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Functional Expansions for the Response 
Nonlinear  Differential  Systems 

ELMER G. 

Abstmct-This paper is concerned with representing the response of 
nonlinear differential  systems by fnnctional  expansions. An abstract theory 
of  variational  expansions, similar to that of L. M. Graves (1927), is 
developed.  It leads directly to concrete  expressions (multilioear integral 
operators)  for the funaionals of  the  expansions and sets conditions on the 
differential  systems which insure  that  the  expansions  give  reasonable 
approximations  of  the response.  Similarly, it is shown that the  theory  of 
analytic  functions in Banach  spaces leads directly  to conditions which 
imply uniform convergence  of  functional series. The main results on 
differential  systems are summarized in a set of  theorems.  some  of  which 
overlap and extend the recent results of  Brockett on Volterra series 
representations  for the response of linear analytic  differential  systems. 
Other theorem apply to more  general nonlinear differential  systems. They 
proride a rigorous  foundation  for a large body of  previous  research on 
Volterra series expansions. Tbe multilinear  integral operators are obtained 
from  systems  of  differential equations wKch characterize  exactly  the 
variations.  These  equations  are of much  lower  order than those obtained 
by  the  technique  of  Carleman. A nonlinear feedback  system selyes as an 
example of an application  of  the  theory. 

I .  INTRODUCTION 

HE USE of functional expansions to represent the 
Tresponse of dynamic systems  is a well-established con- 
cept,  dating back to 1942  when &. Wiener characterized 
the response of a nonlinear device  by a Volterra series. 
Since then functional expansions (usually Volterra series) 
have played an important role in the modeling of nonlin- 
ear systems, both when the underlying system equations 
are known and when the system  is characterized only  by 
the availability of input-output  data. This paper is con- 
cerned with the former situation. The dynamic system  is 
described by a system of nonlinear differential equations 
and the objective is to  obtain a local approximation of the 
system output by a functional expansion operating on the 
input. Usually, although not always,  the expansion is a 
truncated power  series. 

There is a sizeable literature of prior research  in this 
direction. In the 1950’s and 1960’s, Volterra series  were 
derived and exploited  in a variety of situations. Refer- 
ences [3]. [4], [ IO], [ 1 11. [ 181, [2 1E[23], and [26] give a good, 
although by no means complete, perspective of this  work 
and include additional references to the literature. The 
main concern was  with  relatively  simple, stationary dif- 
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ferential systems. Multidimensional Laplace (or Fourier) 
transforms appeared frequently in both system characteri- 
zation  and response evaluation. For the most part, little 
attention was  given to the validity of the Volterra series 
other than to assume without justification its uniform 
convergence. In this respect the paper by  Bruni,  DiPillo, 
and Koch [7]  was a marked advance. For a general 
bilinear differential system it  showed that the input-out- 
put  map was a uniformly convergent Volterra series. By a 
technique due to Carleman,  Krener [I71 has shown that a 
rather general class of nonlinear differential systems can 
be  approximated by bilinear differential systems. This 
provides a path  for extending, in a variety of ways, the 
results  in  [7] to general nonlinear systems. An example is 
the recent paper [ 5 ]  by Brockett on “linear analytic” 
systems. 

A different approach to a general theory is pursued here 
and in [ 121. The differential system is  viewed abstractly as 
a mapping P from a Banach space of inputs into a 
Banach space of outputs.  Then P is expanded in an 
appropriate  abstract series and the series  is interpreted 
concretely to obtain  the desired functional expansion. 
Balakrishnan [2, sect. 3.61 takes a similar point of  view in 
considering a bilinear differential system, although the 
details of his analysis are quite different from those which 
follow. 

The most obvious candidate  for  the  abstract series  is a 
Frechet power  series. The precise details may be  found in 
[9]  and,  stated  briefly,  are  as  follows.  Let 
P“’(uo)[ MI,][ w2]. . 1 [ w,] denote the ith Frechet differential 
of P at co with increments x*,:. . . ,”;. If P is k times 
continuously differentiable in a neighborhood of co, 

P ( c o + c ) = P ( c o )  

k l  
i = I  1 .  

+ ~ P ” ’ ( c o ) [ u ] [ c ] . . .  [ c ]+R, (c )  (1.1) 

where IIRk(c)II < cjlcllk if Ilull< a(€). While (1.1) is appeal- 
ing and establishes connections with current research in 
polynomic systems theory (see  [24] for a review), it is not 
obvious that the differentials exist and  are  continuous  or 
that they can  be  determined easily from the description of 
the differential system. At least part of the reason for this 
difficulty is that P (’)(c0)[ H ~ , ] [ w ~ ] .  . . [ vc,] contains much 
more information  than is needed, since in ( 1 .  I) ,  w,, , w, 
are all  set equal to c. The “essential information” is 
contained in the  ith variation of P at co. which  is defined 
by 
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&;PC, (e )  = ( - g ) j P ( O , +  at?) . ( 1-21 
L O  

In particular, 
k 

P(oO+U)=P(C,)+ ,&'Pcn(~)+Rk(c) .  1 (1.3) 

Because S'PCn(c) is obtained by examining P on a one-di- 
mensional subspace, it can be determined for differential 
systems by  examining the solution of a differential equa- 
tion  with a parameter. As will be seen, this leads im- 
mediately to concrete characterizations of 6'Pc.(c) and to 
conditions on the differential systems  which assure that 
IJRk(u)ll is bounded in a reasonable fashion. The  expan- 
sion (1.3)  was first considered by Graves [ 141  in  1927 and 
seems to have been neglected in recent years, except as it 
pertains to the theory of analytic functions in complex 
Banach spaces [ 151. 

The  plan  and  content of the  paper  are  now 
summarized. In Section I1 the 'theory of (1.3) is developed 
for fixed k. It is pointed out that (1.3)  is a sum of 
homogeneous functions and not necessarily  powers of c. 
Conditions are given  which guarantee  that 1 1  Rk(c)il < 
~ I 1 t ' l l ~  when lloll <&(E) or IIRk(c)II <pllcllkf' when llcll < 
p. Complete proofs are given because they are simple and 
informative and take little more space than proofs based 
on the results of Graves [14].  The theory of analytic 
functions in complex Banach spaces is  reviewed  in Section 
111. The results are taken directly from Hille and Phillips 
[ 151 and lead  to  simple conditions which  imply uniform 
convergence of (1.3) as k-+cc. In Section IV the methods 
of Sections I1 and I11 are applied to the differential 
system: 

; = I  * 

x(t)=f(x(t),t)+U(t)g(x(t),t), x @ ) = <  (1.4) 

y ( t ) = h ( x ( W  (1.5) 

Here, x(t)E%.",  c( t )E%.,  y ( f ) E % ,  and t E [ O , T ] .  The 
terms in (1.3) are given  exactly  by the solution of differen- 
tial equations whose order is  much  lower than those 
arising from the technique of Carleman.  These differential 
equations lead directly to the characterization of (1.3) as a 
truncated Volterra series.  Precise conditions on f,g,h 
which assure the validity of (1.3) are given in Theorems 
4.1-4.4. Brockett's result [5] ,  [6] on the uniform conver- 
gence of the Volterra series is included. Similar results are 
obtained in Section V for  the  more general differential 
system: 

~ ( t ) = f ( x ( t ) , u ( t ) , t ) ,  x ( O ) = t  (1.6) 

y ( O = h ( x ( t ) , N J )  (1.7) 

where x(t)E%.",  u ( t ) ~ C P ' , y ( t ) ~ 9 ' ,  and tE[O,T] .  Here 
t' is the pair (u(-) ,<),  so that the functional expansion for 
y ( t )  includes the effect of changes in the initial condition. 

