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SUMMARY 

Discrete-time, linear control systems with specified pointwise-in-time constraints, such as those imposed 
by actuator saturation, are considered. The constraints are enforced by the addition of a nonlinear 
‘reference governor’ that attenuates, when necessary, the input commands. Because the constraints are 
satisfied, the control system remains linear and undesirable response effects such as instability due to 
saturation are avoided. The nonlinear action of the reference governor is defined in terms of a finitely 
determined maximal output admissible set and can be implemented on-line for systems of moderately 
high order. The main result is global in nature: if the input command converges to a statically admissible 
input and the initial state of the system belongs to the maximal output admissible set, the eventual action 
of the reference governor is a unit delay. 
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1. INTRODUCTION 

Linear models play a vital role in control system design. Powerful design techniques are 
available for synthesizing controllers which achieve a variety of performance and robustness 
objectives. Treatment of systems with significant nonlinearities is in a less satisfactory state. 
Special assumptions concerning the nature of the nonlinearities and the design objectives are 
needed. This paper addresses the implementation of nonlinear controllers for systems in which 
the equations of motion are linear but there are pointwise-in-time constraints on control and/or 
state variables. These assumptions are quite realistic in many practical applications. Certainly, 
they apply to systems in which the principal nonlinearity is actuator saturation. Our objective is 
to obtain controllers which preserve desirable small-input behaviour of linear-system designs, 
respond well to large inputs, have simple structure and, for systems of significant order, can be 
implemented digitally at reasonably high sampling rates. 

Consider the example system shown in Figure 1. The purpose of feedback control is good 
tracking performance, i.e., a small closed-loop error, z ( t ) ,  for a large class of reference 

CCC 1049-8923/95/050487-18 
0 1995 by John Wiley & Sons, Ltd. 

Received 15 February 1994 
Revised 12 October 1994 



488 E. G.  GILBERT, I. KOLMANOVSKY AND K. T. TAN 

I ,  I 

Figure I .  Closed-loop system with controller saturation 

commands, w ( t ) = r ( t ) .  The output of the controller, y ( t ) ,  is subject to saturation: 
u ( t )  = sat y ( t ) ,  where sat y = y  if and only if y E Y. Typically, the origin is contained in the 
interior of Y. Thus, when the reference commands are small, saturation does not occur. 
Suppose, for this small-input situation, an effective linear controller has been designed. What 
happens when the reference commands are large enough to cause saturation? Often the effect is 
unacceptable: z ( t )  may diverge or become disproportionately large and persist for a long time. 
A familiar, simple example is integrator windup. Contemporary design methods, which deal 
effectively with poorly conditioned or unstable multivariable plants, expand the potential for 
response path~logy.'~ 

In engineering practice, undesirable effects of saturation are often attacked by a combination 
of compromises such as: relaxation of performance objectives in the linear system design, 
restrictions on the class of inputs, use of more powerful actuators. A less common strategy is to 
acknowledge the inherently nonlinear character of the problem and introduce nonlinear control. 
Many approaches have been proposed. They include, together with samplings of the literature: 
stable feedback regulation7*'3*'7*22.24925*27 moving-horizon optimal control,'"'' anti-windup 

.2,6.R92R model predictive contr01~*'~9~' and the exploitation of positively invariant 
 set^.^-'*^"*"*^^ Most of these approaches do not apply to the tracking problem of Figure 1. Those 
that do have weaknesses: lack of a general underlying theory, need for extensive on-line 
computations, and inability to incorporate realistic performance and robustness objectives. 

One promising approach is the continuous-time error governor of Kapasouris, Athans and 
Stein.". In the context of Figure 1, it involves the introduction of a variable scalar gain, at the 
input of the controller. The gain, K ( t )  E [0,1], is determined for each t so that y ( 7 )  E Y for all 
ta t. The determination is based on the maximal output admissible set'' of the controller, i.e., 
the set of all initial controller states for which the unforced controller satisfies y ( t )  E Y, t a  0. 
With small reference commands tc(t)= 1; thus the small-input performance of the linear design 
is preserved. For large commands there are values of t for which x ( t )  c 1; however, y ( t )  E Y, 
t B 0, and saturation is avoided. Simulation studies demonstrate much improved large-input 
response, particularly in multivariable systems where saturation causes changes in the direction 
of controller output. 

The error governor has several limitations: the computational times for determining x ( t )  are 
excessively large, the plant must be asymptotically stable and, from a theoretical point of view, 
stability and the response results are only local in character. The first difficulty can be overcome 
by using discrete-time implementations of the error governor." Tan26 has suggested a further 
modification which, with certain restrictions, eliminates the need for a stable plant. In addition, 
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he shows that for r ( t )=O his modified error-governor system is asymptotically stable in the 
large. 

In this paper we examine the action of discrete-time reference governors. Figure 2 displays 
the basic arrangement, reduced to its simplest form. It consists of a controlled process, a 
pointwise-in-time constraint, y ( t )  E Y, and the reference governor. The purpose of the governor 
is to attenuate the input command, but only when necessary, so that the constraint is always 
satisfied. When the controlled process is the closed-loop system of Figure 1, the scheme 
guarantees that saturation does not take place. Thus, the linear model of the closed-loop system 
and its performance characteristics remain valid. The nonlinear behaviour of the overall system 
is determined entirely by the reference governor, whose response characteristics are relatively 
simple. A key advantage of the approach is that it can be applied to feedback systems which 
have already been designed for optimum, linear-system performance. Since the reference 
governor is added after the linear design is complete, compromises need not be made in the 
linear design process. 

