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A Fast Procedure for Computing the Distance 
Between Complex Objects in 

Three-Dimensional Space 
ELMER G. GILBERT, FELLOW, IEEE, DANIEL W. JOHNSON, AND S .  SATHIYA KEERTHI 

Abstract-An efficient and reliable algorithm for computing the 
Euclidean distance between a pair of convex sets in Rm is described. 
Extensive numerical experience with a broad family of polytopes in R 3  
shows that the computational cost is approximately linear in the total 
number of vertices specifying the two polytopes. The algorithm has 
special features which makes its application in a variety of robotics 
problems attractive. These are discussed and an example of collision 
detection is given. 

I. INTRODUCTION 
N ROBOTICS and other fields, such as computer-aided I design and computer graphics, it is important to know if two 

objects, characterized by mathematical models in three- 
dimensional space, intersect or are in near proximity. The 
most natural measure of proximity is the Euclidean distance 
between the objects, i.e., the length of a shortest line segment 
joining the two objects. In this paper we present an approach 
for computing this distance. It applies to a complex family of 
shape models and is particularly convenient when the objects 
are subject to changes in position and orientation. Because the 
approach is highly efficient, we expect that it will become a 
useful tool in solving collision detection problems and path 
finding problems (see, e.g., [3], [6], [8], [IO] and [4], [5], 
[12], [21], [28]). Our own applications have been to optimal 
path planning in the presence of obstacles [ 151, [ 171, [ 181. 

The key element of the approach is an algorithm for 
computing the distance between convex sets in m-dimensional 
space. The algorithm is designed to be particularly efficient 
when m = 3 and the convex sets are polytopes defined by 
their vertices. While it is iterative, the algorithm terminates in 
a finite number of steps when the sets are polytopes. 
Numerical experience with such problems is most encourag- 
ing. For a wide variety of examples the computational times 
are nearly linear in the total number of vertices, M = MI + 
M2, required to specify the two polytopes. Moreover, the 
coefficient of linear growth is quite small. 

Manuscript received October 24, 1986; revised July 27, 1987. This 
research was partially supported by the Center for Research in Integrating 
Manufacturing at the University of Michigan. 

E. G. Gilbert is with the Department of Aerospace Engineering, University 
of Michigan, Ann Arbor, MI 48109. 

D. W. Johnson was with the Department of Aerospace Engineering, 
University of Michigan, Ann Arbor, MI 48109. He is now with Martin 
Marietta Aero and Naval Systems, Baltimore, MD 21220. 

S. S.. Keerthi was with the Department of Aerospace Engineering, 
University of Michigan, Ann Arbor, MI 48109. He is now with the 
Department of Computer Science and Automation, Indian Institute of Science, 
Bangalore 560 012, India. 

IEEE Log Number 8718909. 

There is an extensive literature concerning the polytope 
distance problem, so we will be content to give a brief review 
of some representative papers. Thebroblem is in the field of 
computational geometry [20]. Consequently, many algorithms 
are specifically designed to achieve bounds on the form of the 
asymptotic computational time. For two-dimensional prob- 
lems, Schwartz [27] gives an O(log2’M) algorithm, and more 
recently, O(log M) algorithms have been exhibited [9], [13]. 
The three-dimensional problem has been considered in [24] 
and [ l l ]  with respective times of O(M log M) and O(M). 
Because of their complexity and special emphasis on asymp- 
totic performance, it is not clear that the algorithms in the 
preceding papers are efficient for practical problems where M 
is large, but not exceedingly large. Unfortunately, very few, if 
any, computational experiments have been done. Other 
schemes have also been described: Red [25] presents a 
program which uses a projection/combinatoric approach for 
polyhedra with facial representations, the authors of [5] and 
[7] are concerned with “negative” distances for intersecting 
objects (more about this later), Meyer [23] considers boxes, 
Lumelsky [22] considers line*segments. It is also possible to 
convert the distance problem to a quadratic programming 
problem and apply any of the well-developed computer 
programs which are applicable. 

Unlike the procedures of the previous paragraph, our 
algorithm has its origins in mathematical programming and 
treats directly the specification of the convex sets in terms of 
their support properties (for polytopes these properties are 
obtained easily from their vertices). The algorithm is in the 
same family as the algorithms described originally by Barr, 
Gilbert, and Wolfe [I], [2], [29] and may be viewed as a 
descent procedure which works on the distance between 
elementary polytopes contained in the convex sets. We have 
devised a special subalgorithm for evaluating the distance 
between the elementary polytopes. It contributes significantly 
to the overall efficiency of the algorithm. An important feature 
of the algorithm is its very general initialization features. 
When used to detect collision along a continuous path in the 
configuration space which describes the position and orienta- 
tion of the objects, they allow significant reductions in the total 
computation time. The algorithm has good numerical proper- 
ties and a thoroughly tested Fortran subroutine is available. 
An early version of the algorithm due to Johnson was used in 
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the optimal path planning computations described in [ 181. This 
paper is similar to [16]. 

The plan of the paper is as follows. In Section 11 we consider 
the distance between a pair of objects taken from a general 
family of nonconvex objects and suggest how our algorithm 
may be applied to its computation. We also review what 
happens to the distance when the position and orientation of 
the objects is specified by a set of configuration variables. 
Section I11 reviews some results from convex analysis, and 
shows how the problem of computing the distance between 
convex sets can be reduced to the basic problem of finding the 
distance between the origin and a single convex set. Section IV 
describes the theoretical algorithm for solving the basic 
problem; Section V presents the distance subalgorithm for 
elementary polytopes; and Section VI introduces modifica- 
tions in the overall algorithm to account for the effects of 
numerical errors. Many numerical experiments have been 
carried out; these are reported in Section VII. In Section VIII, 
the algorithm is applied to a collision detection problem due to 
Canny [8]. A conclusion summarizes the key contributions and 
indicates some extensions. An initial overview of the paper 
can be had by reading Sections 111, IV, VII, and VIII. 

11. OBJECT REPRESENTATIONS AND DISTANCE 
Given two objects A and B in three space, it is convenient to 

represent them by compact sets: KA , K B  C R 3 .  In particular, 
the points in KA and KB describe, respectively, the space 
occupied by the objects A and B.  For z = (zl, z2, z 3 )  E R 3 ,  
let IzI denote the Euclidean length J ( Z ’ ) ~  + ( z ~ ) ~  + ( ~ 9 ~ .  
The distance between the objects A and B is defined by the 
closest points in KA and KB: 

d(KA, KB)=min {Ix-yI : x E K A , ~  E K B } .  (1) 

While computational considerations may suggest the use of 
other metrics in (l), the Euclidean distance Ix - yl is the 
most natural. It conforms with the “physical” notion of 
distance and makes d invariant with respect to different 
choices for the origin and orientation of the coordinate system. 
Because KA and KB are compact, the minimum in (1) exists 
and d is defined. 