The derivation of the variational equations is  usually 
much  simplified whenf and h have a specific form. This is 
illustrated in Section VI by the analysis of a nonlinear 
control system. A discussion of the results and other 
applications of the approach is contained in Section VII. 

The reader who  is interested mainly  in  the application 
of the basic theory of (1.4)-(1.7)  may jump to Section IV 
without loss of continuity. Sections I1 and I11 are of 
general interest because  they constitute a  methodology by 
which other types of systems  may  be analyzed. 

11. APPROXI~MATION BY A Svu OF HOMOGENEOUS 
FLNCTIONS 

In what  follows  it is assumed that 3 denotes the  real 
numbers, T and % are real Banach spaces. 9l is an  open 
set  in q y ,  and P is a function from  into >X. 

The objective  is to obtain  a representation for P of the 
form 

k 

P ( C o + C ) = P ( C , ) +  2 Q ; ( C ) + R k ( C ) ,  G E N ( p )  
i =  I 

(2.1) 

N ( p ) = { t ' :  llcll<p, cE'?], (2.2) 

where p > 0, 

and for i = 1,. . , k. Q, : 'T-+% is homogeneous of degree 
i, that is, for all c EL?^ and a E CG, Q,(ac)= a'Q,(c). Gen- 
erally, Rk(c)  is to be  small  in  some reasonable way,  e.g., 

Before proceeding, it should be emphasized that (2.1) is 
not  a natural generalization of Taylor's formula. This is 
because P (eO) +E:= Q, ( c )  is not necessarily a  polynomial 
in t'. 

Definition 2.1: The function Q, : Y-+%i is an i-power if 
there exist functions c, : '-$ 2+?lr,j=0,. . . ,i, such  that for 
all c.5Erf and a .b€$ ,  

IIRk(U)ll <Pllcllk+l. 

i 

Q , ( a ~ + f l Z ) =  2 cj(c,C)ai-'@. (2.3) 

The function Qo + Zt=, Q, (G), Q, E Tli. is a  polynomial of 
degree k if for i = 1; . . , k ,  Q, is an i-power. 

E-xample 2.2: Let P(c)= r2f(f?) where ?-= g2, 3d = 
9,. and r and 6 are polar coordinates in the plane. Clearly, 
P is homogeneous of degree 2. However, i t  is a 2-power if 
and only if it is a quadratic form, i.e., there are real 
numbers aI.a2.a, such thatf(~)=a,cos'6+a2cos8sinB+ 
uj sin'f?. Thus. for k 2 and cO= 0, P = rZcos46 can  be 
represented by (2.1), but the sum is not a polynomial. 

I t  is necessary to consider derivatives of continuous 
functions f: $3 +V. The notation (d/da)f(a.)=g(cY) 
means g( a )  E ?[? satisfies 

j = O  

lim I I g ( a ) - p - ' ( f ( a + P ) - f ( a ) ) l / = O .  (2.4) 
P+O 

I f f  is defined on a closed interval of 9 and a is an  end 
point. the appropriate one-sided limit  is  used. Higher 
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order derivatives are  formed in the obvious way. For is defined for all u E N ( ~ ( E ) )  and a E[O, 11, and r(u, 1)= 
example, (d /da)2 f (a)=h(a)  where h(a )=(d /da)g (a ) .  &(I;). Moreover, for all I ; E N ( ~ ( E ) ) ,  ~ E [ O ,  11, i= 1,. . . ,k, 
Only the simplest results from the theory of integration the function PLo+uc.e( p )  is continuous for I PI sufficiently 
are needed. I f f :  %.+% has  a  continuous derivative g on small.  Since P&(a+p)= P;o+ac;v(/?), this  implies that 
[O,a], then the Riemann integral [14],  [15] of g exists and the functions 
J~g(u )du=f (a ) - f (O) .  Moreover, if y :  %.+% is integra- 

Definition 2.3: For CE ?X and u E T adopt the nota- 
ble and II g(a>ll< Y(ah then I l f ( 4 - f ( O ) l l <  J:Y(4 &. 

tion 
P;" ( a )  = P ( C +  a.) 

For all I; E ?- assume that there is an open interval, 
(- p(U, u), p(t; I;)) c CR, such  that Pk; is continuous  on the 
interval for i=O; . + , k. Then P is said to have  a  smooth 
kth variation at E and for i =  1;. . ,k, 6'P,: 'J'+%, which 
is  given  by 

k 

=P&&)- x ~ PLo;" (0)a'-* 
'=2 (i-2)! 

S iPG(c )=($) 'P ( i7+a~)  =P&(O), (2.6) r (u ,a )=P; ;c  ( a ) -  P& (0) (2.12) 

is called the ith variation of P at E. 
Some observations are in order. Simple  examples  where 

V = CR2 and % = 9. show that the continuity of P?,(a) in 
a does not imply the continuity of 6kP,(o) in either L; or 1;. 
The terminology  "smooth" kth variation is an  attempt to 
distinguish  this difference. Since (d/da)'P(E+ apv) = 
Pi(d/d(ap)) 'P(U+ @I;), it follows that 

C' 

6'P, ( P C )  = piSiP, (I;), t 'E  T-, ,8 E 9. (2.7) 

Thus, SiPL0 is homogeneous of degree i and (1.3)  meets the 
requirements of (2.1). Finally, when P has  a  smooth kth 
variation at 5+ ac, the identity (d/da)'P(G+ ac) = 
(d/dp)'P(t-+ ac + pc)lp=o implies 

6'P,+u1:(u)=P$c(a), u E q C , O < i < k .  (2.8) 

The first approximation theorem can now be stated, 
Theorem 2.4: Suppose  that there exists a po>O such 

that {so} + N k0) c LX and P has a  smooth  kth variation 
at C for all C E  { eo} + N(po).  For all E > O  assume that 
there exists a 6 ( E ) ,  0 < 6 ( E )  <po such  that the following 
condition is satisfied: 

are defined and continuous in a for t ' E N ( 6  ( E ) )  and 
aE[O, I]. By (2.8) and (2.9), Ilrk(~,a)II < ~ I J c l l ~ .  By the 
right side of (2.12), r,- ,(c,O) =O. Thus, integration of 
rk(u,a) with  respect to a gives 

~ ~ r k - l ( u ~ a ) ~ ~ = ~ ~ r k - l ( ~ , a ) - r k - l ( ~ , o ) ~ ~  

< ~ a I ~ r k ( u , u ) l l d u <  a ~ ( l u l l ~ .  (2.13) 

Repeated integration (noting that ri(c, 0) =0, i = 1,. . . , 
k-2,  and r(c,O)=O) gives Ilr(c,a)ll <(ak/k!)~l l l ; l lk .  Set- 
ting a = 1 completes the proof. 