Results and developments of the paper are organized as follows. Section 2 formulates the 
control problem and proposes two discrete-time reference governors, one static and one 
dynamic. While the static governor is simple and intuitively obvious, it has a somewhat 
surprising defect: for constant reference commands the output of the reference governor may 
fail to converge. The dynamic governor, which is the natural discrete-time extension of the 
continuous-time reference governor of Kapasouris, Athans and Stein,I6 is the principal concern 
of this paper. Its implementation, which is also based on a maximal output admissible set, is 
discussed in Section 3. Under appropriate conditions, it is shown that the required nonlinearity 
can be computed in an efficient and systematic fashion. Section 4 presents results on system 
response. Unlike others,1n.15.16 they are global in nature. For instance, suppose r ( t )  + ro. where 
r, is any statically admissible input for the controlled process. Then, w ( t )  + ro. Proofs of the 
theorems in Section 4 are given in Section 5. Generalizations of the dynamic governor are 
considered in Section 6. In Section 7 the reference governor is applied to the feedback control 
of a helicopter which is unstable and has bounds on both of its two inputs. The helicopter with 
its controller is order 10, so the problem is nonuivial. Large-input responses are good and the 
instability, which is usually induced by saturation, is avoided. Computational times for the 
nonlinearities of the reference governor are modest so that on-line implementation is feasible. 
Section 8 treats an example where the pointwise-in-time constraint is on the output of a closed- 
loop system. The purpose of the reference governor is to prevent excessive overshoot of the 
step response. If the state of the controlled process is not available, the reference governor may 
be implemented with a model of the controlled process. Simulations illustrate the effect of 
errors in the model. 

The following mathematical notation appears: Z' is the set of nonnegative integers; R" and 
R""" are the usual notations for sets of real vectors and matrices; the superscript T denotes 

Figure 2. The reference governor and contmlled process with constrained output 
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matrix transpose; subscripts indicate vector components; 1x1 is the Euclidean norm of x E R", 1: 
is the set of bounded sequences, {x(t)E R": tEZ'} (when it is clear by context, we write 
x E  1:); for x E  l:, ~ ~ x ~ ~ ~ =  sup( l x ( t ) [ :  t E Z + } .  The boundary, interior, closure and convex hull 
of a set are denoted respectively by bd, int, cl and CO. For a E R  and X, YC RI', 
aX={ax: x E X }  a n d X + Y = j x + y : x E X , y E Y } .  

The discrete-time, maximal output admissible set is defined in terms of a triple, A E R""", 
C E RI'"" and Y C RI': 

O,(A, C, Y) = { x : CA'x E Y, t E Z + } C R" (1) 

Obviously, O,(A, C ,  Y) is related to the system x ( t  + 1) = Ax(t ) ,  y ( t )  = Cx(t). The pointwise-in- 
time output constraint, y ( t ) E  Y, t E Z ' ,  is satisfied if and only if x(0)E O,(A,C,Y). Our 
developments depend strongly on results contained in Reference 10. Several are summarized in 
the following theorem. 

Theorem I .1 

Suppose A is Lyapunov stable (A' is bounded for all t E Z + ) ,  Y is compact and 0 E int Y. 
Then, 0 E int O,(A, C ,  Y) and O,(A, C ,  Y) is closed and A invariant (x E O,(A, C, Y) implies 
Ax E OJA, C ,  Y)). Suppose, in addition, that C, A is observable. Then, O,(A, C, Y) is compact. 

2. THE DISCRETE-TIME REFERENCE GOVERNORS 

The controlled process and its constraint, shown in Figure 2, are represented by 

x ( t +  1) = h ( t )  + Bw(t ) ,  X ( t )  E R " ,  w ( t )  E R "  (2) 

(3) 
It is assumed hereafter that: (Al)  A has its characteristic roots inside the unit disk, (A2) C, A is 
observable, (A3) Y is compact and is expressed by 

y(t) = Cx(t)  + Dw(t )  E Y c R", t E  Z+ 

Y =  {y:f,(y)sO, i =  1, ..., s }  (4) 

where the functions f,: R" + R are continuous and satisfy f, (0) < 0. These assumptions are 
consistent with constraint modelling of stable closed-loop systems, such as the one shown in 
Figure 2. Since constraint satisfaction does not depend on states which are unobservable in y, 
there is no real loss of generality in (A2). The conditions f,(O) < 0 imply 0 E int Y, so that the 
assumptions of Theorem 1.1 are satisfied. When (2)- (3) represent the system in Figure 2 the 
constraint is generally state-dependent (C # 0), even though Y is a control constraint. 

The constraint set, (4), affects the set of constant inputs for which (2)-(3) has an admissible 
equilibrium solution. Specifically, w(t)= w, and x ( t ) = x ,  requires x, = (I - A)-'Bw, and 
w, E WO, where 

w,= {w: H,wE Y} (5 )  

(6) 

The static reference governor is a scalar gain, K ,  which varies between 0 and 1 and depends 

H, = D + C(Z - A )  - 'B 

By assumption (Al)  the inverse of I -A exists. 

nonlinearly on the reference command and the state of the controlled process: 

w( t )  = K ( r ( t ) ,  x ( t ) > r ( t )  (7) 
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Ideally, we want w( t )  to be close to r ( t ) .  Thus, K ( r ( t ) ,  x ( t ) )E  [0,1] should be as large as 
possible subject to the requirement that y (t) E Y, t 3 t. The last condition demands a prediction 
of y ( t ) .  In the absence of information on r ( t )  for t> t, the only sensible strategy is to base the 
prediction on the behaviour of the system (2) with w ( t )  = 0 for t> t. This prediction involves 
O,(A, C, Y): w ( t )  = 0, t> t, implies y(t) E Y, t> t, if and only if x ( t +  1) E O,(A, C, Y). This 
and the constraint, y ( t )  E Y, give 

K(r,x)=max{aE[O,l]: Ax+BarEO,(A,C,Y), C x + D a r E Y )  (8) 
Assume r E R" and x E 0,. Then Ax E 0,, Cx E Y and the inclusions in (8) are satisfied for at 
least one a E [0, I]. Since Y and O,(A, C, Y) are closed, the maximum exists. Thus, 
K: R" x 0, + [0, 1 ] is defined. Moreover, (2), (7) and (8) show that x ( t )  E 0, implies y ( r )  E Y 
and x ( t  + 1) E 0,. Successive application of these results proves (3) is satisfied whenever 
x ( 0 )  E 0,. 