It is only for simple object pairs such as a sphere and a line 
segment that formulas for d may be given [19]. Since our 
algorithm allows d to be computed for convex polytopes, a 
much wider class of object pairs is permitted. In fact, it is 
possible to treat conveniently a rich family of nonconvex 
shapes: objects which are the union of convex polytopes and 
their spherical extensions. 

Suppose A and B are each the union of several objects. 
Then d(KA, KB) may be computed in terms of the distances 
between the constituent objects. Specifically, let 

K A =  U Kl KB= U Kj (2) 
I€[* J E I B  

where the K,,  i E Z = (1, * . a ,  N }  are compact sets in R 3 ,  
and ZA and ZB are disjoint index sets in Z. Then 

d(KA, KS)=min {dij : i E ZA,j E Z B }  (3) 

W 
Fig. 1 .  An example of object representation. The near point pair v i ,  v4 for 

K,  and K4 is the near point pair for KA and KB; thus d(K, , K B )  = d14. 

where 

dJ=min { Ix -y I  : x E K,, y E K J }  =d(K, ,  KJ). (4) 

S e e  the example in Fig. 1. 
If the distance between objects A and B is known, so is the 

distance between their spherical extensions [18]. The r- 
spherical extension of K C R 3  is defined by 

K ‘ = { x  : I x - y l s r ,  y E K } ,  r z 0 .  ( 5 )  

It is easy to verify that 

d ( K 7 ,  K z ) =  ( ~ ( K A ,  KB)  - r ~  - r B ) +  (6) 

where (a)+ = a, a > 0, and (a)’ = 0, a s 0. More 
generally 

KA= U K ;  KB= U K: (7) 
I E JA ~ € 1 6  

implies 

d(KA, KB)=min {(dlJ-rl-r,)+ : i E ZA,j E IS} (8) 

where the d,J are given by (4). If the K, are convex polytopes, 
(7) is the promised family of nonconvex shapes. Moreover, 
the polytope algorithm may be applied to the d,, . 

Spherical extensions are valuable for several reasons. They 
may be used to cover an object with a shell of safety: if x 
K‘, it is clear that the distance between x and K exceeds r. 
More importantly, they may lead to economical representa- 
tions of complex objects. Object A in Fig. 1 is a simple 
example. It is the union of two spheres (extensions of points) 
and a circular cylinder with spherical end caps (an extension of 
a line segment). Another example is a solid rectangular plate 
of thickness 2r with round edges; it is modeled by an r- 
spherical extension of a planar polytope with four vertices. 
Similarly, more general wire-frame objects can be given 
rounded representations. 

Often the position and orientation of the objects K, in (2) are 
specified by a configuration vector q E R“. For instance, if A 
and B are interacting manipulators whose links and payloads 
are the K, , the components of q are the joint variables for the 
two manipulators. Our approach to object representation 
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handles such situations conveniently. To be more specific, K; 
is obtained by translating and rotating a compact set Ci: 

such that aff E = aff Y. The set CO Y is a convex polytope 
whose vertices are contained in Y. Suppose X belongs to the 
translate of a linear space X. The Caratheodory theorem [26] 
states that there is no loss of generality if in (12) I is restricted K;(q )={  Ti(q)w+pi(q) : w E Ci}. (9) 

Here p i ( q )  E R 3  is the translation, T(q) E R 3 x 3  is the 
(orthogonal) rotation matrix, and C; describes Ki in its 
reference position. In practice, there are various ways of 
obtaining p i ( q )  and Z(q). For example, they may be 
extracted from the usual 4 x 4 homogeneous transformation 
matrix. If Ci is a polytope with vertices wu E R 3 , j  = 1, - -, 
M;, the corresponding vertices of Ki(q )  are given by zu = 
Ti(q)wu + pi (q) ,  a simple computation. It follows from the 
orthogonality of T;(q) that the reference object for a spherical 
extension is independent of q; i.e., 

Kl' (q)={Ti (q)w+pi(q)  : w E Cl'}. (10) 

In [15] the dependence of du on q has been examined in 
detail. Suppose the elements of Tk(q) andpk(q), k = i, j are 
continuously differentiable in q. Then it follows [15] that 
du(q) is Lipschitz continuous and has a gradient (Frechet 
derivative) almost everywhere. It is easy to give examples (K; 
and Kj  may be convex) where at a specific q, du(q) does not 
have a gradient. If do(@ > 0 and the nearest points vk E 
Kk(q) ,  k = i, j, are uniquely determined, du(q) does have a 
gradient at q. In particular [15], we have V,du(q) = 

w; = Tz(q ) (vk  - pk(q)) ,  k = I ,  j, and the super Tdenotes 
matrix transpose. Once vi and uj have been found (by the 
distance algorithm) the evaluation of this expression is 
relatively easy to carry out. We have used V,du(q) in an 
optimum path planning procedure [15], [17], [NI, but its 
general value in anticipating collision is evident. 

VqlTi(q>w~ + pi(4) - q(4):; - Pj(q)1, 4 = 4, where 

sothat1 I d i m X  + 1. 
A nearest point in X to the origin v ( X )  is determined by 

v ( X )  E X, Iv(X)l =min (1x1 : x E X}. (13) 

In general, there may be several points v ( X )  satisfying (13). 
If X is convex, it is well known that v ( X )  is uniquely 
determined [26]. 

By (12) it is obvious that the unique point Y(CO X )  has a 
representation of the form 

I 
v ( c o X ) = C  X'X;,X~ E X, Ai>O, X ' + . * * + X ' = l .  (14) 

i=  1 

Often, the X i ,  the xi ,  and I are not unique. However, it is 
always possible to obtain a representation with: a) 1 s m + 1 
when Y(CO X )  = 0 and I 5 m when v(co X) # 0, b) {XI, 

- e ,  X I }  affinely independent. 
The first part of a) is obvious from the Caratheodory 

theorem. In the second part of a), Y(CO X) is in the boundary 
of CO X. Thus v(co X )  E H f l  CO X where H is a support 
hyperplane of CO X [26]. Since dim H = m - I the 
Caratheodory theorem implies I I m. If (14) holds and { X I  , 
* - * , xl} is affinely dependent it is always possible to eliminate 
some of the xi and obtain an affinely independent subset; the 
procedure for doing this is the same as the one used in the 
usual proof of the Caratheodory theorem. 