Theorem 2.5: Suppose  that there exists a po > O  such 
that { c0}  + N (po) c 9t and P has a  smooth ( k  + 1)th varia- 
tion at G for all E E { uo} + N(po). Assume that there exists 
an M > 0 and  a p, O< p < po such  that the following 
condition is satisfied: 

I I ~ k + l P c o + a c ( C ) I I  < M I I C l l k + l ,  

for  alluEN(p), a € [ O ,  11. (2.14) 

Then Rk (u) in (1.3) satisfies 

for all . E N ( G ( E ) ) ,  a € [ O ,  11. (2.9) 
Prooj Proceed as in the previous proof  with 6 ( ~ )  

Then for any E > 0, Rk(c)  in (1.3) satisfies replaced by p and  add to (2.12) the function 

Proof: Choose E >O. Then which  is continuous in a for a E[O, I].  Using rk(u,O) = O  
k and the bound (2.14)  gives,  by integration, IIrk(c,a)II < 

r(G,a)=P(uo+a.)-P(t'o)- 2 ;s'P,,(ao) Ma 1 1  1 ; I J k + ' .  Repeated integration, as before, completes the 
l = l  1 .  

k 1  
l = i  1 .  by Graves [14] in 1927. In his Theorem 5,  '7; is a linear 

proof. 
= p - p - x --pio; , ( o ) ~ ;  (2.1 1)  These theorems are in the spirit of the results obtained 
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metric space, is a  complete linear metric space, and 
&(e;) is an integral. Notice that the completeness of 5- 
has not been  used in the above proof. The  normed spaces 
have the advantage that they permit the main conditions. 
(2.9) and (2.14), and the error bounds, (2.10) and (2.15), to 
be expressed  in particularly useful  ways. 

Remark 2.6: Consider the conditions 

IlskP,(0)-skPtio(o)ll<€llcllk, 

f o r a l l u E ~ , I : E { o , } + R r ( G ( ~ ) )  (2.17) 

and 

~lS"+"~,(c)l l < ~ l l u l l ~ + ' ,  for all LIE?-, ~ ~ { c , }  +,V(p). 

(2.18) 

Because of the homogeneity of SkPc and Gk+ 'PC, these 
conditions imply,  respectively, conditions (2.9) and (2.14). 
In many applications of Theorems 2.4 and 2.5. these 
conditions are easier to work  with and can be  verified. 
Example  2.2  shows that (2.9) and (2.14) can be satisfied 
when  (2.17) and (2.18) cannot. 

It is of interest to know whether or not the expansions 

established and  a suitable account  appears in Hille and 
Phillips [ 151. In this section several  key  results from [ 151 
are stated in the notation of Section 11. Although [15] 
encompasses  a much richer theory, what  is  used here 
seems  sufficient for many applications. It leads to easily 
verified conditions which ensure the uniform  convergence 
of (1.3)  for k 4 m .  As a  bonus, these conditions imply that 
(1.3)  is a power  series,  i.e., for all i 2 1, G'PL', is an i-power. 

In this section it is understood  that '3 is replaced by  the 
complex  field 2,  and  that 'I' and ?l.f are complex Banach 
spaces. The notation (dldol) f ( a ) = g ( a )  means (2.4) holds 
for all  complex /3-0. Otherwise, the notation is the same 
as in the previous section. 

Definition  3.1  (Definition  3.17.2 of[l5]): Let %.cy be 
an  open set. The function P :  %+?LC is analytic in % if: 
1) P has  a first variation at all C E  3, i.e., 

( z ) P ( L + a e ) l  d =S'P,(t:) 
a = O  

exists  for all EE TL and c E T-; and 2) P is locally 
bounded, i.e.,  for  all <E 3 there is a p($ > 0 and  a finite 
M(E)>O such that { C } + N ( p ( q ) c : T  and 

presented above  are in some sense unique. A result of 
Graves [14],  modified  (proof omitted) to suit the present I I P ( c ) l l b M ( t . ) ,  forallcE{G}+N(p(C)). (3.2) 
situation, answers the question affirmatively. 

Theorem 2.7: Let Qi : V+%, i = 1.. . . , k be  homoge- 
neous of degree i. Suppose P satisfies the hypotheses of 
Theorem 2.4.  If for any E > 0 there exists a & ( E )  such that 

Theorem 3.2  (Theorems  3.17.1 and 26.3.5 of [ 1 5 ] ) :  
Assume that P is analytic in the open set LX crf. Then 
a k P c :  Y+qK exists for all  positive integers k  and DE%. 
Moreover, SkP, is a  k-power. 

k 
P(c,+c)- P(0,)- Qi(C) <&llcll". 

i =  I ll Theorem 3.3 (Theorem  3.17.1 of [15]): Let P satisfy  the 
hypothesis of Theorem 3.2. Then for there exists a 
p>O, dependent on eo, such  that 

then 

Q ~ ( C ) = T J S ' P ~ ~ ( C ) ,  1 i = l , * . .  , k .  (2.20) (3.3) 
That is,  given any E >0, there exists a positive integer k(E) 

Suppose P satisfies the hypothesis of Theorem 2.5. If there such  that  Rk(e) in (1.3) satisfies 
exist k > O  and F ,  O < F < p , ,  such that 

k IIRk(c)ll<e forallk>k(E),cEN(p).  (3.4) 
P ( o , + u ) - P ( u , ) -  (Icllk+'? 

i =  I 

for all c E N ( p ) ,  (2.21) IV. THE DIFFERENTIAL SYSTEM (1.4)-(1.5) 

then (2.20) holds. 
In specific applications of the preceding theory it may 

be  important to determine that P ( uo) + I (  1 /i!)SiPz0(c) 
is a  polynomial of degree k. Often, as is  the  case  in 
Sections IV, V, and VI,  this can be done by  simply 
inspecting the concrete forms of SiPc,(c) for i =  1;. . , k .  

111. POWER SERIES 

It  is  possible to extend the above ideas to infinite series. 
The most natural  framework for doing this  is the theory of 
analytic functions in Banach spaces. This theory  is  well 

Functional  expansions for both x ( t )  and y ( t )  will be 
obtained. To distinguish between the two corresponding 
mappings of e, the notations 

x ( t ) =  P ( G ) ( ~ )  (4-1) 

are adopted. Before considering the expansions for P and 
p ,  some additional notations and  assumptions  are needed. 