When does the reference governor allow r ( t )=  w( t )=rO and x(t)=x,= (Z-A)- 'Bro? Since 
x ( t ) E  O,(A,C, Y), r, is admissible if and only if it belongs to 
W, n { r,: x, E O,(A, C, Y)) = W,. Often, W, is significantly smaller than WO, so the static 
governor seriously restricts the class of admissible constant inputs. Actually, the static governor 
has a more serious defect. 

Consider the following example: rn = n = p  = 1, A = -0.9, B = 1, C = 1, D = 0.1, Y = [ - 1,1]. 
Simple computations show: 0, = [ - 1,1], W, = W, = [ - 1-596 . . ., 1-596 . . . I .  Let rO = 1. Then 
by (8): K( l ,x )=  1 +0.9x, xE [-l,O], =1, x E  [0,0-9], = l O -  lOx, x E  [0.9,1]. It is easy to 
see that oscillations can be generated. For example, x ( O ) = O  generates the sequence 
{ x ( t ) :  tEZ') = {O,l, -0.9,1, -0.9, ...). More generally, it can be shown that 
x ( t ) +  (I-A)-'BrO=0.5263 ... if and only if x ( 0 ) E  (0.102 ..., 0-908 ...). Similarly, if 
1 rot E [O. 19,1.596.. .I, there exist initial conditions, x(0) E 0,, which lead to oscillations. 
However, when I rOl< 0.19 it can be shown that x ( t )  + (I - A)-'Br for all x(0)  E 0,. Thus, the 
static governor may fail to converge with a constant input, r(r)=rO, unless lrol is very small. 
Convergence to equilibria also fails in examples where D = 0. 

The dynamic reference governor mimics the continuous-time reference governor of 
Reference 16. It is a first-order, low-pass filter with a bandwidth parameter, K, which depends 
nonlinearly on r ( t ) ,  its own state and the state of the controlled process: 

We require K ( r ( t ) ,  x G ( t ) )  E [0,1]. This implies that w(t + 1) is an interpolation between r ( t )  
and w( t )  in the sense that it belongs to the line segment joining r ( t )  and w(t).  Ideally, 
K ( r ( t ) ,  x G ( r ) )  = 1. Then w(t + 1) = r ( t )  and the reference command suffers only a unit delay. 
When the possibility of constraint violation occurs, K ( r ( t ) ,  x G ( t ) )  is reduced so that w(t  + 1) is 
closer to w(t ) ,  which has been chosen on the previous time step to be constraint admissible. 

The rationale for defining K is best understood by writing (2), (3) and (9) as a single system: 

x G ( t  + 1) = AGxdt) + BGK(r(t)~G(t))(r(t) - [ I  OlxG(t)), r(t) = CGxG(t) E Y (10) 

A . = [ '  B A  '1, .=[:I, C G = [ D  Cl 

Given r ( t )  and x G ( t )  it is necessary to guarantee that y ( t )  E Y for all t> t. With no prior 
knowledge of r ( t ) ,  z> r ,  the only safe strategy, based on what we can determine about the 
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future response of (lO), (1 l) ,  is to require x(t) E O,(A,, B,, Y), t b  t. Then it is known that an 
acceptable value of K(r(t) ,  x,(t)), namely 0, is always available. The largest possible value 
of K(r(t), x,(t)), subject to our requirements, is determined by 

K(r,x,)=max[aE [O, 11: A,x,+B,a(r- [ I  O]x,)E O,(A,,CG, Y ) }  (12) 

Note that A, is Lyapunov stable, so the results of Theorem 1.1 apply. Thus, 
K. R" x O,+ [0, 1 I is defined. Successive applications of (10) and (12) show that x,(O) E 0, 
implies xG(t) E 0, and y(t) E Y for all r E 2'. 

The action of the dynamic governor is quite different from the action of the static governor. 
Consider the equilibria that can be supported by the dynamic governor. Using the notations 
introduced previously, it is clear that xGo = [ri xi]T must belong to O,(A,, C,, Y). From (1 l), it 
can be verified that 

From this and the definition of O,(A,, C,, Y) it follows that xGo E O,(A,, C,, Y )  is equivalent 
to Hero E Y. Hence, the set of admissible ro is WO and there is no additional restriction on the 
class of constant inputs. Further, as will be seen in Section 4, the convergence difficulties 
exhibited by the static governor are avoided. 

What can be said in general about the behaviour of K in the two governors? Since 0 E int Y 
and 0 E int 0,, the right sides of (8) and (12) allow a = 1 when r.  x and x, are sufficiently 
small. This and the asymptotic stability of A leads to the following, rather weak, conclusion. 

Remark 2.1. For small inputs and initial conditions both governors act as stable linear 
systems. More specifically, there exists a c>O such that Ilrll,S c and Ix(0)I S c (Ilrll,S c and 
Ix,(o)l~ c )  imply K ( r ( t ) ,  x ( t ) )  = 1 ( K ( r ( t ) ,  xc(t)) = 1) for all t E 2'. 

Note that the remark does not contradict the results of the above example for the static 
governor; it applies if c < 0.19. It will be shown later that a much stronger result holds for the 
dynamic governor. Because of its inferior response properties, the static reference governor will 
not be considered further. 

3. IMPLEMENTATION OF THE DYNAMIC REFERENCE GOVERNOR 

Practical implementation of the dynamic reference governor requires an algorithm for the 
evaluation of K(r,xG). One is available if O,(A,, C,, Y) is finitely determined," i.e., the 
infinitely many inequalities appearing in the definition of O,(A,, C,, Y) can be replaced by a 
finite set of inequalities. When O,(A,, C,, Y) is finitely determined, the listing of the active 
inequalities has a special structure: I" there exist S" C [ 1, . . . , s }  and t,* E Z',  i E S', such that 

(14) 

The index set, S', and the integers, t,*, can be obtained by solving a sequence of mathematical 
programming problems. Details are given in Reference 10. The computations are often 
straightforward, even when p ,  m and n are quite large. For example, when Y is polyhedral the 
programming problems are linear. Since these computations are only a preliminary step in the 
determination of K ( r ,  x,), they are off-line. 