The support function of X, hx: R" --* R, is defined by 

hx(q)=max { x  q : x E X } .  (1 5 )  

We use ~ ~ ( 1 )  to denote any solution of (15). Specifically, 
sx(q) satisfies 

m. PRELIMINARIES 

In this section we introduce some notations and basic results 
which are required for the algorithm. Everything is stated in hA1) =Sx(1) - 1 sx(1) E X .  (16) 
R ", because the results are not restricted to m = 3. We use 
x-y  for the inner product of x,  y E Rm and IxIz = x-x. For 

denotes the Minkowslu set sum or difference. Throughout the 

Since it is easy to prove that hx = h,x and sx = S,X, 

hmy(q) and sWu(q) can be determined by a simple enumera- 
tion of inner products: 

X I ,  Xz C R", X I  k 52 = {XI k xz : x i  E X i ,  XZ E X2} 

section X C Rm is compact and Y C Rm is a finite set of 
points { A ,  -.-,U,}. 

hwy(q)=hy(q)=max {y i  - q : i = l ,  - e * ,  U} 

The affine and convex hulls of X are given by ~ , Y ( ~ ) = S Y ( V ) = Y ~ ,  Uj * v = ~ Y ( v ) -  (17) 

Thus (17) provides a simple procedure for evaluating the 
support properties of the polytope CO Y. 

Fig. 2 displays some of the above notation and results. Note 
v(co Y) has the representation (14) with X = Y, I = 2, x1 = 
y5 ,  and xz = y6. 

Consider now the problem of finding du in (4) when Ki and 
Kj are compact and convex. For convenience, assume hereaf- 

(12) ter that i = 1 a n d j  = 2. Clearly 

It is easily confirmed that aff X is the translate of a linear K = ~ ~  -Kz. (18) 
space. For example, aff Y = Y + {yl}, where Y is the linear 
span of {yz - yl , e, yv - y1 }. Y is affinely independent if This seems like a simpler problem than (4), but it is only 
dim aff Y = dim Y = U - 1. If Y is not affinely independent, superficially so. While the set difference K = K1 - KZ is 
it is always possible to pick an affinely independent set E C Y convex, it is generally more complex than either KI or K2.  

(1 1) 1 aff X =  

co X =  { X;xi : xi E X ,  A i r  0, A ' +  - + A'= 1 . 

Xixi : xi E X ,  X1 + - - * + XI= 1 r i = l  

i=  I 1 
dlz=min { l z l  : E K }  = 
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CO Y 

Fig. 2. An example in R2 showing notation from Section III for Y = 
{ V I ,  .... Val. 

This is apparent when K1 and K2 are the polytopes 

K k = C O  z k ,  z k = { z k , :  / = I ,  ” * ,  Mk}. (19) 

Then it is easy to show that K is the polytope 

K=CO Z,  

Z = { Z ~ ~ - Z ~ ~ :  i = l ,  . * . , M I , J = l ,  - . . , M 2 } .  (20) 

Since Z has M1M2 elements, K is much more complex than 
either Kl or K2.  This complexity appears in [21] and in the 
work of others who have used the set difference. 

Our algorithm determines dI2 by solving the problem (18). 
Its steps require only the evaluation of h K  and sK.  Despite the 
complexity of K ,  these functions are easy to compute from K1 
and K2: 

h K ( 7 )  = h K i ( r ] )  + h K 2 (  - 71, s K ( 7 )  ‘ S K I  (7) -sK2( - 7)-  (21) 

For the polytope case, (17) and (21) show that the computa- 
tional effort associated with hK and sK is proportional to MI + 
M2, not MlM2 as might first be expected. 

In our subsequent description of the algorithm it simplifies 
matters to base everything on K and avoid specific reference to 
Kl and K2.  Let us indicate how this can be done. When the 
algorithm stops, it produces the following data: / 5 m + 1 ,  hi 
> O,yi  E K ,  i = 1, a . . ,  1, 

I 

As input the algorithm uses initial points from K1 and K2 and 
evaluations of hK and sK by (2 1). Hence, y; = y1 - A; ,  y1 E 
Kl , y2j E K2, and (22) yields 

v(K)=v1(K1, Kd-vz(K1, K2) (23) 

where 
I 

YI(KI, K 2 ) = x  X‘YI; 
I =  I 

are, respectively, near points in K I  and K2. If v1 (KI , K2) and 
v2(Kl, K2) are in “parallel sides” of Kl and K2, they may not 
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be unique (even though v ( K )  is unique). In case of nonunique- 
ness, the pair of near points provided by the algorithm has no 
special properties. 

IV. THE THEORETICAL A L ~ R I T H M  
We now present the algorithm for determining v(K)  when K 

C Rm is compact and convex. If K is a polytope, it is shown 
that this algorithm terminates after a finite number of steps. 

The basic idea is due to Barr and Gilbert [ 11, [2] : generate a 
sequence of polytopes CO V ,  contained in K such that their 
near points v(co V k )  converge to v(K) .  It is necessary to 
compute the v(co V k ) ,  but this takes little time because the 
polytopes have at most m + 1 vertices. See the next section. 

To state the algorithm, we first introduce criteria for descent 
and optimality and establish a bound on approximation error. 

Theorem 1: Let K C Rm be compact and convex and define 
g K :  Rm + R by 

= 1x1 + h K (  --XI. (25) 

Suppose x E K. Then 1) if gK(x)  > 0 there is a point z in the 
line segment CO { x ,  sK( - x ) }  satisfying IzI < 1x1; 2) x = 
v(K) i f  and only i f g K ( x )  = 0; 3)  I X  - v(K)I2 5 &(x). 

For completeness, a proof of the theorem is given in 
Appendix I; its details have appeared in similar contexts 
before [ 141, 1291. 

D i s t a n c e  Algorithm: Given a compact convex set K C Rm 
andinitialpointsyl, - - - , y u  E K,  15  U 5 m + 1,perform 
the following steps: 

1) set Vo = {yl,  - * ,  y v }  and k = 0; 
2) determine vk = v(co V k ) ;  
3) if g K ( v k )  = 0, set v ( K )  = vk and stop; 
4) set V k + l  + P k  U { s K ( -  Y;,)}, where V;, c v;, has rn 

elements or less and satisfies vk E CO p k ,  increment k,  
and proceed to step 2). 

Clearly, Vk C K and v;, E K for k L 0. If the algorithm 
does not stop in step 3), then g K ( v k )  > 0 and Theorem 1 
implies v;, z 0. Hence, the existence of V;, in step 4) is 
guaranteed; see result a) following (14). Furthermore, descent 
in the next iteration is guaranteed since result 1)  of Theorem 1 
implies 

I vk+ 1 1 = I v (CO Vk + 1 ) 1 5 I v (CO { vk, s K (  - v k ) } )  I < I vk 1 
(26) 

Fig. 3 illustrates the steps of the algorithm when K is a 
polytope co { z1, * * - , zs } in R 2 .  For VO = { 21, z2, z3} it can 
be seen that 

Vo={Z2, z3}, Vi=Vo U {z4}, Pi={z3, zq} 

Vz= PI U { Z s } ,  v2=v(K) E CO (24, Zs}. (27) 

When VO is the single point { z z }  it may be verified that 

V2=Pl U {z4}, ~ 2 = v ( K ) .  (28) 
In general, the algorithm generates an infinite sequence 
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0 
Fig. 3.  An example in RZ illustrating the steps in the Distance Algorithm. 