Let c"([O,T],W) be the (Banach)  space of continuous 
functions from [0, TI into W with norm llell = 
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suplO,,je(t)) where le(t)l is the sup  norm of e ( t )  over the where, for simplicity, arguments have been omitted, and it 
components of e(t). It is  assumed in (1.4) that G E T =  is understood  that g and the derivatives of f and g are 
e([O, TI, CR). The notation f , g ,h  E C,'k) is used  when evaluated at ( z ( t ,a ) ,  t )  where z( t ,a)  is the solution of (4.4). 
f,g : 9" X [0, T]+W and h : 3" X [0, TI+-% are continu- Define 
ous and have  continuous partial derivatives of order k 
with  respect to the components of x in %" x[O, TI. It is X ( t ) =  P ( z ; ) ( t ) ,  x i ( t )=S iPC( l ; ) ( t ) .  (4.6) 
assumed that f , g ,h  E C,") with k 2- 1. Let 3 = E ( [ O ,  TI, '%) 
and '?X = e([O, TI, '3"). For P, % plays the role of %- in 
Sections I1 and 111: forp, 9 plays the role of %. 

Differential equations for the variations of P are  obtained 
from ~ , ( t )=z~( t ,O) .  For example,  (4.4) and (4.5)  yield 

In general, P and p are  not defined on Y because  the 
solutions of (1.4)  may have finite escape time. This ques- 
tion  is treated in the Appendix,  Theorem A. 1 and Remark 
A.2, and it  is  shown that if (1.4) has a solution on [0, TI 
for l; = u, E T, then there  is a  neighborhood of q,, 9 t ,  such 
that P :  %-+>X and p : +% . Thus, for such co it  is 
possible to proceed  according to the plan of Section 11. To 
clarify the presentation, the characterizations for 6'P, and 

are derived initially without full justification. Then, 
the conditions required in Theorems 2.4. 2.5, and 3.3 are 
verified  rigorously. The results concerning the functional 
expansions for P and p are summarized in a set of 
theorems. 

Derivatives of f ,g ,h  with  respect  to x  appear in the 
development and it is  necessary to have a  compact way of 
denoting  them. If j E  C,'", then f has a  kth  Frechet 
differential with  respect  to x [9]. This differential has k 
increments, wI, * . . , wk E C R n $  and is written 
f 'k)(~,t)[wI]- * . [ w k ] .  This is a  compact notation because 
each of the n components of f(,) is a linear combination of 
products of k numbers, where  in  each product the num- 
bers are taken from (one from each) the components of 
w,, . . , w k .  The differential is symmetric (the ordering of 
w,; . . ,wk is immaterial) and k-linear (linear in each %vi 
taken separately) [9]. For brevity, the designation (x,t), 
which indicates where the differential is evaluated, will be 
omitted if it  does not cause confusion. When f',) has 
repeated arguments,  a power-llke notation is used,  e.g., 
f'4'[ wI I[ w3][ w2][ w I ]  =j'4)[ wIl2[ w2][ w3]. Because of the sym- 
metry,  this  is  only a slight abuse of notation. The  same 
notation and  remarks  apply to g and h. 

Let C E 9 Z .  and G E Y. To obtain the characterization of 
6'P,-(v), define 

~ ( t , a ) = P ( r ; + a c ) ( r ) ,  t , ( t :a )=  - P(t?+at')(t). 
( a i  

(4.3) 

It is  clear that t ( t : a )  is  given  by the solution of 

i = f ( ~ , t ) + o ( t ) g ( _ 7 , t ) + ( ~ ~ ( r ) g ( ~ , r ) , ~ ( 0 , 0 1 ) = ~ .  (4.4) 

i = f ( x , t ) + a ( t ) g ( x , t ) ,  X(O)=< 

~ l = A ( X , t ) x l + r : ( t ) B ( x , t ) ,  x,(O)=O 

~ 2 = A ( x , t ) x 2 + A ~ . l ( ~ , t ) [ x l ] 2  

+ u ( t ) { B : ( x , t ) [ x , ] } ,  x2(0)=0 (4.7) 

where A(~,t)xl=f~')(~,t)[xl]+~(r)g~l~(X,t)[xl], B ( x , t ) =  

and B:(x, t)[xl] =2g(')(Z,  r ) [x , ] .  Continuing in a similar 
fashion and omitting the arguments Z, t gives 

g ( x ,  t ) ,  A;,,(?, t)[x1l2 = f ( 2 ) ( ~ ,  t)[x,12 + ~ ( t ) g ( ~ ) ( ~ ,  t)[xll2, 

. .  . .  

A few comments  concerning these equations may be 
useful. The  equation for x,  is the usual linearization of 
(1.4) about the reference pair T(t) ,  z\(t). For x k ,  k >  1, the 
equations have (the same) linear dynamics, but with 
forcing terms Fk and oCk.  Fk is a  sum of j-linear, sym- 
metric functions of the type ._., $[ x,,]. . * [ x i / ] .  The in- 
d ices i , ; . .   , i , sa t i s fyO<i ,S i , . . .   < i jandi ,+ i ,+- . -+ i j  
= k .  The last result  follows  because x, must  be a homoge- 
neous function of degree k in u [see (2.7)]. Similar remarks 
apply  to  the  term G k  and  the  functions 

__.. ,;[x,,]--.[x,] except i , + i , + - - .  + $ = k - ~ .  It is 
clear that the  complexity of Fk and G k  mounts rapidly 
with k. 

Differentiation of this equation with  respect to (Y yields B~ noting that 
differential equations for the I,([,.). For example, if j ( z ,  r )  
= f ( z ,  t )  + f i ( t ) g ( z ,  t) ,  p ( f i+aG)( t )=h(Z( t ,a )J)  (4.9) 

i,=J~"[zl]+avg~~~[zl]+Gg,tl(o,a)=o and  proceeding similarly, equations for the variations 

i2=J(')[ t2] +a@)[ t2]  + p [  z1]2+avg(2)[ z1]2 Yi(t> = h ( u ) t d  (4. IO) 

+ 2 v g ( " [   r , ] , z 2 ( 0 , ~ ) = 0  (4.5) can be derived. For i =  1,2, 
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" wik where i,, * ,ik is any  permutation of the integers 
1,2; . * , k .  In Fig. 1 this notation helps to sort out those 
"parts"  of (4.7)-(4.8) and (4.11)-(4.12) which are linear 
(the L;) and those which are nonlinear (the Mi). 

'I Because of the special structure of (4.7)-(4.8) and 
(4.1  1)-(4.12), it  is  easy to integrate successively the equa- .' 

,~ illustrate, consider the equations .(4.7). Let % ( t )  be the 
fundamental matrix defined by % = A ( X ( t ) ,  t)$, s(0) = I .  
Then the variation of the parameters  formula gives 

.~ . . ~ ~ ~ ~  ~ . . . ~ ~ ~ ~ ~ ~ ~ .  ~~~~ .... ~~~~ .... ~ tions to  obtain integral formulas for 6'P, and 6'P,(u). To 
' , X %  

.... ~.. .~~ ..... ~.._._ 

I _ .  