O,(A,, C,, Y) = [ x,: fj(CGA',x,) S 0, t = 0, .. ., t,*, i E S*} 
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Is O,(A,, CG,  Y) finitely determined? This question is investigated most easily in a'different 
coordinate system. Define 

1 

U =  [ 01, A, = u-1AGu, c, = cGu 
(1 - A)-'B I 

Obviously, the indicated inverses exist. It can be verified that 

The set O,(A,, CG, Y) is finitely determined if and only if O,(A,, C, Y) is finitely determined. 
In fact, S* and r,*, i E S', are the same for the two coordinate systems. 

Systems of the form (16) are studied in Reference 10. Examples there show that 
O,(A,, C,, Y) is generally not finitely determined. However, a finitely determined 
approximation of O,(A,, C,, Y) always exists. This leads to the following theorem. 

Theorem 3.1 
Suppose the assumptions (AI)- (A3) are satisfied. Define 

Proof. First suppose the pair C,, A, is observable. Define 

Then by Theorem 5.1 of Reference 10, O,(A,,e,, Y(E) x Y) is finitely determined and 
O,(A,, C,, Y(E)) C O,(A,, e,, Y ( E )  x Y) C O,(A,, C,, Y). Working these results backward 
through the state transformation U proves the theorem. The pair C,, A, is observable if and 
only if rank H, = m, a condition which is not implied by our assumptions. For instance, it fails 
when m > p. If rank H, < m the proof is camed through by eliminating the unobservable states. 

0 See the comments in Section I1 of Reference 10 which concern unobservable systems. 

Remark 3.1. The assumption on E implies OEint Y ( E ) + @ .  It is also clear that Y ( E )  is 
compact. Thus, by Theorem 1.1 the sets in (18) are closed, include the origin in their 
(nonempty) interiors and are A-invariant. They are bounded if and only if rank H,= m. They 
are convex if Y ( E )  and Y are convex. 

To simplify notations define 
0:. = OJAG, ec, Y(E)  x Y) 

The approximation of O,(A,, CG, Y) by 0:. is good in the sense that the 'reduction' of 0:. is 
no worse than the reduction in O,(A,, CG, Y) which occurs when Y is replaced by Y(E). 
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Remark 3.2. Ideally, Y(E) + Y (in the HausdorfY metric for compact sets) as E +O. While 
this property is usually satisfied, it is not guaranteed by assumption (A3). Stronger results are 
available." If Y is convex, OE int Y and E €  [0,1], it is possible to replace Y(E) by (1 - E)Y 
and O,(AG, CG. Y(E)) by (1 - E)O,(AG, CG,  Y) 

Clearly, 
O:={xc:f,(CGAfGxG)sO, r € Z + , f , . ( [ H o  O]X,)~-E,  i =  1, ..., s ]  (21) 

Since 0: is finitely determined, only a finite number of the inequalities are active: 

Of.={~,:fi(C,A',x,) S O ,  r = O  ,..., r,*, i E S * , f , ( [ H ,  O]X,)~-E,  k =  1 ,..., s ]  (22) 
The special structure of the set of active inequalities is a consequence of Theorem 2.4 in 
Reference 10. The index sets S* and the r,: depend on E. Usually, the number of inequalities in 
(22) increases as E becomes smaller. Thus, in choosing E, a compromise must be made between 
the accuracy of the approximation and the complexity of 0:. Some of the active constraints in 
(22) may be redundant in the sense that they can be removed from (22) without changing 0:. 
See Remark 2.2 in Reference 10. Such removal simplifies the computation of K ( r ,  xG) which is 
described below. 

By Remark 3.1, Of. has the same properties as OJA,, C,, Y). Thus it may replace 
O,(A,, C,, Y) in the descriptions of Section 2. In particular, K R" x 0 : + [0, 1 ] is defined by 

K(r,x,)=max(a€ [0,11: A,xG+B,a(r- [I O]x,)EOE_) (23) 
Properties of the resulting reference governor are described in the next section. 

Expressions (22) and (23) provide the recipe for evaluating K(r ,  x,): 

a j j = m a x ( a E  [0, l]:f,(CGA',(A,x,+B,a(r- [ I  Olx,)))sOl (24) 

a , = m a x { a E  [O,l]:fi([Ho O]'A,x,+B,a(r- [I O]X,)))~-E} (25) 

(26) K(r,x,)=min(aj,: i E S * , j = O  ,..., r,*]u{ai: i = l ,  ..., s)  

By using ( l l ) ,  (U), (16) and AL = UA',U-l, (24) and (25) can be simplified: 

a i=max( a €  [0, l]:fi(How+ aH,(r-w))s -E] 

D, = D + C(I - A') (I - A) - ' B  
(28) 

(29) 
Related expressions provide a simple numerical test for xG E 0 L: 
~ , € 0 ~ ~ f , ( C A ~ x + D ~ w ) s O , i € S * ,  j = O  ,..., r,*, fk(H,,w)d-~, k = l ,  ..., s (30) 

Actually, (27) and (28) are scalar root-finding problems. In most practical applications, where 
the functions f j  are simple, they have explicit solutions. This is certainly true when Y is a 
polytope. Then f j ( y )  = yTy - 1, i = 1, . .., s, and 

aj j=min{l ,  (yTDj(r-w)-l(l - yTCA'x- yTDj+ lw) ] ,  yTDj(r-  w)>O 

a = min{ 1, (y,TH,,(r - w)-' (1 - E - yTHOw) I ,  yTHO(r - w) > O 
= 1, y 'Dj ( r -w)so  (31) 

= 1, y p l , ( r - w ) < O  (32) 
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Similarly, if f, is a quadratic form, a,, may be expressed in terms of the real roots of a 
quadratic equation in a. 

