g K (v k) > 0 and Theorem 1
implies v;, z 0. Hence, the existence of V;, in step 4) is
guaranteed; see result a) following (14). Furthermore, descent
in the next iteration is guaranteed since result 1) of Theorem 1
implies

I vk+ 1 1 = I v (CO Vk + 1) 1 5 I v (CO { vk, s K (- v k) }) I < I vk 1
(26)

Fig. 3 illustrates the steps of the algorithm when K is a
polytope co { z1, * * - , zs } in R 2 . For VO = { 21, z2, z3} it can
be seen that

Vo={Z2, z3}, Vi=Vo U {z4}, Pi={z3, zq}

Vz= PI U { Z s } , v2=v(K) E CO (24, Zs}. (27)

When VO is the single point { z z } it may be verified that

V2=Pl U {z4}, ~ 2 = v (K) . (28)
In general, the algorithm generates an infinite sequence

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 3, 2010 at 09:54 from IEEE Xplore. Restrictions apply.

GILBERT el al.: DISTANCE BETWEEN COMPLEX OBJECTS IN 3-D SPACE 197

0
Fig. 3. An example in RZ illustrating the steps in the Distance Algorithm.

{ v k } which converges to u(K) . The proof follows from the
same arguments used in the convergence proof for the method
of Barr and Gilbert (see [l], [14]). The convergence proof is
simpler when K is a polytope because v(K) is obtained after a
finite number of steps.

Theorem 2: Suppose 2 C R " is a finite set of points and K
is the polytope CO 2. Assume s ~ (q) E 2 for all q E R". Then
the Distance Algorithm generates v(K) in a finite number of
steps.

Proof: Clearly, K = CO (2 U Vo) and 2 U Vo C Rm is
finite. Assume v (K) is not generated in N steps where N is the
number of nonempty subsets of 2 U VO. In this case, g K (vk)

> 0 and 1 vk+ I < I vk I for all 0 5 k < N. Since near points
are unique v k # V, for any 0 s 1 < k I N , and since Vk C
2 U V, for all 0 I k I N , every subset of 2 U VO must have
entered the algorithm. However, v(K) E CO Pfor some P C
2 U V, (see result a) following (14)). Therefore, v(K) =
v(co Vk) for some k < N , which is a contradiction.

The requirement that sK(v) E 2 is easy to obtain even when
K is the set difference of two polytopes. This is clear from (17)
and (21) and the associated discussion.

If VO C 2, it follows from the steps of the algorithm that Vk
C 2 for all k > 0. Thus when the algorithm terminates, v(K)
has a representation of the form (22), where the y; E 2. This
observation is useful for initializing the algorithm in contin-
uum problems. See Sections VI and VI11 for more details
concerning this and the choice of the initial points.

V. THE DISTANCE SUBALGORITHM
In each iteration of the Distance Algorithm step 2) requires

the determination of v(co Y) , Y = { y , , . e , y u } C R",
where Y = Vk. In this section we describe a procedure
originated by Johnson [17] for doing this. It is particularly
efficient when U is small and yields a representation of the
form

v (CO Y) = h'y;,
;€is

h ' = l , h'>O, i E 1, c (1 , e.., U}
f € l s

Y,= { y j : i E I,} is affinely independent (29)

where s indicates a particular member of the family of all
nonempty subsets of Y . The existence of such a representation
is a consequence of result b) following (14). Note that Y,
becomes v k in step 4) of the Distance Algorithm. Because it is
affinely independent, v k has a minimal number of elements.
This simplifies Vk+ I and makes the computations in the next
iteration of the Distance Algorithm easier.

Since U is small, it is effective to take a combinatoric
approach where all

U = [~ ! / k ! (~ - k) !]
k = I

subsets of Y are successively tested until a representation of
the form (29) is found. Geometrically, this involves checking
the open subsets of the polytope CO Y to see if they contain
v(co Y) . If U = 4, there are at most U = 15 such subsets to
examine. For example, if U = 4, m = 3, and Y is affinely
independent, CO Y is a three-dimensional simplex in R 3 and
the U = 15 open subsets are the 4 vertices, 6 open edges, 4
open faces, and interior of the simplex.

We begin by stating a theorem which characterizes the
representation (29). Let I,' be the complement of Z, in Z and
Y,, s = 1 , * * , U, be an ordering of the subsets of Y. Define
real numbers A;(Y,), i E I,, and A(Y,) by

A j ({ y j }) = l , i E Z

Aj(% U {yj>>= Ai(Ys)(yi . Yk-Yi * Y j) ,
i E Is

k E I,, j E I,'

It turns out that the choice of k E Z, does not affect the value
of Ai(Y, U {y,}. To be definitive, we have set k = min i, i E
Z, in our computations. Inspection shows that (30) can be
viewed as a recursion which determines the A;(Y,) in order of
increasing cardinality of Y,. The total number of operations
for all subsets of Y is modest: U = 2 requires 3 inner product
evaluations, U = 3 requires 6 inner product evaluations and 12
multiplies, U = 4 requires 10 inner product evaluations and 36
multiplies.