6 ' P ; ( c ) ( t ) = x , ( t ) = /  Wi (t,a)r;(a)da (4.14) 
T 

0 

'Y3 

Fig. 1. Structural  representation of the variational equations for the w,'(t7a)=%(t)5-'(a)B(x(u),a), O < o < t < T  
system (1.4)-(1.5). =0, 0 < t < u <  T. (4.15) 

. y ,  = C ( F , r ) x ,  Using this result to express x l ( t )  in the last equation of 
(4.7) yields . , -  

y 2 =  C ( Z f ) X 2 +  c;, (X,t)[x,]2 (4.11) T i -  
8 2 P G ( e ) ( t ) = X 2 ( t ) = j  J w,'(t,al,a2)c(o,)c(u,)du,da, 

where  C(X, t j x ,  = h(')(F, [ ) [ x l ]  and C:,(X, t)[x,12 = 0 0  
hC2)(X, t)[xl12. For i = 3,4,. . . , k, (4.16) 

where 

. .  
(4.12) 

where H k  is a sum ofj-linear, symmetric functions of the =0, O<t<o,<  T or O < f < a 2 <  T. (4.17) 
type Cl,12, . . . , i , [xi , ] .  [ X $ ]  where the indices i,!. . ,$ satisfy 
0 < i , < 1 , . . -   < i j a n d i , + i , + . - .  + i j = k .  Although the formulas  become even more complex, it is 

Equations (4.6)-(4.8) and (4.10)-(4.12) characterize the clear that the process can be continued for i >2. Thus, 
variation of P and p .  As indicated in Fig. 1, these equa- there are functions W ~ ( t , o , ;  . . ,a,) such  that 

tions have a special structure involving a patterned inter- T T 

connection of vector multipliers M j  and linear dynamic X;(t)=6'pc(c)(r)= J * . * / wi (f3al,* * . ,aj) 
systems L;. In this representation L is the linear map of 
elements e E 5% into  elements w E % which  is defined by -u(u,)- * * c(u;)~u,. * * d ~ ; .  (4.18) 

0 0 

Similarly, 
+=A(X,t)w+e(t) ,  w(O)=O. (4.13) 

T T .  

The notation w, X w2 indicates a vector whose components 
are all  possible products of components of w ,  times com- .~(U,)....(U;)~U~...~U; (4.19) 
ponents of w2 with a systematic scheme of ordering. Thus, 
if w ,  has  dimension n, and w2 has dimension n2, kt', X w 2  where 
has dimension n,n2. Similarly, w ,  X w2 X w3 = ( w ,  X w 2 )  X 
w3, w2 = w x w, and so on. Using  this notation a  symmet- wi(r ,a)= ~ ( , ( t ) , t ) ~ d  ( t , a )  (4.20) 
ric, k-linear form D [ w l ] [ w 2 ] .  . . [wk] can be written DM], X 
w2 X . . . X w, where D is interpreted as  a linear mapping. and 

y j ( t )=8ba(c) (r )=J  S, w;(t,a,,.~-,uj) 
0 

the property that Dw, X w2 X * - X w k  = Dw;, X w j 2  X . X t- C:l ( X ( t ) , f ) [  W; ( t , a , ) ] [  Wi  ((,a2)]. (4.21) 

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 2, 2010 at 15:47 from IEEE Xplore.  Restrictions apply. 



GILBERT: FLh'CTIONAL EXPAUSIONS FOR NONLIhTAR  DIFFEREhTIAL SYSTEhiS 915 

Substituting these characterizations for S'PJc) and 
into (1.3)  gives concrete expansions for x ( t )  and y ( t ) .  

Let xo(t) and y,(t) be  given,  respectively, by (1.4) and (1.5) 
with c(t)= Go(t). Then setting E ( t ) =  co(t) in (4.7), (4.Q 
(4.1 l),  and (4.12)  yields 

x ( t ) = x 0 ( t ) +  2 k 1  ~ X , ( t ) + R , ( t ' ) ( t )  (4.22) 
; = I  . 

k 1  
~ ( t > = ~ o ( t > +  C i lY i ( t )+rk (G) ( t ) .  (4.23) 

i = l  . 

If the integral formulas (4.18) and (4.19) are used  (with 
U= eo) in these equations, they become truncated Volterra 
series for x (t) and y ( r ) .  

It remains to be shown that the preceding steps are 
justified and  that the remainder terms in (4.22) and (4.23) 
are bounded in a suitable fashion. This will be done using 
standard tools from the theory of differential equations 
and Theorems 2.4,  2.5, and 3.3. The results are  contained 
in the  following theorems. 

Theorem 4.1: Let j ,g ,  h E C:") and suppose (1.4) has  a 
solution on [0, TI for e= eo E 'T. Then there exists an open 
set YL, eo E TL c Y: such that P and p are defined in 97- 
and have smooth kth variations in %. For i = 1, * , k and 
~ € 3 ,  SiP,(c) and 61p,(c) are given by (4.6)-(4.8) and 
(4.10)-(4.12) or (4.18) and (4.19). The kernel functions 
W;(t ,u , ; .  ,u,) and w ~ ( t , u , , *  - ,ai) are calculated from 
(4.6)-(4.8) and (4.10)-(4.12)  by the process described 
above and  are continuous for all t , u l , .  - ,a, E[O, TI except 
for t = a, or u, = 5, ij = 1, . , k where jump discontinui- 
ties  may appear. 

Proof: By Theorem A.l  and Remark A.2  of the Ap- 
pendix, there exists a p >  0 such that P is defined in 
'?X = { uo} + N (p). Since for all 2. E T and c E 'IT, E + ac E 
% for IaJ sufficiently small, (4.4) has a solution for la/ 
sufficiently small. Moreover, if  (4.4)  is written as 

- 

i = F ( z , a , t ) ,  z(O)=$', (4.24) 

it is clear that F is k times continuously differentiable in z 
and a. From this it is known (see  [19, ch. 11, sect. 41) that 
z ( t ,a )  is k times continuody differentiable in a for a in a 
neighborhood of a = 0. This proves that P has a smooth 
kth variation at I5 for all CE%. Because of the differen- 
tiability of t, j ,  and g, the steps leading to (4.7) and (4.8) 
are valid. Thus, these differential equations define u'P,-(c> 
= xi for i = 1,. 1 , k .  From (4.9), h E C,"), and the differen- 
tiability of z ( t , a )  with respect to a, it follows that p has  a 
smooth variation in % and (4.10)-(4.12) are valid. Be- 
cause F(t) is continuous, all the terms in (4.7),  (4.Q  (4.1 l), 
and (4.12) are continuous in t. This justifies the use of the 
variation of parameters formula and shows that Wi and 
w; are continuous on the indicated subset of [0, TI'+'. 