{ v k }  which converges to u(K) .  The proof follows from the 
same arguments used in the convergence proof for the method 
of Barr and Gilbert (see [l], [14]). The convergence proof is 
simpler when K is a polytope because v(K) is obtained after a 
finite number of steps. 

Theorem 2: Suppose 2 C R " is a finite set of points and K 
is the polytope CO 2. Assume s ~ ( q )  E 2 for all q E R". Then 
the Distance Algorithm generates v(K) in a finite number of 
steps. 

Proof: Clearly, K = CO (2 U Vo) and 2 U Vo C Rm is 
finite. Assume v ( K )  is not generated in N steps where N is the 
number of nonempty subsets of 2 U VO. In this case, g K (  vk) 

> 0 and 1 vk+ I < I vk I for all 0 5 k < N. Since near points 
are unique v k  # V, for any 0 s 1 < k I N ,  and since Vk C 
2 U V, for all 0 I k I N ,  every subset of 2 U VO must have 
entered the algorithm. However, v(K) E CO Pfor some P C 
2 U V, (see result a) following (14)). Therefore, v(K) = 
v(co Vk) for some k < N ,  which is a contradiction. 

The requirement that sK(v) E 2 is easy to obtain even when 
K is the set difference of two polytopes. This is clear from (17) 
and (21) and the associated discussion. 

If VO C 2, it follows from the steps of the algorithm that Vk 
C 2 for all k > 0. Thus when the algorithm terminates, v(K) 
has a representation of the form (22), where the y; E 2. This 
observation is useful for initializing the algorithm in contin- 
uum problems. See Sections VI and VI11 for more details 
concerning this and the choice of the initial points. 

V. THE DISTANCE SUBALGORITHM 
In each iteration of the Distance Algorithm step 2) requires 

the determination of v(co Y ) ,  Y = { y , ,  . e ,  y u }  C R", 
where Y = Vk. In this section we describe a procedure 
originated by Johnson [17] for doing this. It is particularly 
efficient when U is small and yields a representation of the 
form 

v (CO Y ) =  h'y;, 
;€is 

h ' = l ,  h'>O, i E 1, c (1 ,  e.., U} 
f € l s  

Y,= { y j  : i E I,} is affinely independent (29) 

where s indicates a particular member of the family of all 
nonempty subsets of Y .  The existence of such a representation 
is a consequence of result b) following (14). Note that Y, 
becomes v k  in step 4) of the Distance Algorithm. Because it is 
affinely independent, v k  has a minimal number of elements. 
This simplifies Vk+ I and makes the computations in the next 
iteration of the Distance Algorithm easier. 

Since U is small, it is effective to take a combinatoric 
approach where all 

U =  [ ~ ! / k ! ( ~ - k ) ! ]  
k =  I 

subsets of Y are successively tested until a representation of 
the form (29) is found. Geometrically, this involves checking 
the open subsets of the polytope CO Y to see if they contain 
v(co Y ) .  If U = 4, there are at most U = 15 such subsets to 
examine. For example, if U = 4, m = 3,  and Y is affinely 
independent, CO Y is a three-dimensional simplex in R 3  and 
the U = 15 open subsets are the 4 vertices, 6 open edges, 4 
open faces, and interior of the simplex. 

We begin by stating a theorem which characterizes the 
representation (29). Let I,' be the complement of Z, in Z and 
Y,, s = 1 ,  * * , U, be an ordering of the subsets of Y.  Define 
real numbers A;(Y,), i E I,, and A(Y,) by 

A j ( { y j } ) = l ,  i E Z 

Aj(% U {yj>>= Ai(Ys)(yi . Yk-Yi  * Y j ) ,  
i E Is 

k E I,, j E I,' 

It turns out that the choice of k E Z, does not affect the value 
of Ai( Y, U {y,}. To be definitive, we have set k = min i, i E 
Z, in our computations. Inspection shows that (30) can be 
viewed as a recursion which determines the A;( Y,) in order of 
increasing cardinality of Y,. The total number of operations 
for all subsets of Y is modest: U = 2 requires 3 inner product 
evaluations, U = 3 requires 6 inner product evaluations and 12 
multiplies, U = 4 requires 10 inner product evaluations and 36 
multiplies. 

Theorem 3: The representation (29) holds for Y, if and only 
if 1) A(Y,) > 0,  2) Ai(Y,) > 0 for each i E Z,, 3)  A,(Y, U 
{ y , } )  I 0 for each j E Z,'. Furthermore, the X i  in (29) are 
given by 

h'=A;( Y,)/A( Y,). (31) 

The theorem is proved in Appendix 11. In brief condition 
1)  implies Y, is affinely independent; condition 2) implies 
v(co Y,) is in the relative interior of CO Y,; condition 3) 
implies v(co Y,) = v(co Y ) .  Usually, Y, is uniquely 
determined; multiple representations (29) can occur only if Y 
is affinely dependent. 

Because a representation of the form (29) exists, conditions 
l), 2), 3) must hold for some s E { 1, . . . , U}. Thus in 
principle, the following algorithm must terminate in step 2). 
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Distance Subalgorithm: Given a finite set Y = { yI , . * , 
y,} C Rm, and an ordering Y,, s = 1, * a ,  U ,  of all subsets of 
Y, perform the following steps: 

1) sets  = 1; 
2) if A(Y,) > 0 and Aj(Y,) > 0, j E I,, and A,(Y, U 

{ y j } )  I 0, j E Z,’, define v(co Y )  by (29) and (31) and 
stop; 

3) i f s  c U ,  increment s and proceed to step 1); 
4) stop and indicate failure. 
If there are numerical errors in the computation of the data 

in step 2), it may turn out on rare occasions that the conditions 
of step 2) are not satisfied for any s E { 1, - a ,  U}. We need to 
account for this possibility in the next section. Thus we have 
added step 4). 

Suppose we obtain (29) with v = m + 1 and Y, = Y.  Then 
CO Y is a simplex and v(co Y )  E interior CO Y. Hence, 
v(co Y )  = 0 and there is a sphere of maximum radius d- 
centered on the origin, contained in CO Y. The radius is of 

Since CO 2, - CO Z2 = K, all our previous notations apply. 
The translation of the origin is only worthwhile when d(K1, 
K2)  is small, lpcl is large, and high accuracy is needed. 