Theorem 3: The representation (29) holds for Y, if and only
if 1) A(Y,) > 0, 2) Ai(Y,) > 0 for each i E Z,, 3) A,(Y, U
{ y , }) I 0 for each j E Z,'. Furthermore, the X i in (29) are
given by

h'=A;(Y,)/A(Y,). (31)

The theorem is proved in Appendix 11. In brief condition
1) implies Y, is affinely independent; condition 2) implies
v(co Y,) is in the relative interior of CO Y,; condition 3)
implies v(co Y,) = v(co Y) . Usually, Y, is uniquely
determined; multiple representations (29) can occur only if Y
is affinely dependent.

Because a representation of the form (29) exists, conditions
l), 2), 3) must hold for some s E { 1, . . . , U}. Thus in
principle, the following algorithm must terminate in step 2).

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 3, 2010 at 09:54 from IEEE Xplore. Restrictions apply.

198 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 2, APRIL 1988

Distance Subalgorithm: Given a finite set Y = { yI , . * ,
y,} C Rm, and an ordering Y,, s = 1, * a , U , of all subsets of
Y, perform the following steps:

1) sets = 1;
2) if A(Y,) > 0 and Aj(Y,) > 0, j E I,, and A,(Y, U

{ y j }) I 0, j E Z,’, define v(co Y) by (29) and (31) and
stop;

3) i f s c U , increment s and proceed to step 1);
4) stop and indicate failure.
If there are numerical errors in the computation of the data

in step 2), it may turn out on rare occasions that the conditions
of step 2) are not satisfied for any s E { 1, - a , U}. We need to
account for this possibility in the next section. Thus we have
added step 4).

Suppose we obtain (29) with v = m + 1 and Y, = Y. Then
CO Y is a simplex and v(co Y) E interior CO Y. Hence,
v(co Y) = 0 and there is a sphere of maximum radius d-
centered on the origin, contained in CO Y. The radius is of

Since CO 2, - CO Z2 = K, all our previous notations apply.
The translation of the origin is only worthwhile when d(K1,
K2) is small, lpcl is large, and high accuracy is needed.

Other sources of error include the evaluation of (29)-(31)
and g K (v k) . To account for these errors and those from the
inner products, it is reasonable to replace the convergence
criterion in step 3) of the Distance Algorithm by

s K (v k) s 4 D (m 2 (35)

where e > 0 is related to floating-point accuracy and

D(K)=max { l z l : z E K } . (36)

Since eD2 is very small, result 3) of Theorem 1 shows that
the effect on the accuracy of the final result should be small. If
K = CO Z1 - CO Z2 as in the preceding paragraph, and the
origin of the system is translated as indicated, then the upper
bound on D(K), given by

D (K) I D (CO Z I - { Z I }) + D (CO z 2 - { 2 2 Z z)) + I f 1 - f 2 1 ,
interest because it is a lower bound on the distance which CO Y
must be translated if the origin is to be exterior to CO Y .
Clearly, d- is given by the distance to the m-dimensional face (37)

may be appropriately used in (35). When Z1 and Z2 are
dependent on q (see end of Section 11), the first two terms in

of CO Y which is closest to the origin. Hence

d- = min { I v (aff ys)l : ys C y has m elements). (32)

In Appendix 11 it is shown that

lv (aff Y,)I2=A(Y,)-I Ai(Y,)yi yk, k E I,.
;E I,

(33)

The data A (Y,), A;(Y J , y;*yk are all needed in the determina-
tion of Y(CO Y) and require no additional computational effort.
Thus (33) is evaluated with only m multiplies and one divide.
If m = 3, this means (32) takes 12 multiplies, 4 divides, and 1
square root. The choice of k E Z, in (33) is arbitrary.

VI. THE NUMERICAL ALGORITHM
Having fully established the theoretical algorithm for

computing the distance between compact convex sets, we now

(37) are independent of q and may be computed from the wu
which specify Ci, i = 1, 2.

On rare occasions, numerical errors may also cause the
Distance Subalgorithm to fail, especially when Y, = v k is
affinely dependent or nearly so. For example, ify,, j E Z,’, is
close to aff Y,, Aj(Ys U (U,}) is close to zero. If the
numerical value of A,(Y, U { y j }) is positive when the actual
value is negative, the exit through step 4) may occur. If the
Distance Subalgorithm does fail, we resort to the following
Backup Procedure which always runs to completion.

* e , y ” } , the Backup Procedure deter-
mines v(co Y) by evaluating v(aff Y,) for all Y, c Y such that
A(Y,) > 0, A,(Y,) > 0, j E I,. Clearly, such Y, are all
candidates for the representation (29). The Backup Procedure
merely picks the best of the Y, and sets v(co Y) = v(aff Y,)

Given Y = {yl ,

present modifications of the algorithm to make it totally
reliable in the presence of roundoff errors. This is followed by v (CO Y)=arg min { l y l : y = v (aff Y$),

some comments on the efficient implementation of the s= 1, . e , U , A(Y,)>O, Aj(Ys)> 0, j E I,} (38)
algorithm.