A few comments are in order. While the evaluation of (26)-(29) is usually straightforward, 
K ( r ,  xc) is a complex, piecewise-defined, nonlinear function. Expressions (31) and (32) 
illustrate the truth of this statement. When Y is a polytope, K: R"' x OC,+ [0, 1 ] is continuous. 
The proof, based on (26), (31) and (32), is not difficult. The convexity of the polytope does not 
imply the convexity of K .  For real-time implementation of (9) the computation time for 
K (  r ,  xG)  must be less than T seconds, where T is the sampling interval. 

4. RESPONSE PROPERTIES OF THE DYNAMIC REFERENCE GOVERNOR 

Our main results on the response properties of the dynamic reference governor are summarized 
in two theorems. They are stated here, together with remarks pertaining to the nature and 
significance of their results. Proofs appear in the next section. 

The first theorem describes response properties of the reference governor which are inde- 
pendent of the way in which K ( r ( t ) ,  x G ( t ) )  is determined. Specifically, it concerns the system 

(33) w(t + 1) = w ( t )  + K ( t ) ( T ( t )  - w(t)) 

with K ( t )  E [0, I] .  

Theorem 4.1 

Assume r E  1: and K: Z'+ [0,1]. Then, the following results hold. (i) 
w(t)Eco{w(O), r(O), ..., r ( t -  l)}. (ii) IIw[I...max[ Iw(O)l, ~ ~ r ~ ~ . . ] .  (iii) If r ( t )  has a limit as 
t + 00, then so does w ( t ) .  

All of three conclusions depend crucially on the assumption ~ ( t )  E [0,1]. The first two are 
simple consequences of it. The third, which is used in the proof of the next theorem, is less 
evident. 

Remark 4.1.  Result (i) has an interesting application. Suppose r ( t ) =  r,, E R"'. Then w( t ) ,  
tE Z', belongs to the line segment CO( w(O), r,,).  Furthermore, because K ( t ) E  [0,1], w( t )  
progresses monotonically away from w(0) toward r,,. If ~ ( f )  = 1, then w ( t )  = r,,, t > i. 

Remark 4.2. For w(0) = 0, (ii) shows that the reference governor is uniformly bounded- 
input, bounded-output stable with gain bound equal to 1. In Reference 16, bounded-input, 
bounded-output stability is noted, but no gain bound is given. 

Define 

WE, = [ w:  How E Y ( E )  } = { w:  f j (H, ,w)  c - E ,  i = 1, . . . , s } (34) 

the set of constant inputs to (2) whose corresponding equilibrium solutions satisfy the constraint 
y ( r )  E Y ( E ) .  From Remark 3.1, WE, is closed and O E  int WE,#@. W ;  is bounded if and only if 
rank H,, = m. If Y ( E )  = (1 - E)Y,  Wf, = (1 - &)WO. 

Theorem 4.2 

Consider the system (2), (9) with K defined by (23). Assume: 0 < E < min( - f i (O):  i = 1, . . . , s) , 
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xG(0)E O:, and r E  t! Then the following results hold. (i) For all tEZ':  w(t)E W',, 
x,(t) E 0: and y ( t )  E Y. (ii) Suppose r ( t ) + r ,  and there exists f E  Z' such that r ( t )  E WC, for 
all r 2 t:, then, there exists ;E Z' such that for all t b  t: K ( r ( t ) ,  x G ( t ) )  = 1. (iii) Suppose 
r ( t ) + r o  and WC,; then, K ( r ( t ) ,  xG( t ) )+O and w ( t ) - + w * E  bdWC,. (iv) Suppose 
r ( r ) =  roE WC,; then, there exists tAEZ'such that for all t a t :  K ( r ( t ) ,  x G ( t ) )  = O  and 
w( t )=w*= w(0)+a4(ro-w(O)),where a*=max(aE[O, l ] :  w(O)+a(r,- w(0))E WC,}. 

Remark 4.3. Conclusions of the theorem become stronger as E > O  becomes smaller. Then, 
WC, becomes larger and better approximates W,. Usually, the number of inequalities needed to 
specify 0 : increases as E + 0 and a compromise on the choice of E is necessary. 

Remark 4.4. A natural choice for the initial state of the reference governor is w(0)  = 0. Then, 
(1 1 )  and (21) show x,(O) E 0: if and only if x ( 0 )  E OJA, C, Y ) .  

Remark 4.5. Suppose WC, is compact (rank Ho = m ) .  Then, 1 1 ~ 1 1 . .  s c,,,, where c, ,>O is 
independent of x,(O) and Ilrllm. Thus, for w(O)=O, the Cresponse of the reference governor 
has a 'saturation' character: 11 wII,< IIrll-, IIwII,< c,,,. 

Remark 4.6. Suppose the closed-loop system in Figure 1 is modelled by (2) and (3) and is 
combined with the reference governor. Then, because of (i), the saturation constraint is inactive 
and the closed-loop system functions as a linear asymptotically stable system. Furthermore, 
Remarks 4.2 and 4.5 can be extended to any outputs of the closed-loop system, such as z ( t ) .  For 
example, the zero-state response satisfies ~ ~ z ~ ~ . . ~ k ~ ~ ~ r ~ ~ ~  and IIzII,Lc, where kl and cL are 
positive constants. It should be emphasized that as an error measure z ( t )  relates plant variables 
to w(t), not r ( t ) .  Error measures based on r(t) are large when r ( t )  - w ( t )  is large. 

Remark 4.7. The conclusion in (ii) is strong, considering that it applies to a complex 
nonlinear system. Since w(t) = r ( t  - 1) for t > t: the ultimate response of the overall system is 
close to that of the linear controlled process. Certainly, (ii) implies convergence to the 
equilibrium corresponding to ro: w ( t )  + ro and x ( r )  + x g  = ( I  - A )  -'Bra. Corresponding prior 
 result^'^*'^*'^ on the error and reference governors are much weaker. They depend on the 
assumption that the governors are always inactive, as in Remark 2.1. The results in (ii) are 
global in the sense they apply for all convergent sequences, { r ( t ) :  r E 2' }, whose elements 
ultimately belong to WC, and for all xc(0)E 0:. By (21) it follows that w(0) = O  and 
x(0) E O,(A, C, Y )  imply x,(O) E 0:. 