Other sources of error include the evaluation of (29)-(31) 
and g K ( v k ) .  To account for these errors and those from the 
inner products, it is reasonable to replace the convergence 
criterion in step 3) of the Distance Algorithm by 

s K ( v k ) s 4 D ( m 2  (35) 

where e > 0 is related to floating-point accuracy and 

D(K)=max { l z l  : z E K } .  (36) 

Since eD2 is very small, result 3) of Theorem 1 shows that 
the effect on the accuracy of the final result should be small. If 
K = CO Z1 - CO Z2 as in the preceding paragraph, and the 
origin of the system is translated as indicated, then the upper 
bound on D(K), given by 

D ( K ) I D  (CO Z I - { Z I } ) + D  (CO z 2 - { 2 2 Z z ) ) + I f 1 - f 2 1 ,  
interest because it is a lower bound on the distance which CO Y 
must be translated if the origin is to be exterior to CO Y .  
Clearly, d-  is given by the distance to the m-dimensional face (37) 

may be appropriately used in (35). When Z1 and Z2 are 
dependent on q (see end of Section 11), the first two terms in 

of CO Y which is closest to the origin. Hence 

d- = min { I v (aff ys)l : ys C y has m elements). (32) 

In Appendix 11 it is shown that 

lv (aff Y,)I2=A(Y,)-I Ai(Y,)yi yk, k E I,. 
;E I, 

(33) 

The data A (  Y,), A;( Y J ,  y;*yk are all needed in the determina- 
tion of Y(CO Y )  and require no additional computational effort. 
Thus (33) is evaluated with only m multiplies and one divide. 
If m = 3, this means (32) takes 12 multiplies, 4 divides, and 1 
square root. The choice of k E Z, in (33) is arbitrary. 

VI. THE NUMERICAL ALGORITHM 
Having fully established the theoretical algorithm for 

computing the distance between compact convex sets, we now 

(37) are independent of q and may be computed from the wu 
which specify Ci, i = 1, 2. 

On rare occasions, numerical errors may also cause the 
Distance Subalgorithm to fail, especially when Y, = v k  is 
affinely dependent or nearly so. For example, ify,, j E Z,’, is 
close to aff Y,, Aj(Ys U (U,}) is close to zero. If the 
numerical value of A,( Y, U { y j } )  is positive when the actual 
value is negative, the exit through step 4) may occur. If the 
Distance Subalgorithm does fail, we resort to the following 
Backup Procedure which always runs to completion. 

* e ,  y ” } ,  the Backup Procedure deter- 
mines v(co Y )  by evaluating v(aff Y,) for all Y, c Y such that 
A(Y,) > 0, A,(Y,) > 0,  j E I,. Clearly, such Y, are all 
candidates for the representation (29). The Backup Procedure 
merely picks the best of the Y, and sets v(co Y )  = v(aff Y,) 

Given Y = {yl , 

present modifications of the algorithm to make it totally 
reliable in the presence of roundoff errors. This is followed by v (CO Y)=arg min { l y l  : y = v  (aff Y$), 

some comments on the efficient implementation of the s= 1, . e ,  U ,  A( Y,)>O, Aj( Ys)> 0, j E I,} (38) 
algorithm. 

Errors do not accumulate in the Distance Algorithm since at 
every iteration k, vk = vk) from the explicit 
evaluation of formulas which are only dependent on the set 
Vk. This helps the ultimate accuracy of the results and 
simplifies the error analysis. 

where 1 v (aff K )  1 is calculated Using (33). In most cases (38) 
involves more effort than the Distance Subalgorithm, but it 
always succeeds since A(%) > 0, Aj(Ys) 0, j E 1, when 
y, is a sing1e 

The above comments lead to the following algorithm. 

Numerical A[gorithm: Given a set K 
R m  and initial points y l ,  a . . ,  y ,  E K ,  1 I v 5 m + 1, 
perform the following steps: 

Of y.  

Inner product evaluations are one source of error. When 

K=co ZI - C O  2 2 ,  Zi= {zij : j =  1 ,  * ,  Mi), i =  1,  2 

we can reduce these errors by moving the origin of the system 
to a point located on the line segment joining the centroids of 
the sets Z1 and 2,. That is, we replace ZI and Z2 by 2; = { zij 
- pc: j = 1, . e * ,  Mi}, i = 1,  2, where 

1) set VO = {yl , . * * , y u }  and k = 0; 
2) set Y = Vk and apply the Distance Subalgorithm; if it 

succeeds set alg = DS, otherwise use the Backup 
Procedure (38) and set d g  = BP, set vk = v(co Y )  and 
vk = Y, where Y, satisfies (29); 

3) if (35) holds, output vk, Y,, and hi in (29), gK(vk) ,  and 
stop; 

1 Mi C zjj,  i =  1, 2. (34) 
1 
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4) if (k = o or 1 vk 1 < 1 Vk- 1) and ( Pk has m elements or 
less), let Vk+, = p, U { sK( - vk)}, increment k, and 
proceed to step 2); 

5) if alg = BP, indicate the error tolerance (35) is not 
satisfied and stop with the output data indicated in step 

6) recalculate vk = v(co Vk) using the Backup Procedure 

The algorithm stops with vk % v(K) and, within the 
roundoff errors involved in computing gK( vk), 1 Vk - v(K)( I 
(gK(vk))lI2. By relabeling the elements of Y, and the A', the 
expression for vk has the form (22), which in turn may be 
broken down into (23). 

It is easy to see that the algorithm always terminates, even if 
E = 0. If c is small but reasonable (say 100 x machine error), 
the algorithm generally stops in step 3) and rarely passes 
through steps 5) and 6). Entrance to steps 5) and 6) implies the 
occurrence of a numerical result which is inconsistent with 
theory. The condition 1 vk I 2 1 Vk- 1, k 2 1 contradicts the 
expected descent. Furthermore, by the design of the Distance 
Subalgorithm and the Backup Procedure, pk has rn + 1 
elements only if vk = 0. But vk = 0 contradicts the failure of 
(35) which is necessary for entrance to step 5). The algorithm 
exits in step 5 )  only after both the Distance Subalgorithm and 
the Backup Procedure have been tried. Step 6) guarantees that 
the Backup Procedure is always tried before stopping in step 
5 ) .  

In practice, the Distance Subalgorithm almost always 
succeeds and produces a near point of high accuracy. 
Theoretically, both the Distance Subalgorithm and the Backup 
Procedure produce affinely independent sets pk, and sK( - v k )  
should be affinely independent of pk. Thus the Vk, k 2 1 
should be affinely independent. Even if Vo is affinely 
dependent, or Vk, k 2 1, is nearly so, the Distance 
Subalgorithm usually functions well. We have confirmed this 
independently of the Numerical Algorithm by extensive 
experimentation with the Distance Subalgorithm. 