Errors do not accumulate in the Distance Algorithm since at
every iteration k, vk = vk) from the explicit
evaluation of formulas which are only dependent on the set
Vk. This helps the ultimate accuracy of the results and
simplifies the error analysis.

where 1 v (aff K) 1 is calculated Using (33). In most cases (38)
involves more effort than the Distance Subalgorithm, but it
always succeeds since A(%) > 0, Aj(Ys) 0, j E 1, when
y, is a sing1e

The above comments lead to the following algorithm.

Numerical A[gorithm: Given a set K
R m and initial points y l , a . . , y , E K , 1 I v 5 m + 1,
perform the following steps:

Of y.

Inner product evaluations are one source of error. When

K=co ZI - C O 2 2 , Zi= {zij : j = 1 , * , Mi), i = 1, 2

we can reduce these errors by moving the origin of the system
to a point located on the line segment joining the centroids of
the sets Z1 and 2,. That is, we replace ZI and Z2 by 2; = { zij
- pc: j = 1, . e * , Mi}, i = 1, 2, where

1) set VO = {yl , . * * , y u } and k = 0;
2) set Y = Vk and apply the Distance Subalgorithm; if it

succeeds set alg = DS, otherwise use the Backup
Procedure (38) and set d g = BP, set vk = v(co Y) and
vk = Y, where Y, satisfies (29);

3) if (35) holds, output vk, Y,, and hi in (29), gK(vk) , and
stop;

1 Mi C zjj, i = 1, 2. (34)
1

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 3, 2010 at 09:54 from IEEE Xplore. Restrictions apply.

GILBERT et al.: DISTANCE BETWEEN COMPLEX OBJECTS IN 3-D SPACE 199

4) if (k = o or 1 vk 1 < 1 Vk- 1) and (Pk has m elements or
less), let Vk+, = p, U { sK(- vk)}, increment k, and
proceed to step 2);

5) if alg = BP, indicate the error tolerance (35) is not
satisfied and stop with the output data indicated in step

6) recalculate vk = v(co Vk) using the Backup Procedure

The algorithm stops with vk % v(K) and, within the
roundoff errors involved in computing gK(vk), 1 Vk - v(K)(I
(gK(vk))lI2. By relabeling the elements of Y, and the A', the
expression for vk has the form (22), which in turn may be
broken down into (23).

It is easy to see that the algorithm always terminates, even if
E = 0. If c is small but reasonable (say 100 x machine error),
the algorithm generally stops in step 3) and rarely passes
through steps 5) and 6). Entrance to steps 5) and 6) implies the
occurrence of a numerical result which is inconsistent with
theory. The condition 1 vk I 2 1 Vk- 1, k 2 1 contradicts the
expected descent. Furthermore, by the design of the Distance
Subalgorithm and the Backup Procedure, pk has rn + 1
elements only if vk = 0. But vk = 0 contradicts the failure of
(35) which is necessary for entrance to step 5). The algorithm
exits in step 5) only after both the Distance Subalgorithm and
the Backup Procedure have been tried. Step 6) guarantees that
the Backup Procedure is always tried before stopping in step
5) .

In practice, the Distance Subalgorithm almost always
succeeds and produces a near point of high accuracy.
Theoretically, both the Distance Subalgorithm and the Backup
Procedure produce affinely independent sets pk, and sK(- v k)
should be affinely independent of pk. Thus the Vk, k 2 1
should be affinely independent. Even if Vo is affinely
dependent, or Vk, k 2 1, is nearly so, the Distance
Subalgorithm usually functions well. We have confirmed this
independently of the Numerical Algorithm by extensive
experimentation with the Distance Subalgorithm.

When K is the set difference of two polytopes it is not
obvious how the initial set Vo should be chosen. We have
tested a variety of schemes. In the absence of additional
information about K such as that described in Section VIII, the
single point initialization Vo = { SK(- Z1 + Zz)} has worked as
well as any. Here, ZI - 22 is the direction between centroids
(see (34)) and serves as a rough estimate of v(K). Note that the
initialization is easy to compute using the procedures outlined
in Section III.

Attention to details in the implementation of the overall
algorithm adds considerably to its efficiency. For example, the
inner products of the elements in pk appear in the Distance
Subalgorithm (or Backup Procedure) for both Y = Vk and Y
= and can be saved for the Y = V k , , computation.
Hence, if p, has U elements, only (U + 1) new inner products
need to be calculated when Y(CO Vk+J is determined.

Another aid to efficiency is the choice of ordering of the sets
Y,, s E { 1, - e , U } , in the Distance Subalgorithm. The sets
most likely to produce the near point should be put at the
beginning of the list. Some of the subsets of Y = Vk have
already been tested in Y = Vk - 1, and they are put at the end of

3) ;

(38), set alg = BP, and proceed to step 3).

the list (essentially, they are eliminated). We have found it
especially effective to put one face of CO Vk at the head of the
list. It is determined by Yl C Y = Vk = pk-1 U
{ S ~ (- V ~ - ~) } suchthat Vk = Yl U { y > andymaximizesy.
sK(- vk- over all y E pk- 1 . Our experience indicates that
CO Yl contains v(co Vk) about 80 percent of the time. The
complete description of our ordering procedure is too lengthy
for inclusion here.