Remark 4.8. The assumption in (ii) is about as weak as it can be. Clearly, the result in (ii) 
cannot hold if ro E W i ,  for then result (iii) would be violated. Note that the assumption in (ii) is 
satisfied if r ( t )  = ro E W', or if r ( t )  + ro E intW',. Thus, for ro E W',, the only case not handled 
by (ii) is the one in which r ( t )  + ro E bdW', and r ( t )  E WC, for infinitely many E Z'. For this 
case, it can be shown that w( t )  + W* E bdW',, but there is no guarantee that w* = ro. 

Remark 4.9. Result (iii) shows that convergence to an equilibrium solution occurs even 
though ro E W:. The stronger result in (iv) requires r ( t )=  ro. 

Remark 4.10. The theorem applies under our ovemding assumptions (Al), (A2) and (A3). 
Thus, Y need not be convex. 
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5. PROOFS OF THEOREMS 

Proof of Theorem 4.1. By (33) and K ( t ) E  [0, 11, w(t+ l )Eco{r( t ) ,  w(t)). Repeated 
application of this property proves (i). From (i), Iw(t)l dmax{Iw(O)l, lr(0)1, ..., I r ( t -  l ) ] ] ,  
which proves (ii). We prove (iii) for m = 1 .  This result, applied to the components of w(t) ,  
proves (iii) for m > 1. 

Suppose r(t)+r,E R. For E > O ,  define ; ( E )  so that Ir(r) - r,l d E for all tb t i e ) .  Given 
E > O ,  there are two possible outcomes: there exists L ( E ) ~  ;(E) such that 1 w ( ~ ( E ) )  - r,,l d E;  

I w( t )  - r,, I > E for all t 2 ; ( E ) .  Suppose the second outcome holds and w (i( E ) )  > ro + E. Then 
because x ( i ( ~ ) ) E [ O , l ]  and r ( t ( E ) ) d r O + E  it follows that r O + ~ < w ( i ( ~ ) + l ) < w ( i ( ~ ) ) .  
Repeating this argument shows w(r), tb ; ( E ) ,  is monotone and hence w(t) + w* 2 ro + E. 

Similarly, w ( ~ ( E ) )  < ro - E implies w(t) + w* s r,, - E. Thus, we have conclusion (1): w(t) + w* 
and 1 w* - r,,) b E. If the first outcome holds, (33), K ( ; ( E ) )  E [0,1] and Ir(i(E)) - r,,l d E imply 
I w(i( E )  + 1) - r,l d E. Repeating this argument leads to conclusion (2): there exists i( E )  such 
that I w(t) - ro) s E for all t b i( E ) .  Thus, for each E >  0 there are the two possible conclusions. If 
(1) is satisfied for some E > 0, (iii) is proved and w* # r,. If (1) is not satisfied for all E > 0, then 
(2) implies w ( t )  + ro. 

Proof of Theorem 4.2. By (10) and (23), x G ( t ) E  0: implies x , ( t+  l ) E  0:. Thus, 
x c ( t )  E O:, r E Z'. The remaining conclusions in (i) follow from (21), (4) and (34). 

Part (iii) of Theorem 4.1 and the asymptotic stability of A imply 
x , ( t )+x ;=  [ ( w * ) ~ ( x * ) ~ ] ~ ,  where x * =  (Z-A)-'Bw* and, by (i) and the closure of WE,, 
w* E Wi. From (13), C,A',x*, = How". Thus, 

Clearly, y,(t)E Y, t € Z + ,  and y,(t)+H,w*E Y ( E ) .  Since the ff are continuous andf,(H,w*)a - E ,  

i E { 1 ,  . . . , s) , there exists i€ Z' ,  which is dependent on { r ( t ) :  r E Z' ) , xG (0) and E, such that 
fl(CGA~G.xG(t)) < O  for all t b i. Suppose t b i and let xc = x,( t )  and r = r ( t )  in (24). Then from 
f , ( x c ( t +  1))<0, (10) and (26), it follows that K ( r ( t ) ,  x G ( t ) ) =  a ,  if and only if all= 1. Thus 
for r B ?, the a,, contribute nothing to (26) and it may be replaced by 

K ( r , x , )  = min{ a,: i E 1 ,  ..., $1 ] (36) 
Now consider the proof of (ii). For tb i=max{i ,  i ) ,  r ( t ) E  WE, and (5.2) applies. Let 

w = w ( t )  and r = r ( t ) in (28). Then, a I = 1 ,  i E { 1 ,  . . . , s ] and K (  r ( t ) ,  xG ( t ) )  = 1 for all t 2 i. 
Theorem 4.1, (i) and Remark 4.4 imply w(t)+ w* E Wi. Thus, for r o e  WED, w* # ro. Letting 

t + m  in (9) proves the first result in (iii). Suppose, contrary to the second result in (iii), that 
w*EintWi. Then, by (13) and (34), f , ( C , A ' , x ~ ) = f , ( H , w * ) < - ~ ,  i E  { 1 ,  ..., s]. Because of 
the strict inequalities, there exist .?>E and ;E Z' such that for all t 2  i, f , (C ,A / ,x , ( t ) )S  -2 and 
f , ( [ H ,  O]x,(t))d-2. Let x , = x , ( t )  and r =  r ( t )  in (24) and (25). Since .?>E and the f, are 
continuous, there exists an 6 > 0  such that K ( r ( t ) ,  x , ( t ) )>  8 for all tb i. This, contradicts 
K ( r ( t ) ,  x , ( r ) )  + O  and the proof of (iii) is complete. 