When K is the set difference of two polytopes it is not 
obvious how the initial set Vo should be chosen. We have 
tested a variety of schemes. In the absence of additional 
information about K such as that described in Section VIII, the 
single point initialization Vo = { SK( - Z1 + Zz)} has worked as 
well as any. Here, ZI - 22 is the direction between centroids 
(see (34)) and serves as a rough estimate of v(K). Note that the 
initialization is easy to compute using the procedures outlined 
in Section III. 

Attention to details in the implementation of the overall 
algorithm adds considerably to its efficiency. For example, the 
inner products of the elements in pk appear in the Distance 
Subalgorithm (or Backup Procedure) for both Y = Vk and Y 
= and can be saved for the Y = V k , ,  computation. 
Hence, if p, has U elements, only (U + 1) new inner products 
need to be calculated when Y(CO Vk+J is determined. 

Another aid to efficiency is the choice of ordering of the sets 
Y,, s E { 1, - e ,  U } ,  in the Distance Subalgorithm. The sets 
most likely to produce the near point should be put at the 
beginning of the list. Some of the subsets of Y = Vk have 
already been tested in Y = Vk - 1, and they are put at the end of 

3) ; 

(38), set alg = BP, and proceed to step 3). 

the list (essentially, they are eliminated). We have found it 
especially effective to put one face of CO Vk at the head of the 
list. It is determined by Yl C Y = Vk = pk-1 U 
{ S ~ ( - V ~ - ~ ) }  suchthat Vk = Yl U { y >  andymaximizesy. 
sK( - vk- over all y E pk- 1 .  Our experience indicates that 
CO Yl contains v(co Vk) about 80 percent of the time. The 
complete description of our ordering procedure is too lengthy 
for inclusion here. 

It is worth noting that we have experimented with many 
variants of the basic distance algorithm, including those 
described in [ l ]  and [29]. Our implementation is in part 
motivated by these experiments; for rn = 3 it has proved to be 
significantly more efficient than the others which were tried. 

VII. THE SUBROUTINE AND NUMERICAL EXPERIMENTS 

The algorithm described in the previous section has been 
programmed as a Fortran subroutine which is well commented 
and provides a number of options. The input data are the 
vertices of the two polytopes. The output data include: near 
points in each of the two polytopes, the vertices used in their 
representation and the corresponding values of the A' (recall 
(23) and (24)), the final value of gK( vk), and a variety of error 
messages. Options include: the tolerance parameter E ,  the 
shifting of the origin for improved accuracy, the outputting of 
internal algorithmic data, and internal or external initialization 
procedures. The subroutine has been applied to a large number 
of examples in three space. Fig. 4 summarizes the main 
results. 

The examples were generated by selecting 20 pairs of 
polytopes from a family of 12 polytopes. The members of the 
family were centered on the origin and were of varying size 
(contained in spheres of radius 1 to 4). They included: a line 
segment (Ml = 2), an equilateral triangle (M2 = 3), a 
rectangular box (M3 = 8), a truncated cone with hexagonal 
ends (M4 = 12), truncated cylinders with octagonal and 
decagonal cross sections (Ms = 16 and M6 = 20), and a 
collection of irregular polytopes generated by placing an equal 
number of vertices randomly on circles in two parallel planes 

= 100). The twenty pairs selected were: (i, j )  = (i, 2), (i, 4), 
(i, 5 ) ,  (i, 10) with i = 1, 3, 6, 8 and (7, 9), (7, 12), (11, 9), 
(1 1, 12). For each of the 20 pairs three cases were considered: 
polytopes separated, just touching, or intersecting. In each of 
the cases there were 100 different examples, generated by 
random translations and rotations of the two polytopes. For the 
separated cases the expectation of the relative translation 
between the two polytopes was 10/3. The just touching and 
intersecting examples were generated by appropriate transla- 
tions of the polytopes along the line joining the near points for 
the separated examples. The total number of examples was 
6000. 

The examples were run on a Harris 800 computer, which is 
somewhat faster than a VAX 780. The machine precision is 
10- In every 
example the program ran to completion and did not require the 
use of steps 5) ,  6) ,  or the Backup Procedure. The accuracy of 
the final results as measured by gK( vk) was excellent; typical 
values were in the order of 10-lo. 

(M-, = 20, Mg = 40, Mg = 50, M1o = 60, Mi1 = 100, M12 

and the parameter c was set equal to 
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Fig. 4. Equivalent flops (EF) and CPU time versus the total number of 
vertices (M) .  Each point is the average of 100 randomly generated examples. 

The actual number of operations (multiplies N M ,  adds NA , 
divides ND, and comparisons Nc) were counted for each 
example. These were converted to equivalent flops, EF, by the 
following formula: 

EF = ( t M N M  + t A  NA + ~ D N D  + tcNc)/ ( t ~  + t A  ) (3 9)  

where the t’s denote the times required for the operations. For 
the Harris the times in microseconds are: t M  = 3.8, t A  = 2.1, 
tD = 6.7, tc = 1.7. For a different machine, EF would be 
different because the relative times required for the operations 
would be different. However, the variation of EF from 
machine to machine should not be very great. The EF’s plotted 
in Fig. 4 are the averages over the 100 examples in each case. 
The approximate times in seconds for the Harris computer can 
be obtained by multiplying EF by 6 x See the CPU 
scale in Fig. 4. 

The results can be summarized as follows. Remarkably, the 
number of iterations k required for termination did not vary 
appreciably; for problems of all types and sizes it was 
generally in the range 3 to 6. For problems of moderate size, 
M = Mi + M, 5 40, the intersection cases are the most 
difficult. They require approximately 24 EFIM. For larger 
problems the just touching cases are most difficult, with EFIM 
ranging between 24 and 27. There is some evidence that EFIM 
grows slightly with M, but the increase is definitely less than 
log M .  When the data for the three cases are averaged 
together, the performance is more uniform with EFIMranging 
between 14 and 19 for all values of M. 

Additional examples have been considered. When the 
algorithm is run on polytopes which are very near to each 
other, the computational times become close to those for the 
just touching cases; but on the average, never do they take 
more time than the just touching case. When the polytopes are 
widely separated the times drop significantly, with EFIM I 
7. 

Pairs of line segments, M = 4, were tried using the same 
cases and numbers of runs described above. The results for EF 

were: separated, 36; just touching, 39; intersecting, 96. For 
line segments, the intersecting case (both segments contained 
in a common line) is truly pathological and should probably be 
discarded. It is interesting to compare our algorithm with the 
efficient algorithm developed by Lumelsky [22] for the 
special case of line segments. When his algorithm is arranged 
to produce the same results as ours, EF ranges between 38 and 
40 (using the Harris time weights). Thus our algorithm 
appears to be competitive even though it is designed to handle 
the general polytope problem. 