It is worth noting that we have experimented with many
variants of the basic distance algorithm, including those
described in [l] and [29]. Our implementation is in part
motivated by these experiments; for rn = 3 it has proved to be
significantly more efficient than the others which were tried.

VII. THE SUBROUTINE AND NUMERICAL EXPERIMENTS

The algorithm described in the previous section has been
programmed as a Fortran subroutine which is well commented
and provides a number of options. The input data are the
vertices of the two polytopes. The output data include: near
points in each of the two polytopes, the vertices used in their
representation and the corresponding values of the A' (recall
(23) and (24)), the final value of gK(vk), and a variety of error
messages. Options include: the tolerance parameter E , the
shifting of the origin for improved accuracy, the outputting of
internal algorithmic data, and internal or external initialization
procedures. The subroutine has been applied to a large number
of examples in three space. Fig. 4 summarizes the main
results.

The examples were generated by selecting 20 pairs of
polytopes from a family of 12 polytopes. The members of the
family were centered on the origin and were of varying size
(contained in spheres of radius 1 to 4). They included: a line
segment (Ml = 2), an equilateral triangle (M2 = 3), a
rectangular box (M3 = 8), a truncated cone with hexagonal
ends (M4 = 12), truncated cylinders with octagonal and
decagonal cross sections (Ms = 16 and M6 = 20), and a
collection of irregular polytopes generated by placing an equal
number of vertices randomly on circles in two parallel planes

= 100). The twenty pairs selected were: (i, j) = (i, 2), (i, 4),
(i, 5) , (i, 10) with i = 1, 3, 6, 8 and (7, 9), (7, 12), (11, 9),
(1 1, 12). For each of the 20 pairs three cases were considered:
polytopes separated, just touching, or intersecting. In each of
the cases there were 100 different examples, generated by
random translations and rotations of the two polytopes. For the
separated cases the expectation of the relative translation
between the two polytopes was 10/3. The just touching and
intersecting examples were generated by appropriate transla-
tions of the polytopes along the line joining the near points for
the separated examples. The total number of examples was
6000.

The examples were run on a Harris 800 computer, which is
somewhat faster than a VAX 780. The machine precision is
10- In every
example the program ran to completion and did not require the
use of steps 5) , 6) , or the Backup Procedure. The accuracy of
the final results as measured by gK(vk) was excellent; typical
values were in the order of 10-lo.

(M-, = 20, Mg = 40, Mg = 50, M1o = 60, Mi1 = 100, M12

and the parameter c was set equal to

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 3, 2010 at 09:54 from IEEE Xplore. Restrictions apply.

200 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 2, APRIL 1988

3000

2000

EF

o Just Touching
* Near

4000

-

- * .
0 . .

23.6

17.7

t I r*
0.00

t30 120 160 00
M

Fig. 4. Equivalent flops (EF) and CPU time versus the total number of
vertices (M) . Each point is the average of 100 randomly generated examples.

The actual number of operations (multiplies N M , adds NA ,
divides ND, and comparisons Nc) were counted for each
example. These were converted to equivalent flops, EF, by the
following formula:

EF = (t M N M + t A NA + ~ D N D + tcNc)/ (t ~ + t A) (3 9)

where the t’s denote the times required for the operations. For
the Harris the times in microseconds are: t M = 3.8, t A = 2.1,
tD = 6.7, tc = 1.7. For a different machine, EF would be
different because the relative times required for the operations
would be different. However, the variation of EF from
machine to machine should not be very great. The EF’s plotted
in Fig. 4 are the averages over the 100 examples in each case.
The approximate times in seconds for the Harris computer can
be obtained by multiplying EF by 6 x See the CPU
scale in Fig. 4.

The results can be summarized as follows. Remarkably, the
number of iterations k required for termination did not vary
appreciably; for problems of all types and sizes it was
generally in the range 3 to 6. For problems of moderate size,
M = Mi + M, 5 40, the intersection cases are the most
difficult. They require approximately 24 EFIM. For larger
problems the just touching cases are most difficult, with EFIM
ranging between 24 and 27. There is some evidence that EFIM
grows slightly with M, but the increase is definitely less than
log M . When the data for the three cases are averaged
together, the performance is more uniform with EFIMranging
between 14 and 19 for all values of M.

Additional examples have been considered. When the
algorithm is run on polytopes which are very near to each
other, the computational times become close to those for the
just touching cases; but on the average, never do they take
more time than the just touching case. When the polytopes are
widely separated the times drop significantly, with EFIM I
7.

Pairs of line segments, M = 4, were tried using the same
cases and numbers of runs described above. The results for EF

were: separated, 36; just touching, 39; intersecting, 96. For
line segments, the intersecting case (both segments contained
in a common line) is truly pathological and should probably be
discarded. It is interesting to compare our algorithm with the
efficient algorithm developed by Lumelsky [22] for the
special case of line segments. When his algorithm is arranged
to produce the same results as ours, EF ranges between 38 and
40 (using the Harris time weights). Thus our algorithm
appears to be competitive even though it is designed to handle
the general polytope problem.