Let w* be given by the expression in (iv). It is obvious from Remark 4.2 that for all t E Z', 
w(t )Eco~w(O) ,w*]Cco{w(O) ,r , , ] .  Again, for t a i ,  K ( r ( t ) ,  x , ( t ) )  is determined by (36). 
Hence, by (28), w(i  + 1) = w*. Since further progress toward ro+ w* is impossible, 

0 K ( r ( t > ,  x , ( r ) )  = 0, t>  tl= i + 1. 

Remark 5.1. The assumption E>O is used in the proof of (ii), (iii) and (iv) and cannot be 
relaxed even if OJA,, C,, Y )  is finitely determined. 
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6. ALTERNATIVE DYNAMIC GOVERNORS 

A natural alternative to (9) is the dynamic governor introduced by Tan? 

w( t  + 1) = 1w(t)  + K(r ( t ) ,  x , ( t ) ) ( r ( t )  - 1w(t)) (37) 

where O <  1< 1 and AI replaces I in (10) and in the upper left block of A,  in (1 1). As in (9) 
K ( r ( t ) ,  x G ( t ) )  = 1 implies w ( t  + 1) = r ( t ) .  Since A,  is asymptotically stable, O,(A,, C,, Y )  is 
finitely determined and the approximation discussed in Section 3 is not needed. Unfortunately, 
this advantage is overcome by the same disadvantages which haunt the static governor: a 
reduced set of admissible equilibrium solutions26 and the possibility of steady-state oscillations. 
The underlying difficulty is in Theorem 4.1; simple examples show that it fails unless 1 = 1. If 
1 - 1 is small, simulation studies26 show that the behaviour of (37) is often acceptable and quite 
similar to (9). However, (37) appears to have no real advantage over (9). 

Another alternative to (9) is to replace the scalar valued K by a diagonal matrix and then 
determine its diagonal elements, K', i = 1,  . . . , m, by solving the following, on-line optimization 
problem: minimize I w( t  + 1) - r(t)I2 = I ( I  - K ) ( r ( r )  - w(t))I * subject to the constraints 
O c K ' a l ,  i =  1, ..., m and A , x , ( t ) + B , K ( r ( t ) -  [ I  O]x , ( r ) )EO' , (A, ,C, ,Y) .  For this 
alternative, it turns out that parts (ii) and (iii) of Theorem 4.1 and parts (i), (ii) and (iii) of 
Theorem 4.2 remain valid. The scheme has not been tried. Conceivably, its greater flexibility 
could offer superior performance. 

7. A HELICOPTER WITH CONTROL SATURATION 

The controlled process is a tenth-order closed-loop system whose plant is a fourth-order linear 
model of the vertical dynamics of a helicopter.26 State variables are horizontal and vertical 
velocity (knots), pitch rate (degrees/s), and pitch angle (degrees). Inputs to the plant are collective 
pitch, U , ,  and longitudinal cyclic pitch, u2, measured in degrees. Plant outputs to be controlled are 
the horizontal and vertical velocities. Zero-order holds with a sampling period, T = 0.1 s., are used 
at each of the plant inputs The resulting discrete-time model has characteristic roots at: 0-8128, 
0-9770, 1.0276 &j0.0265. Clearly, the helicopter is open-loop unstable. Inputs to the controller are 
the plant outputs and the reference commands. The controller is sixth-order, consisting of an 
observer-based, stabilizing feedback for the plant and integral control to eliminate steady-state 
tracking errors. Combining plant and controller dynamics gives a closed-loop system of the form 
(2)-(3) where y = u .  The characteristic roots of A are: 0.3331, 0.4282, 0.5959, 0.9502, 
0.6871 *j0.0390,0.5864* j0.4O91,0.9705 f j0.0821. 

The two plant inputs saturate at *10 degrees. Thus, f j ( y )  = y j -  10, i =  1 ,  2 and f j ( y )  = 
- y j  - 10, i = 3, 4. 0: is determined by solving a sequence of linear programming problems. 

Table I. The complexity 
indices for Of. 

0.01 135 159 
0-05 88 117 
0.1 80 106 
0.2 74 97 
0.3 56 93 
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Figure 4. Horizontal velocity versus time in seconds for several values of ro, (a) No reference governor. (b) With 
reference governor 
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Figure 5.  Reference governor gain versus time in seconds. (a) ro, = 30. (b) rill = 50 

The dependence of t ;  = t ;  and r;  = t*, on E is shown in Table I. Large values for t; and t;  are 
not too surprising, since n = 10 and several eigenvalues are close to the unit circle. In addressing 
the compromise of Remark 4.3, we choose ~ = 0 . 2 .  The corresponding set of admissible 
constant reference commands, Wk, is shown in Figure 3. Since it is quite large, the reduction in 
equilibrium feasibility is not of great concern. Note that Wi = (1 - &)WO, so the effect of 
changing E is a simple scale change. 

K ( r ,  x G )  is determined by (26), (31) and (32). Because y3 = -yI and y4 = -y2 ,  the compu- 
tational load in (31) and (32) can be reduced by almost a factor of two. On reasonable machines 
the actual computational time is much less than T = 0.1: for an Apollo DN 400t it is less than 10 
milliseconds, for an IBM 6ooo it is less than 2 milliseconds. This is in sharp contrast to the 
extremely large times needed for continuous-time error and reference governors. 

Response results are shown in Figure 4. The initial state of the controlled process is zero and 
the input is a step command to the horizontal velocity: r , ( t ) =  ro,, rz(t)=O. The corresponding 
horizontal output velocity, v , ( r ) ,  is plotted. Figure 4 (a) shows what happens when the 
reference governor is not used and the control variables are allowed to saturate. For ro1 = 20, 
the system is just below saturation and it behaves as a linear system. For rol = 30, 40, 50, 
saturation is reached; the instability of the open-loop plant comes into play and the response 
diverges. Figure 4 (b) shows the corresponding plots when the reference governor, with initial 
state zero, is added. The response is excellent: well-behaved, only slowing a bit as rol increases. 
When rol = 20, ~ ( t )  = K ( r ( t ) ,  x G ( t ) ) =  1. Its behaviour for rol = 30,50 is shown in Figure 5. As 
predicted by Theorem 4.2, K ( t ) =  1 for ts t: where [depends on ro1. While w,(t) is not shown, 
its behaviour may be inferred easily from Figure 5 :  if ro, = 50, wI (0) jumps to 34 and stays at 
that level until t = 18 (time= 1.8 seconds) when it begins a slow increase toward 50, arriving 
therewhen t=46and K ( t ) =  1. Since roz=O, wz(r)=O. 