In general, one might expect the computational effort to be 
dependent on the shape of the objects and, for fixed M ,  Mi and 
Mi. In a variety of experiments which have been performed to 
test such behavior, some variation has been noted. But it is not 
very great, about 25 percent at most. The fact that the effort is 
proportional to Mi + Mi is most encouraging. In combinatoric 
procedures it is proportional to MjMj.  

There is no reason to expect that the algorithm is linear in M 
for all classes of polytope pairs. We have constructed an 
example in R 2  with M I  = I and M2 2 1 which shows the 
computations grow as @Mi)  = O(M2). This example is 
pathological in that the vertices of K2 must be clustered ever 
closer to the near point in K2 as M2 increases. Even in this 
“bad” example the algorithm works well in the sense that I vk 
- v(K)I is exceedingly small after a modest number of 
iterations. 

vu.  AN EXAMPLE OF COLLISION DETECTION 

In this section we consider an object which is continuously 
translated and rotated through a field of obstacles. Specifi- 
cally, its position and orientation are given on a configuration 
space path defined by a continuous function q(s). The initial 
position corresponds to s = 0 and the terminal position to s = 
1. To locate approximately the points of collision on the path, 
the distances between the object and each of the obstacles is 
evaluated for s = t /T ,  where t and Tare integers and t = 0, 
* * , T. If Tis large, the collision points are located closely by 
the values of t where the distance just goes to zero. 

The computational time can be decreased by using the 
general initialization feature of the distance algorithm. Sup- 
pose, for instance, d12(q(s)) has been determined for s = t/T 
and the corresponding near points are given by (24). From the 
comments in Sections I11 and IV, it is reasonable to assume the 
yIi and the y2; are points taken, respectively, from the finite 
sets Z1 (q(s)) and Z2(4(s)) which generate K 1  = CO Z1 and K2 
= CO Z2.  If T is large, the position and orientation of K I  and 
K2 change only slightly in one time increment and it is likely 
that the vertices in (24) for s = t/ T and s = ( t  + 1)/ Tare the 
same. Thus the algorithm is started at s = ( t  + 1)/T with Vo 
= { y l i  - y2i, i = 1 ,  . e * ,  I }  whereyli E Zl(q((t + l)/T)) 
and y2i E Z2(4((t + l)/T)) have the same indices as the 
elements in (24) from the previous stage. Of course, the A’ 
change to account for the motion of the sets and the algorithm 
must determine these changes. But it does not have to spend 
time finding the points in (24). Even if new points must be 
found by the algorithm, the starting set Vo is likely to be more 
effective than the single point initialization described in 
Section VI. 
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Fig. 5.  The example of collision detection. 

Fig. 5 shows a particular example. It was provided to us by 
John Canny who used it to demonstrate his quaternion 
technique [8] for computing collision times. The initial and 
terminal positions of the moving object, KA = K6 U K7, 
together with the fixed objects, K l ,  - - , Ks ,  are indicated. 
The configuration variables specifying the motion are the 
Cartesian position and the quaternion representation of rota- 
tion given in [8]. The configuration variables vary linearly in s 
from the initial position to the terminal position. 

Fig. 6 shows the results of the computations. The distances 
between KA and each of the five obstacles are denoted by dl , - e, d5. For all values of s it turns out that d6, 5 d7, so that d, 
= d6r,  i = 1 ,  * - , 5. The computational times are shown in 
Table I for both the special initialization described above and 
the single point initialization of Section VI. The improvement 
due to the special initialization is significant, and as expected, 
gets better as T increases. 

Inspection of Fig. 6 shows that object KA collides with 
objects K3 and K5 during the course of the movement from s = 
0 to s = 1. The collision points are determined by those values 
of s for which d3 and d5 just become zero. Our procedure 
determines these points within the resolution of the grid. Since 
Canny's algorithm is a root finding procedure on s, it locates 
the collision points precisely but does not determine the 
separation distances. His computational time is 11.6 s, on a 
Symbolics 3600 computer. 

When object KA intersects K3 or K5 it is of interest to know 
the degree of the penetration. Buckley and Leifer [5] and 
Cameron and Culley [7] have proposed a negative distance 
which measures the penetration. It can be shown that the 
negative distance between intersecting objects K, and KJ is 
d(K,,KJ) = - m i n { ( z ( : z E  boundaryofK},whereK=K, 
- KJ. The computation of the negative distance is difficult 
[5]. However, when K, and KJ are compact, convex sets, and 
the distance algorithm terminates with Vk = 0 = ~ ( c o  Y )  
where Y = v k  has m + 1 elements, it is clear from Section V 
that d(K,, K,) 5 -d,swhere d,;is given by d- in (32). Also, 
when KA and KJ intersect d(KA, K,) I d(K,, KJ), i = 6, 7. 
Thus when K A  and KJ intersect, the negative distance has the 
bound d(KA, KJ) I - dJ- , where dJ- = max {d;, d - }. Since 
- d; and - d; are easily computed, they are plotted in Fig. 6 
as negative extensions of d3 and d5. It is not known how 
closely these bounds estimate the negative distances d(KA, K3) 
and d(KA, K5), but they do determine that significant collision 
penetrations have occurred. 

We have run a simple test problem where the negative 
distance d(K, , K,) can be obtained analytically as a function of 

'J. 

c 

'0'.00 0.20 0.40 0.69 0l.80 !'.a0 
S 

KA and the Ki. 
Fig. 6. Results for the example in Fig. 5. The di are the distances between 

TABLE I 
CPU TIMES (Harris 800) IN SECONDS FOR THE EXAMPLE OF FIG. 5 

Number of Intervals Time with Single Time with Ratio of 
in Grid ( T )  Point Initialization Special Initialization Times 

10 0.22 0.13 1.7 
100 2.00 0.69 2.9 

lo00 19.81 6.32 3.1 

q. The computed lower bounds range from good to poor, and 
are best when I d(Ki, Kj)J is not too large. Fortunately, this is 
the situation of greatest interest. 

IX. CONCLUSION 
We have presented an algorithm for determining the 

Euclidean distance between compact sets in R". The emphasis 
has been on polytopes in R3,  since this is the single most 
important case in applications. Input data for the algorithm are 
in the form of finite sets of points whose convex hulls define 
the polytopes. This data format is particularly convenient in 
robotics applications where the position and orientation of the 
polytopes may be functions of configuration variables such as 
joint angles. Extensive numerical experience shows that the 
algorithm is efficient and reliable with a computational cost 
which is approximately linear in the total number of points 
specifying the polytopes. 