In general, one might expect the computational effort to be
dependent on the shape of the objects and, for fixed M , Mi and
Mi. In a variety of experiments which have been performed to
test such behavior, some variation has been noted. But it is not
very great, about 25 percent at most. The fact that the effort is
proportional to Mi + Mi is most encouraging. In combinatoric
procedures it is proportional to MjMj.

There is no reason to expect that the algorithm is linear in M
for all classes of polytope pairs. We have constructed an
example in R 2 with M I = I and M2 2 1 which shows the
computations grow as @Mi) = O(M2). This example is
pathological in that the vertices of K2 must be clustered ever
closer to the near point in K2 as M2 increases. Even in this
“bad” example the algorithm works well in the sense that I vk
- v(K)I is exceedingly small after a modest number of
iterations.

vu. AN EXAMPLE OF COLLISION DETECTION

In this section we consider an object which is continuously
translated and rotated through a field of obstacles. Specifi-
cally, its position and orientation are given on a configuration
space path defined by a continuous function q(s). The initial
position corresponds to s = 0 and the terminal position to s =
1. To locate approximately the points of collision on the path,
the distances between the object and each of the obstacles is
evaluated for s = t /T , where t and Tare integers and t = 0,
* * , T. If Tis large, the collision points are located closely by
the values of t where the distance just goes to zero.

The computational time can be decreased by using the
general initialization feature of the distance algorithm. Sup-
pose, for instance, d12(q(s)) has been determined for s = t/T
and the corresponding near points are given by (24). From the
comments in Sections I11 and IV, it is reasonable to assume the
yIi and the y2; are points taken, respectively, from the finite
sets Z1 (q(s)) and Z2(4(s)) which generate K 1 = CO Z1 and K2
= CO Z2. If T is large, the position and orientation of K I and
K2 change only slightly in one time increment and it is likely
that the vertices in (24) for s = t/ T and s = (t + 1)/ Tare the
same. Thus the algorithm is started at s = (t + 1)/T with Vo
= { y l i - y2i, i = 1 , . e * , I } whereyli E Zl(q((t + l)/T))
and y2i E Z2(4((t + l)/T)) have the same indices as the
elements in (24) from the previous stage. Of course, the A’
change to account for the motion of the sets and the algorithm
must determine these changes. But it does not have to spend
time finding the points in (24). Even if new points must be
found by the algorithm, the starting set Vo is likely to be more
effective than the single point initialization described in
Section VI.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 3, 2010 at 09:54 from IEEE Xplore. Restrictions apply.

GILBERT er al.: DISTANCE BETWEEN COMPLEX OBIECTS IN 3-D SPACE 20 1

Fig. 5. The example of collision detection.

Fig. 5 shows a particular example. It was provided to us by
John Canny who used it to demonstrate his quaternion
technique [8] for computing collision times. The initial and
terminal positions of the moving object, KA = K6 U K7,
together with the fixed objects, K l , - - , Ks , are indicated.
The configuration variables specifying the motion are the
Cartesian position and the quaternion representation of rota-
tion given in [8]. The configuration variables vary linearly in s
from the initial position to the terminal position.

Fig. 6 shows the results of the computations. The distances
between KA and each of the five obstacles are denoted by dl , - e, d5. For all values of s it turns out that d6, 5 d7, so that d,
= d6r, i = 1 , * - , 5. The computational times are shown in
Table I for both the special initialization described above and
the single point initialization of Section VI. The improvement
due to the special initialization is significant, and as expected,
gets better as T increases.

Inspection of Fig. 6 shows that object KA collides with
objects K3 and K5 during the course of the movement from s =
0 to s = 1. The collision points are determined by those values
of s for which d3 and d5 just become zero. Our procedure
determines these points within the resolution of the grid. Since
Canny's algorithm is a root finding procedure on s, it locates
the collision points precisely but does not determine the
separation distances. His computational time is 11.6 s, on a
Symbolics 3600 computer.

When object KA intersects K3 or K5 it is of interest to know
the degree of the penetration. Buckley and Leifer [5] and
Cameron and Culley [7] have proposed a negative distance
which measures the penetration. It can be shown that the
negative distance between intersecting objects K, and KJ is
d(K,,KJ) = - m i n { (z (: z E boundaryofK},whereK=K,
- KJ. The computation of the negative distance is difficult
[5]. However, when K, and KJ are compact, convex sets, and
the distance algorithm terminates with Vk = 0 = ~ (c o Y)
where Y = v k has m + 1 elements, it is clear from Section V
that d(K,, K,) 5 -d,swhere d,;is given by d- in (32). Also,
when KA and KJ intersect d(KA, K,) I d(K,, KJ), i = 6, 7.
Thus when K A and KJ intersect, the negative distance has the
bound d(KA, KJ) I - dJ- , where dJ- = max {d;, d - }. Since
- d; and - d; are easily computed, they are plotted in Fig. 6
as negative extensions of d3 and d5. It is not known how
closely these bounds estimate the negative distances d(KA, K3)
and d(KA, K5), but they do determine that significant collision
penetrations have occurred.