Theorem 4.2: Let f ,g ,h  E C x k f 1 )  and suppose (1.4) has 
a solution on [0, TI for e= coE T,?. Then there exists a 
p > O  and p > O  such that 

II&(c)II? I!r,(C)II<pLiICIIk+l (4.25) 

for all cE'?'such that 1 1 0 1 1  <p.  
Proof: First, R,(u) is considered. Because of Theo- 

rem 4.1 and Remark 2.6, it is clear that the hypotheses of 
Theorem 2.5 are satisfied if (2.18)  is satisfied. From Re- 
mark A.3, X= P(5) satisfies llXll<Ko for G E { z ) ~ } + N ( ~ )  
= 9. This means that there are constants Gl and f i 2  

such that IA(F,t)x,l<@,Ix,I and IB(Y,t)l 9G2 for all 
t E [0, TI, E E 3. By the Gronwall inequality [ 191 it is 
known  that if w satisfies  (4.13),  then l l w l l  Q 
(TexpM,T)IIell. Combining the results of the preceding 
two sentences and applying them to the differential equa- 
tion for x I  shows that there exists an M ,  such that 
llx, 1 1  < M,IlulJ for all I5E % and c E Y. Using this result 
and similar reasoning, it can  be seen from the differential 
equation for x2 that there exists an M,  such that llx211 < 
M211c112. The process can be repeated until it is shown that 
there exists an A4 such that IIxk+,ll<MIIcllk+l for all 
I5E TL and G E YO, which  implies that (2.18)  is satisfied. 
Thus, the bound (2.15)  follows from Theorem 2.5. In a 
similar way,  (4.11) and (4.12)  withllxill <M,llt:ll' show that 
there exist mi such that Ilyjll <millell'. Using the same 
argument and defining p ( k  + l)! = max { M,+,, m,+ ,} 
completes the proof. 

Theorem 4.3: Let f,g, h E CJk) and suppose that (1.4) 
has a solution on [0, TI for c = eo E T. Then for any E > 0, 
there exists a S ( c )  such that 

llRk (C)ll, Ilr,(u)ll <c l l c l l k  (4.26) 

for all e E Y  such that lloll < a ( € ) .  
Proof: Because of Theorem 4.1 and Remark 2.6, it is 

sufficient to show that P and p satisfy (2.17).  Since the 
notation becomes very burdensome, this will be done  only 
for P and k =2. From this it should be clear how the 
proof proceeds for p and k > 2. Define i i ( t )  = 8'PC(c)(t) - 
S'P,,(c>(r). Then it  is clear from (4.7) that 

~ , = A ( x o , t ) i l + ( A ( F , t ) - A ( ~ o , t ) ) ~ ~ l  

+U(t ) (B(F, t ) -B(x0 , t ) ) ,  i , ( O ) = O .  (4.27) 

By Theorem A.1 it  follows that ~ ~ F - x o ~ ~ < K ~ ~ C / ~ ,  C=U- 
eo. Using the continuity of j ( ' ) ( x ,  t )  and g(l)(x, t) ,  it is clear 
from this that there exists a f l ( ~ )  such that I(A(F,t)-  
A ( x , , t ) ) x , ( < ~ l x ~ l  and Ic ( t ) (B(F , t ) -B(x , , t ) ) l<~ lo ( t ) l  if 

1 1 1 5 ) 1 <  s(c). Applying the Gronwall bound of the previous 
proof and recalling that Ilx, / l<M,l lul l ,  it follows that 
there exists a SI(€) such that Ili,Il<cllcll if 11611<S1(c). 
Now consider the  proof of (2.17). From (4.7) it follows 
that 

i 2 = A ( x 0 , t ) ~ ~ + ( A ( X , t ) - A ( x , , ~ ) ) X 2 + A ~ , , ( X , t ) [ X 1 ] 2  

- A : , ( x o , t ) [ x , - i , ] 2 + F ( t ) B : ( x : t ) [ x l ]  

- c ( t ) ~ ~ ( x , , t ) [ x , - i , ] ,  ~^,(O)=O. (4.28) 

Using the representation for multilinear forms which was 
introduced in the discussion of Fig. 1, this becomes 
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~ 2 = ~ ( ~ 0 , t ) ~ 2 + ( ~ ( ~ , t ) - ~ ( ~ 0 , t ) ) x 2 + ( ~ ~ , 1 ( ~ , t )  

- A ?, (x,, I))$ + 2~ ?, (X,, O x ,  x 2, 

-A:,,(x,,t)i:+o(t)(B:(x,t) 

- B ~ ( x , , t ) ) x , + u ( t ) B ~ ( x , , t ) i , ,  2,(0)=0. (4.29) 

Because of the continuity of f 2 ) ( x , t )  and g(2)(x, t )  and the 
definitions of A & ( x , t )  and B:(x,t) ,  IIx211 < M2110112, llxIll 
<M,IIoll, and ~ ~ 2 , ~ ~ ~ c ~ ~ o ~ ~ f o r  ~ ~ I ? ~ ~ < 8 , ( c ) ,  it can be argued 
that there exists a S2(c) such  that 1151) < i 2 ( c )  implies that 
the sum of the last four terms on the right side of (4.29) 
are  bounded in norm by ~ 1 1 0 1 1 ~ .  This and the Gronwall 
bound establish the existence of a2(c) such that l l i 2 1 1  < 
~ l l t ' 1 1 ~  if I l I ? l l  =lIC-o,\l < S2(c) .  The definition of i2 shows 
that (2.17)  is satisfied for k = 2 .  

Theorem 4.4: Assume that f ,g,h are analytic functions 
x, i.e., f , g ,  h E CJ') when the complex  field 2 replaces 9. 
Suppose that (1.4) has  a solution on [0, T ]  for c = eo E ?#-. 
Then the variations S'P,,(c) and S$Jc) are defined by 
(4.6)-(4.8) and (4.10)-(4.12) or (4.18) and (4.19) for all 
i > O  and (4.22),  (4.23)  converge  uniformly in a neighbor- 
hood of s,, as k j m .  Specifically, there exists a p > O  such 
that the following statement is true: given any E > O  there 
exists a positive integer k(E) such that 

IlRk (c)ll, Ilr!f(u)II < E  (4.30) 

for all k 2 k(c)  and o Eqf which  satisfy lloll <p. 
Prooj In all of what  follows 3. has been replaced by 

e.  As indicated in Remark A.4,  this  does not change the 
results of the Appendix.  Thus, as before, (4.24) defines 
z( t ,a)=P(C+ao)( t )  for all G E { ~ , } + N ( ~ ) = % ,  e€?-, 
and a Et?, ]dl sufficiently  small. Moreover, since F(z ,a , t )  
is analytic in ( z ,  a )  for each t E[O, TI, it  is  known [ 19. ch. 
11, sect. 51 that the solution is analytic in a.  Thus condi- 
tion I )  of Definition 3.1 is satisfied. Condition 2)  follows 
because  Remark A.3  implies that P is bounded on Yl. 
Hence, P is analytic in L%. Because of the analyticity of h 
and z( t ,a) ,  (4.9)  shows that p(C+ao)(t) is analytic in a. 
The  bound on P implies a  bound on p and. hence, p is 
analytic in u%. The results of the theorem follow  im- 
mediately from  Theorems 3.2 and 3.3. 