The algorithm has some other special advantages. It 
provides the nearest points in the two polytopes. These are of 
direct interest and can also be used to compute the gradient of 
the distance with respect to the configuration variables. In 
continuum problems the algorithp may be initialized in a 
special way so that the computational time is significantly 
reduced. We have demonstrated this advantage in the collision 
detection problem, but it occurs in other applications too, such 
as the mapping of collision-free regions in configuration 
space, path finding, and path planning. It has been noted that it 
is difficult to compute the negative distances of [5], [7] for 
intersecting objects. Our algorithm provides, with essentially 
no additional cost, a bound on the negative distance. 

Finally, a few comments should be made about sets which 
are not polytopes or spherical extensions of polytopes. 
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Suppose the algorithm is applied to the vertex sets of 
nonconvex polytopes. Then it is easy to see that it produces the 
distance between the convex hulls of the nonconvex polytopes. 
This distance is a conservative measure of collision and may 
be useful. When the distance between an infinite polyhedral 
cylinder and a polytope is computed, the computations are 
actually simplified: the vertex points are projected on a plane 
normal to the axis of the cylinder and the algorithm is applied 
in the plane (R2). In the case of general convex sets, it is 
necessary to have a procedure for evaluating the support 
function of the sets. This is easy to arrange for ellipsoids and 
some other special objects. The convergence is not finite, but 
the algorithm can be made, through the choice of E ,  to stop 
with a solution of specified accuracy. Prior experience with a 
similar algorithm [l] indicates that convergence rates for 
general sets should be good. 

APPENDIX I 

PROOF OF THEOREM 1 

Result 1) is obvious if I SK( - x) I < 1 x I so assume 1 sK( - x) I 
L 1x1 and define 

z=x+X(sK(-x)-x) 

x = gK(x) / ]  x - SK( - x))2.  

It is easy to see that )x  - sK( -x)l  L 2gK(x). Thus 0 < h 

Ix I2 .  To show result 2), first let gK(x)  = 0. Since 

[ x i 2 =  -hK(-x)=min { z  - x :  z E K )  

d 0.5, z E CO {x, S K ( - X ) } ,  and \212 = I x \ *  - hgx(X)  < 

it is clear that 

1x12s J x ) 2 +  ) z - x ) 2 =  ) 2 ) 2 + 2 ( ) x ) 2 - z  . x)-c 1212, 

for all z E K .  

Therefore, x = v(K).  Now let x = v(K) and assume gK(x) > 
0. Since result 1)  implies x # v(K), we must have gK(x) 5 0. 
However, x E K, (15) and (25) imply gK(x)  2 0. Therefore, 
gK(x) = 0. Result 2) implies I v(K)I = - h ~ (  - v(K)) 5 
z.v(K) for all z E K; consequently, Ix - v(K)12 I lx I2  - 
x - v ( K )  I 1x12 + hK(-X). 

APPENDIX I1 

PROOF OF THEOREM 3 

First, we consider the determination of v(aff Y,) for Y, C 
Y. If Y, is a singleton the solution is trivial, so assume Y, has r 
> 1 elements and let x1, - .  -, x, represent an arbitrary 
ordering of these elements. In this case 

r 

v (aff Y,) = X'x, 

Since f is convex, the necessary and sufficient conditions for 
optimality are 8f(X2, - a - ,  X")/aA' = 0, i = 2, * - * ,  r. 
Consequently, X E R' solves the linear system 

A,X=b A, E Rrx' b E R' (40) 

where 

(41) 

To determine A, define Al(Y,), i E I,, as the cofactor of 
element A )(xl, * , x,) where j satisfies x, = yI  . This is 
notationally correct since one may show, using elementary 
row and column operations on the matrix A,(xl, - - , xr), that 
these cofactors are invariant with respect to the selected order 
to the elements of Y,. If we define A( Y,) as the determinant of 
A,, then a first row expansion yields the last equation in (30). 
If A(Y,) > 0 then the solution to the linear system (41) is 
unique, and expressing it by Cramer's rule yields 

v (aff Y,) = [Al(  Y N A (  K)Iyl .  (42) 
r E Is 

The existence of this representation is guaranteed by the 
following Lemma. 

Lemma I: A(Y,) > 0 if and only if Y, is affinely 
independent. 

Proofi If to each row i > 1 of A, we add the product of 
row 1 times (x l  - x l ) - x l ,  then it is clear that A(Y,) is equal to 
the determinant of QTQ, where 

Qs= [(xz-XI) * (X'-X~)] E R m x ( r - l ) .  

Note that Y, is affinely independent if and only if the columns 
of Q, are linearly independent. Since A( Y,) is the Gramian of 
the columns of Qs the result follows immediately. 

The recursive formulas (30) follow from the above cofactor 
definition of the AI( Y,). Append a row and column to A, using 
xr+ 1 = yj,  j E Z,', as additional data. Then expanding the 
cofactor A,(Y, U (U,}) of this larger matrix about the first r 
elements in the appended row gives (30). 

We now show that l), 2), 3) imply the existence of (29) with 
the A' defined by (31). It is geometrically obvious, and can be 
proved from (41) that y = v(aff Y,) if and only if 

y * (y -yk )=O,  for all k E I,. (43) 
i = 2  Let y = v(aff Y,), and suppose 1) and 2) are satisfied. Then 

from Lemma 1 and (42), y is expressed in the form given by 
(29) and (31). In addition, l), 3), (42), and (30) implyy.(yk 
- y j )  I 0, j E I,', k E I,. Using this and (43) we obtain 

y * ( y  - yi) I 0, i E (1, * - a ,  U}. Hence, foranyx E CO Y 
we have 

where 
r 

h I = l - C  hi 
i = 2  

and the X2, 
minimization of 

* e ,  A' E R result from the unconstrained 
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y * ( y - x ) = C  a’y ( y - y i ) I o .  
i =  I 

Therefore, g c o y ( y )  = 0 and by result 2) of Theorem 1, 

We now show the converse. Assume y = v(co Y )  is given 
by (29). Theorem 1, result 2), implies y * (  y - yi) I 0, i E 
( 1 ,  - - a ,  U}. Since A’ > 0, i E I,, and 

v(c0 Y )  = y .  

X’y . (y-y;)=O 
iE Is 

it is clear y * ( y  - y ; )  = 0,  i E I,, and v(aff Y,) = y .  
However, Lemma 1 yields A(Y,) > 0. Because the coeffi- 
cients in (42) and (29) are unique, (31) holds. Since X’ > 0, i 
E I,, we have A;(Y,) > 0, i E I,. Finally, subtracting (43) 
fromy*(y -U,) I O , j €  (1, ..., u},resultsiny.(yk -y , )  
5 0, j E I,’, k E I,. Hence, using A( Y,) > 0, y = v(aff Ys), 
(42), and (30) we must have Aj(Y, U {U,}) 5 0, j E I,‘. 

Result (33) follows from (42) and (43) by setting y = 
v(aff Y,). 
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