8. A SYSTEM WITH AN OUTPUT CONSTRAINT 

In this example the reference governor is used to reduce overshoot in the step response of a 
single-input, single-output closed-loop system. The open-loop transfer function models a 
proportional- integral compensator and a plant which has gain c = 1, a four-step transport delay 
and a first-order lag: G*(z) = 0.15c( l+  1.7(z - l ) - ' ) ~ - ~ ( l -  e-I)(z - e- ' ) - ' .  The closed-loop 
system, with transfer function G*(z)(l + G*(z))-', has an output y ( t )  and is represented by 
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(2)- (3). Compensator parameters were chosen subject to a constraint on the velocity constant 
(lim(z- l)G*(z), z+ 1). Satisfying this constraint makes it impossible to obtain a well damped 
response to a step change in the reference command. See the oscillatory response in Figure 6. 

Suppose physical considerations demand y ( t )  E Y = [ymin, ymax.. This output constraint can be 
assured by the dynamic reference governor. It turns out that 0: is parameterized in terms of 

(38) D : = o - ( A ~ , C ~ ,  [-I + E ,  1 - E ]  x [-1,11) 
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Figure 6. Effect of reference governor on system with r(r)r 1 and output constraint y ( t )  E [-0.02, 1 . 1 1  
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Figure 7. Response of reference-governor system with r ( t ) i  1 and output constraint y ( t )  E [-0.02, 0.91 
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Indeed, straightforward manipulations based on (13), (17), (20) and Remark 3.2 show 

Once 0: is determined, (23) applied to (39) gives (26) and formulas similar to (31) and (32). 
The advantage of these steps is that ymin and ymay appear explicitly in the formulas. Since the 
additional time needed for computing K ( r , x , )  in terms of these parameters is small, they can 
be changed on-line as process conditions may require. For the results which follow, E = 0-01 
and the determination of 0: gives t; = t> = 23. Also, w(0) = 0 and x(0) = 0. 

The step response with the governor and Y =  [-0.02, 1.11 is shown in Figure 6. For t 2  1 1 ,  
K ( t )  = 1 .  Thus, in a remarkably short time the overshoot is reduced to the specified 10 per cent 
and the system enters its linear regime. Figure 7 shows what happens when Y = [ -0.02, 0..9]. 
Since r ( t )= l  E WC,= [-0-01, 0.891, part (iv) of Theorem 4.2 applies and for r >  13, 
y ( t )  = 0.89 and ~ ( t )  = 0. Figure 8 illustrates, with Y = [-0.02, 1 - 1 1 ,  the response properties for 
a very large oscillatory input which converges to 1. Part (ii) of Theorem 4.2 again applies, but 
45 time steps are required before K( t )  = 1. 

If the state of the controlled process is not available, or there are errors in the modelling of 
the controlled process, our results do not apply. A brief empirical investigation of these issues 
is illustrated in Figure 9. It is assumed that Y = [-0-05, 1-31 and r ( t ) =  1. In the 
implementation of the reference governor, the state of the controlled process is replaced by 
the state of a model of the controlled process whose input is w(t ) .  If the description of the 
controlled process and its model are precisely the same and their initial conditions are 
identical, the reference governor should function as predicted by our theory. This is the case 
for c = 1 .  The remaining responses in Figure 9 show what happens in the presence of 
modelling errors. The value of c remains equal to 1 in the model but it takes on the values 0-8 
and 1.2 in the controlled process. Both responses are certainly much better than the response 
with no reference governor (cf. Figure 6). However, the limit ymax = 1.3 is violated when 
c = 1.2. The situation suggests several expedient fixes. One is to reduce ymax below the desired 
value of 1-3. Another is to carry out the nominal design of the reference governor for c = 1.2 
rather than c = 1.  

+ I 
10 20 30 40 50 60 70 

1 

0.8 

Figure 8. Response of reference-governor system with r ( t )  = 1 + 5e-"-" cos t and output constraint y(r)E [-0.02, 1.11 
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Figure 9. Response of model-based, reference-governor system with r (r )a  1 and output constraint y ( r )  E [-0.05, 1.31 

9. CONCLUSION 
Discrete-time reference governors having the configuration shown in Figure 2 have been 
studied. They enforce the constraint, y ( t )  E Y .  t E  Z ’ ,  and thereby avoid undesirable effects of 
constraint violation such as sluggish response or instability due to actuator saturation. The 
approach has the distinct advantage that it can be applied to existing, well-designed linear 
feedback systems. Thus, acceptable large-signal performance can be obtained without 
sacrificing the small-signal performance of the linear design. 

Two governors, one static and the other dynamic, have been considered in detail. The main 
emphasis is on the dynamic governor because it has superior response characteristics. It is 
defined by (9), where K is determined by the constraint-predictive property of a maximal output 
admissible set. For typical constraint sets, K is an easily computed nonlinear function of system 
state and the reference command. Ease of implementation is a direct consequence of the finite 
determinability of 0:. Response properties are contained in the theorems and remarks of 
Section 4. The key result is part (ii) of Theorem 4.2: convergence of the input command to an 
equilibrium-admissible input implies the existence of fk Z+ such that w ( t )  = r ( t  - 1) for all 
t 3 t: This result is global in character - it applies when there are large reference commands and 
initial conditions. 

Examples confirm the predicted behaviour of the dynamic governor scheme and show that 
real-time implementations are feasible for systems of moderately high order. State-control 
constraints other than those imposed by actuator saturation may be treated. 

Open questions remain and are being investigated. They include the effects of modelling 
errors, incomplete measurements of plant state and the treatment of disturbance inputs. 
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