V. THE DIFFERENTIAL SYSTEM (1.6)-(  1.7) 

tial derivatives of order k with  respect to the components 
of x and u in CP' X qrn X [0, TI. It is assumed  that f , h  E 
C[tiJ with k > 1. If (1.6) has a solution on [0, TI for 
c0 E f, then Theorem A.1 of the Appendix implies the 
existence of an open set % c r< such  that (1.6) has  a 
solution for all 2; ET. Thus, the maps P: %+'X and 
p : %+9, where % = C([O, TI, CRn) and 9 = Q([O, TI, a'), 
are defined. The objective is to expand P andp in expres- 
sions of the form (4.22) and (4.23). 

Mimicking  the development of the previous section, 
z ( t , a )  and z j ( t , a )  are defined by  (4.3). When CEUn., G E T  
and la1 is sufficiently small, z ( t ,  a) is defined and is the 
solution of 

2=f ( z ,U( t )+a~( t ) , f ) ,   z (O .a )=$+a& (5.1) 

If f E C$,i), z(r,a) is k times continuously differentiable 
with  respect to a for a in a  neighborhood of a = 0 [ 19, ch. 
11. sect. 41. Thus, it is permissible to differentiate (5.1) k 
times  with  respect to a. Let f " ' ( x , u , t ) [ ( ~ ~ , I . t . . ~ ) ] .  [(zj ,wj)] 
denote the ith  Frechet differential of f with  respect to 
(x, u )  with increments ( z , .  w1), . , ( z i ,  x;) E an X am. Then 
noting that (d/da)'(z,G+cyu)=(ri .0) for i >  1, it  is clear 
that 

where  it  is understood  that the differentials are evaluated 
at (z(t ,a),U(t)+ azl(t), t).  Finally, from (4.6). x i ( t ) =  
zj(?,O), and the symmetry of the differentials, it  follows 
that the (smooth, up to order k )  variations of P at C are 
given  by 

i=f (x ,u( t ) , t ) ,  x(o)=$ 
In this section functional expansions for the system ~ l = f i l ) ( ~ , u ( t ) , t ) [ ( ~ , : u ( t ) ) ] .  x,(o)=< 

(1.6)-( 1 . 7 )  are examined.  Although there is an appreciable 
increase in the complexity of the notation, the schema of 1 , = f < ' ) ( x , u ( r ) , t ) [ ( x 2 , O ) ]  
the previous section applies with only  minor modifica- 
tions.  Because of this, the emphasis is on results, and + f " ) ( x , u ( t ) , t ) [ ( x , , ~ ( t ) ) ] ~ ,  -y2(0)=0, 
many details concerning  formulas and proofs are omitted. 

where  now x( t )  is the solution of (1.6), y ( t )  is  given by 
(1.7), and o is the pair (u ( * ) ,< ) .  It is assumed that G E T =  +3P2)(X,u(t),t)[(x2,o)][(x,,u(r))] 
C?([O,T],CRrn)xP and IIoII=IIuII+IEI. The notationf,hE 
C[li) is  used  when f :  CRn X qrn x[O, and h : 9'' X 
?Xrn X [0, TI+%' are  continuous  and have continuous par- (5.3) 

As before, the notations (4.1) and (4.2) are adopted, a,=P1'(x,.(?>,t)[(x3.O)] 

+ f 3 ) ( ~ , ~ ( t ) , t ) [ ( x l , ~ ( t ) ) I 3 ,  x3(0)=o 

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 2, 2010 at 15:47 from IEEE Xplore.  Restrictions apply. 



GILBERT: F'UXCTIONAL EXPANSIONS FOR NONLINEAR DIFFERENTIAL SYSTEMS 917 

;&, 
~. . -. . . . . . . . . . . . . . . . . . .. where A ,   B ,  C, and D are t-dependent matrices and the 

" I  I X ,  .") 
remaining  terms  are  r-dependent bilinear (not necessarily L, ; 

symmetric) functions. For i > 2, similar  expressions can  be 
l x I . U I ~  written, although the number of multilinear terms which 

appear grows rapidly with i. When the variation of param- 
[+ol eters formula is applied to (5.6),  it  is  seen that the varia- 

tions can be written as follows: 
T 

a l p , ( U ) ( t ) = X , ( t ) = /  0 w : ( t , u l ) [ u ( u , ) ] d u , + ~ ~ ( t ) [ 5 ]  

(5.7) 
a'P, (u) ( t )=x , ( t )  

Fig. 2. Structural representation of the  variational  equations for the 
system (1.6)-(1.7). 

Observing that p ( 6  + av)( l )  = h ( z ( t ,  a ) ,  U(t )  + ~ ( t ) ,  t) ,  
using the notation (4.10), and assuming  that h E C,l".?, 
shows that the (smooth, up to order k )  variations of p 'are 
given  by 

y,=h( ' ) (x ,U(r) , t )[( .u , ,u(r))]  

The variational equations have a special structure which 
is indicated in Fig. 2. As in Fig. 1, the multilinear forms 
are interpreted as- linear mappings of "product vectors." + ~ ~ , o ( t ) [ ~ I 2 + Q o 2 ; o ( t ) [  u ( t > ] [ q .  (5.10) 
The figure  shows that the system  (5.3)-(5.4)  is a intercon- 
nection of vector multipliers (Mi)  and linear dynamic  The functions labeled W,W,@,,Q utilize  the notation which 
systems (I,;). The operator L, which maps  elements (e,q) € has been established for linear and bilinear forms  and  are 
X X CRn into  elements M, E Y ,  is defined by determined from the data in (5.6). For example, 

helpful to write  (5.3)-(5.4) in greater detail. For example, +2  t 5 ( r ) 5 - y u )  
the equations for xi,y,, i = 1,2, are written I 

A : , ( . r ( 4 > w , u ) [  w: ( % . I ) [  ~ l ] [ m ~ , [ t ] ] ~ ~ .  
i ,  = A x ,  + Bu, s I  (0) =t 
1 2 = A x 2 + A ~ . , [ ~ , ] 2 + B & [ u ] 2  

0 < U l < t < T  

=O, O < t < a , < T  (5.1  1) 

y ,  = Cx, + Du where 5(t) is the fundamental matrix corresponding to A .  
The multiplier 2 arises from the fact that A?., is symmet- 

y2= Cx, + Ct [ x ,  ]'+ 0: , [ .I2+ D ;  , [ u ]  [ xI  ] (5.6) ric; the required change in order of integration is  permissi- 

+ B : ; ; , [ u ] [ x , ] ,  ~ 2 ( 0 ) = 0  
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ble  because the bilinearity of A ;. leads to the identity 

[ w,’ ( a , o l ) [ u ( o l ) ] ] [ @ ~ ( ~ ) [ S ] ] ~ ~ l ~ ~ .  (5.12) 

It is easy  to see that W:2 and w ! , ~  are zero for 0 Q t < u1 Q 
T or 0 Q c < u2 Q T, and  are  continuous in t ,al ,u2 except at 
t=u1,u2 or ul=u2; W,‘, W&, w;, w ~ f , ~ ,  w ~ , ~ ,  2 and (5f;o 
are zero for 0 9  t <  u1 < T, and  continuous in t ,u,  for 
0 Q uI 9 t 9 T ;  @A, @& w& +A, u ~ i , ~ ,  +i,o, and  are 
continuous in t for 0 Q t Q T. Similar results hold for 
2 < i < k,  although the complexity of the formulas is for- 
midable. 