We have run a simple test problem where the negative
distance d(K, , K,) can be obtained analytically as a function of

'J.

c

'0'.00 0.20 0.40 0.69 0l.80 !'.a0
S

KA and the Ki.
Fig. 6. Results for the example in Fig. 5. The di are the distances between

TABLE I
CPU TIMES (Harris 800) IN SECONDS FOR THE EXAMPLE OF FIG. 5

Number of Intervals Time with Single Time with Ratio of
in Grid (T) Point Initialization Special Initialization Times

10 0.22 0.13 1.7
100 2.00 0.69 2.9

lo00 19.81 6.32 3.1

q. The computed lower bounds range from good to poor, and
are best when I d(Ki, Kj)J is not too large. Fortunately, this is
the situation of greatest interest.

IX. CONCLUSION
We have presented an algorithm for determining the

Euclidean distance between compact sets in R". The emphasis
has been on polytopes in R3, since this is the single most
important case in applications. Input data for the algorithm are
in the form of finite sets of points whose convex hulls define
the polytopes. This data format is particularly convenient in
robotics applications where the position and orientation of the
polytopes may be functions of configuration variables such as
joint angles. Extensive numerical experience shows that the
algorithm is efficient and reliable with a computational cost
which is approximately linear in the total number of points
specifying the polytopes.

The algorithm has some other special advantages. It
provides the nearest points in the two polytopes. These are of
direct interest and can also be used to compute the gradient of
the distance with respect to the configuration variables. In
continuum problems the algorithp may be initialized in a
special way so that the computational time is significantly
reduced. We have demonstrated this advantage in the collision
detection problem, but it occurs in other applications too, such
as the mapping of collision-free regions in configuration
space, path finding, and path planning. It has been noted that it
is difficult to compute the negative distances of [5], [7] for
intersecting objects. Our algorithm provides, with essentially
no additional cost, a bound on the negative distance.

Finally, a few comments should be made about sets which
are not polytopes or spherical extensions of polytopes.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 3, 2010 at 09:54 from IEEE Xplore. Restrictions apply.

202 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 2 , APRIL 1988

Suppose the algorithm is applied to the vertex sets of
nonconvex polytopes. Then it is easy to see that it produces the
distance between the convex hulls of the nonconvex polytopes.
This distance is a conservative measure of collision and may
be useful. When the distance between an infinite polyhedral
cylinder and a polytope is computed, the computations are
actually simplified: the vertex points are projected on a plane
normal to the axis of the cylinder and the algorithm is applied
in the plane (R2). In the case of general convex sets, it is
necessary to have a procedure for evaluating the support
function of the sets. This is easy to arrange for ellipsoids and
some other special objects. The convergence is not finite, but
the algorithm can be made, through the choice of E , to stop
with a solution of specified accuracy. Prior experience with a
similar algorithm [l] indicates that convergence rates for
general sets should be good.

APPENDIX I

PROOF OF THEOREM 1

Result 1) is obvious if I SK(- x) I < 1 x I so assume 1 sK(- x) I
L 1x1 and define

z=x+X(sK(-x)-x)

x = gK(x) /] x - SK(- x))2.

It is easy to see that)x - sK(-x)l L 2gK(x). Thus 0 < h

Ix I2 . To show result 2), first let gK(x) = 0. Since

[x i 2 = -hK(-x)=min { z - x : z E K)

d 0.5, z E CO {x, S K (- X) } , and \212 = I x \ * - hgx(X) <

it is clear that

1x12s J x) 2 +) z - x) 2 =) 2) 2 + 2 () x) 2 - z . x)-c 1212,

for all z E K .

Therefore, x = v(K). Now let x = v(K) and assume gK(x) >
0. Since result 1) implies x # v(K), we must have gK(x) 5 0.
However, x E K, (15) and (25) imply gK(x) 2 0. Therefore,
gK(x) = 0. Result 2) implies I v(K)I = - h ~ (- v(K)) 5
z.v(K) for all z E K; consequently, Ix - v(K)12 I lx I2 -
x - v (K) I 1x12 + hK(-X).

APPENDIX I1

PROOF OF THEOREM 3

First, we consider the determination of v(aff Y,) for Y, C
Y. If Y, is a singleton the solution is trivial, so assume Y, has r
> 1 elements and let x1, - . -, x, represent an arbitrary
ordering of these elements. In this case

r

v (aff Y,) = X'x,

Since f is convex, the necessary and sufficient conditions for
optimality are 8f(X2, - a - , X")/aA' = 0, i = 2, * - * , r.
Consequently, X E R' solves the linear system

A,X=b A, E Rrx' b E R' (40)

where

(41)

To determine A, define Al(Y,), i E I,, as the cofactor of
element A)(xl, * , x,) where j satisfies x, = yI . This is
notationally correct since one may show, using elementary
row and column operations on the matrix A,(xl, - - , xr), that
these cofactors are invariant with respect to the selected order
to the elements of Y,. If we define A(Y,) as the determinant of
A,, then a first row expansion yields the last equation in (30).
If A(Y,) > 0 then the solution to the linear system (41) is
unique, and expressing it by Cramer's rule yields

v (aff Y,) = [Al(Y N A (K)Iyl . (42)
r E Is

The existence of this representation is guaranteed by the
following Lemma.

Lemma I: A(Y,) > 0 if and only if Y, is affinely
independent.

Proofi If to each row i > 1 of A, we add the product of
row 1 times (x l - x l) - x l , then it is clear that A(Y,) is equal to
the determinant of QTQ, where

Qs= [(xz-XI) * (X'-X~)] E R m x (r - l) .

Note that Y, is affinely independent if and only if the columns
of Q, are linearly independent. Since A(Y,) is the Gramian of
the columns of Qs the result follows immediately.

The recursive formulas (30) follow from the above cofactor
definition of the AI(Y,). Append a row and column to A, using
xr+ 1 = yj, j E Z,', as additional data. Then expanding the
cofactor A,(Y, U (U,}) of this larger matrix about the first r
elements in the appended row gives (30).

We now show that l), 2), 3) imply the existence of (29) with
the A' defined by (31). It is geometrically obvious, and can be
proved from (41) that y = v(aff Y,) if and only if

y * (y -yk)=O, for all k E I,. (43)
i = 2 Let y = v(aff Y,), and suppose 1) and 2) are satisfied. Then

from Lemma 1 and (42), y is expressed in the form given by
(29) and (31). In addition, l), 3), (42), and (30) implyy.(yk
- y j) I 0, j E I,', k E I,. Using this and (43) we obtain

y * (y - yi) I 0, i E (1, * - a , U}. Hence, foranyx E CO Y
we have

where
r

h I = l - C hi
i = 2

and the X2,
minimization of

* e , A' E R result from the unconstrained

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 3, 2010 at 09:54 from IEEE Xplore. Restrictions apply.

GILBERT et al.: DISTANCE BETWEEN COMPLEX OBJECTS IN 3-D SPACE 203

y * (y - x) = C a’y (y - y i) I o .
i = I

Therefore, g c o y (y) = 0 and by result 2) of Theorem 1,

We now show the converse. Assume y = v(co Y) is given
by (29). Theorem 1, result 2), implies y * (y - yi) I 0, i E
(1 , - - a , U}. Since A’ > 0, i E I,, and

v(c0 Y) = y .

X’y . (y-y;)=O
iE Is

it is clear y * (y - y ;) = 0, i E I,, and v(aff Y,) = y .
However, Lemma 1 yields A(Y,) > 0. Because the coeffi-
cients in (42) and (29) are unique, (31) holds. Since X’ > 0, i
E I,, we have A;(Y,) > 0, i E I,. Finally, subtracting (43)
fromy*(y -U,) I O , j € (1, ..., u},resultsiny.(yk -y ,)
5 0, j E I,’, k E I,. Hence, using A(Y,) > 0, y = v(aff Ys),
(42), and (30) we must have Aj(Y, U {U,}) 5 0, j E I,‘.

Result (33) follows from (42) and (43) by setting y =
v(aff Y,).

REFERENCES
R. 0. Barr, “An efficient computational procedure for a generalized
quadratic programming problem,” SIAM J. Contr., vol. 7 , pp. 415-
429, 1969.
R. 0. Barr and E. G. Gilbert, “Some efficient algorithms for a class of
abstract optimization problems arising in optimal control,” IEEE
Trans. Automat. Contr., vol. AC-14, pp. 640-652, 1969.
J. W. Boyse, “Interference detection among solids and surfaces,”
Commun. ACM, vol. 22, pp. 3-9, 1979.
R. A. Brooks and T. Lozano-Perez, “A subdivision algorithm in
configuration space for findpath with rotation,” IEEE Trans. Syst.,
Man, Cybern., vol. SMC-15, pp. 224-233, 1985.
C. E. Buckley and L. J. Leifer, “A proximity metric for continuum
path planning,” in Proc. 9th Int. Joint Conf. on Artificial Intelli-
gence, pp. 1096-1 102, 1985.
S. A. Cameron, “A study of the clash detection problem in robotics,”
in Proc. IEEE Int. Conf. on Robotics and Automation, pp. 488-
493, 1985.
S. A. Cameron and R. K. Culley, “Determining the minimum
translational distance between two convex polyhedra,” in Proc. IEEE
Int. Conf. on Robotics and Automation, pp. 591-596, 1986.
J . Canny, “Collision detection for moving polyhedra,” MIT Artificial
Intelligence Lab. Rep. 806, 1984.
F. Chin and C. A. Wang, “Optimal algorithms for the intersection and
minimum distance problems between planar polygons,’’ IEEE Trans.
Comput., vol. C-32, pp. 1203-1207, 1983.
R. K. Culley and K. G. Kempf, “A collision detection algorithm based
on velocity and distance bounds,” in Proc. IEEE Int. Conf. on
Robotics and Automation, pp. 1064-1069, 1986.
D. P. Dobkin and D. G. Kirkpatrick, “A Linear algorithm for
determining the separation of convex polyhedra,” J. Algorithms, vol.

B. R. Donald, “On motion planning with six degrees of freedom:
solving the intersection problems in configuration space, ” in Proc.
IEEE Int. Conf. on Robotics and Automation, pp. 536-541, 1985.
H. Edelsbrunner, “On computing the extreme distances between two
convex polygons,” J. Algorithms, vol. 6, pp. 515-542, 1985.
E. G. Gilbert, “An iterative procedure for computing the minimum of a
quadratic form on a convex set,” SIAM J. Contr., vol. 4, pp. 61-80,
1966.
E. G. Gilbert and D. W. Johnson, “Distance functions and their
application to robot path planning in the presence of obstacles,” IEEE
J. Robotics Automat., vol. RA-I, pp. 21-30, 1985.
E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for
computing the distance between complex objects in three space,” in
Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1883-
1889, 1987.
D. W. Johnson, “The optimization of robot motion in the presence of
obstacles,” Univ. of Michigan, Ph.D. dissertation, 1987.
D. W. Johnson and E. G. Gilbert, “Minimum time robot path planning

6, pp. 381-392, 1985.

in the presence of obstacles,” in Proc. IEEE Conf. on Decision and
Control, pp. 1748-1753, 1985.
0. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. Robotics Res., vol. 5, pp. 90-98, 1986.
D. T. Lee and F. P. Preparata, “Computational geometry-A survey,”
IEEE Trans. Comput., vol. C-33, pp. 1072-1101, 1984.
T. Lozano-Perez, “Spacial planning: A configuration space ap-
proach,” IEEE Trans. Comput., vol. C-32, pp. 108-120, 1983.
V. J. Lumelsky, “On fast computation of distance between line
segments,” Inform. Proc. Letters, vol. 21, pp. 55-61, 1985.
W. Meyer, “Distances between boxes: Applications to collision
detection and clipping,” in IEEE Int. Conf. on Robotics and
Automation, pp. 597-602, 1986.
M. Orlowski, “The computation of the distance between polyhedra in
3-space,” presented at the SIAM Conf. on Geometric Modeling and
Robotics, Albany, NY, July 1985.
W. E. Red, “Minimum distances for robot task simulation,” Ro-
botica, vol. 1, pp. 231-238, 1983.
R. T. Rockafellar, Convex Analysis. Princeton, NJ: Princeton Univ.
Press, 1970.
J. T. Schwartz, “Finding the minimum distance between two convex
polygons,” Inform. Process. Lett., vol. 13, pp. 168-170, 1981.
J. T. Schwartz and M. Sharir, “On the piano movers problem I, the
special case of a rigid polygonal body moving amidst polygonal
barriers,” Commun. Pure Appl. Math., vol. 36, pp. 345-398, 1983.
P. Wolfe, “Finding the nearest point in a polytope,” Math. Program-
ming, vol. 11, pp. 128-149, 1976.

d

Elmer G. Gilbert (S’5l-A’52-M’57-SM’78-F’79)
received the B.S. and M.S. degrees in electrical
engineering and the Ph.D. degree in instrumenta-
tion engineering, all from the University of Michi-
gan, Ann Arbor.

Since 1957 he has been a faculty member in the
Department of Aerospace Engineering at the Uni-
versity of Michigan, where he is currently a
Professor. He is also a member of the Department
of Electrical Engineering and Computer Science
and a participant in the Center for Research on . .

Integrated Manufacturing at the university. His current research interests
include optimization, nonlinear control, and robotics. His special awards
include the 0. H. Schuck Award for best paper at the 1978 Joint Automatic
Control Conference and a Control Systems Society best paper award in 1979.
He has published numerous papers and holds eight patents.

Daniel W. Johnson was born in Detroit, MI, on
April 23, 1955. He received the B.S. degrees in
mathematics and physics from Lawrence Institute of
Technology, Southfield, MI, in 1976. He received
the M.S. degree in computer, information and
control engineering and the Ph.D. degree in aero-
space engineering from the University of Michigan,
Ann Arbor, MI, in 1983 and 1987, respectively.

From 1976 to 1979, he was a Mathematician and
later a Control Systems Engineer with Bendix
Research Laboratories. Southfield. MI. From 1979

to 1984, he was a Member of the Technical Staff at Bendix Advanced
Technology Center, Columbia, MD. He is currently a Senior Staff Engineer
with Martin Marietta Aero and Naval Systems, Baltimore, MD. His
professional interests include flexible structure dynamics and control,
multivariable plant identification, optimization theory, and computer-con-
trolled robotics.

Dr. Johnson is a member of the American Institute of Aeronautics and
Astronautrics.

Indian Institute of Scienc
interests are mainly in the
and optimization.

S. Sathiya Keerthi was born in Aruppukottai,
India, on March 21, 1959. He received the B.E.
(Hons.) degree in mechanical engineering from
University of Madras, India, in 1980, the M.S.
degree in mechanical engineering from University
of Missouri-Rolla, in 1982, and the Ph.D. degree in
computer, information and control engineering,
from the University of Michigan, Ann Arbor, in
1986.

He has recently joined the faculty of the Depart-
ment of Computer Science and Automation at the

:e, Bangalore, as Assistant Professor. His research
; areas of computational methods of optimal control,

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 3, 2010 at 09:54 from IEEE Xplore. Restrictions apply.