Even  when <=O, the above  formulas do not lead to  a 
truncated Volterra series. This is because of the terms 
corresponding to W:l, w;,~, wi, ~ ~ ~ , ~ ( t ) .  If “impulsive” 
kernels or Stieltjes integrals are allowed, the terms may 
take on the appearance of terms  in a Volterra series. For 
example, if < = O ,  6$,(u)( t )  can be written 

T T  WW=/ 0 0  / W 2 ( t W 2 ) [  u<.J][ “ ( 0 2 ) ] 4 d U 2  

(5.13) 

where 

W 2 ( ~ ~ ~ , , ~ 2 > [ ~ I ] [ ~ 2 ] = W : 2 ( t 7 ~ l ~ ~ 2 ) [ ~ 1 ] [ ~ 2 ]  

+ s ( . , - ~ , > w ~ , , ( t , ~ l ) [ ~ I ] [ ~ 2 ]  

+ ~ ( ~ - - l ) ~ ( t - - 2 > w ~ . o c ~ > [ u l ] [ ~ 2 ]  (5.14) 

and S ( I )  is the Dirac “function.” 
The  preceding characterizations of P and p can be 

substituted into (4.22),  (4.23)  to obtain functional expan- 
sions for P and p .  The results are made precise in the 
following theorems, Proofs are omitted, since  they are 
similar  to those of the previous section and involve rather 
lengthy notations. 

Theorem 5.1: Let f, h E C)!,)u, and suppose that (1.6) has 
a solution on [0, TI for TJ = ( u ,  5) = uo E T. Then there exists 
an open set 3, uo E 3 c T, such  that P and p are defined 
in 9t. and have smooth  kth variations in 3. For i = 
1;. a ,  k and VEaXL, 6‘P,(u) and S$, ( t . )  are characterized 
by the system of equations (5.3)-(5.4) and integral for- 
mulas of the type  (5.7)-(5.10). 

Theorem 5.2: Let f , h  E C):;’) and suppose  that (1.6) 
has a solution on [0, TI for TJ = so E ?;. Then there exists a 
p > O  and y > 0 such that (4.25)  is satisfied for all c E Y 
such that llull < p .  

Theorem 5.3: Letf,h E C,(,z?, and suppose  that (1.6) has 
a solution on [0, TI for TJ = tloE Y. Then for any E >0, 
there exists a 6 ( E )  such  that (4.26)  is satisfied for all c E 7’- 
such  that I lcl l<S(c).  

Theorem 5.4: Assume that f ,h  are analytic functions of 
x and u, i.e., f , h  E C:-t,)u, when the complex  field 2 re- 
places %. Suppose that (1.6) has a solution on [0, TI for 
t‘= u,E T. Then S’PJt.) and 6$,,,(u) are defined for all 
i > 0, and (4.22),  (4.23)  converge uniformly in a neighbor- 
hood of uo as k-co. 

VI. AN EXAMPLE 

General characterizations of the variations, such as 
(4.7).  (4.8),  (4.1 l), (4.12) or (5.3),  (5.4), are unnecessarily 
complex  for  many applications of the preceding theory. 
Frequently, it  is simpler to derive the variational equa- 
tions from scratch, using  (1.2) as the basic mathematical 
tool. 

To illustrate this point, consider the nonlinear feedback 
system  shown in Fig.  3(a). The linear dynamic system L“ is 
defined by the equations 

x(t)=Al(t)x(t)+6(t)17(t) ,  .r(o)=< 

r(t> = E ( f b ( t )  (6.1) 

where x ( t ) E P ,  G ( t ) E % ,  y ( r ) € % .  and the matrices 
2,6, E are continuous in [0, TI; the nonlinearity I$ : ‘3 --+$I, 
is k times continuously differentiable: the input to the 
feedback system  is u E Q  = c“([O, TI, 9). It is desired to 
obtain  a functional expansion for the map p ( c ) ( t )  =y ( t )  
where TJ = ( u ,  <) E % X Sn. Clearly, 

. ~ ( t > = ~ ( c ) x ( t ) + 6 ( t ) + ( u ( t ) - ~ ( t ) x ( t ) ) ,  X(O)=S 

Y ( t )  = E ( t ) x ( t )  (6.2) 
so the system is of the form (1.6)-(  1.7)  where f , h  E C)l!u,. 
Since Theorems 5.1-5.3 (Theorem 5.4 when I) is analytic) 
are relevant and establish the validity of the functional 
expansion, it remains only to determine the characteriza- 
tion of the variations. 

The  approach of Sections IV and V is repeated, but the 
special structure of (6.2)  is exploited. Assume that (6.2) 
has a solution on [0, T ]  for < = E o  and u = zq,. Then. for la1 
sufficiently  small, z(r,a) and w(t,a) are  defined by 

i = A ” ( t ) z + 6 ( t ) ~ ( u o ( t ) + a u ( t ) - E ( ( t ) z ) ,  z(O,a)=(O+a[ 

w = E (c)z. (6.3) 

Moreover, for i = 1;. . , k ,  the derivatives (d/da)iz( f ,a)= 
z i ( t ,a )  and (d /da)”?( t ,a )=~;( t ,a )  exist, are continuous, 
and are defined by differential equations obtained by 
differentiating (6.3)  with  respect to a. For example, if 
k > 2, 

~ , = A l ( t ) z l + 6 ( t ) ~ ~ 1 ~ ( u o ( t ) + a u ( r ) - w ( t , a ) ) ( u ( c ) - ~ v , )  

wl=E(t)zlr .zl(O,a)=( 

i 2 = 2 ( e ) z 2 + 6 ( t ) ( + ( ’ ) ( u o ( t ) + a u ( t ) - w ( t , a ) ) ( - w 2 )  

+ +(’)(u0(t> + au(c) - w<t,a>)(u(r> - w l ) ’ )  

w2=E(t)z2, z2(0,a)=O (6.4) 
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Fig. 3. (a) The  feedback  system. (b) Structural  representation for the 
output  variations  with u, + u+u and 5, + (+E. 

where 

and yo(r) is gven by 

Fig. 3(b) shows  the structure of the variational equations 
(6.5). For this representation, it is assumed  that $,$’)(t)#O 
for tE[O,  TI and ~i(r )=I+!J~)( t ) ( I+!J~l ’ ( t ) ) - l .  The linear dy- 
namic system L describes the linearized closed-loop sys- 
tem,  i.e., the first line of (6.5). 

Because the dynamical  behavior of the system  (6.5)  is 
expressed  by repeated applications of L, simplifications 
occur in the calculation of the integral characterizations of 
81p,o(c)(t). In particular, for I+!J,$’)(t)#O, t E[O, TI, the varia- 
tions can all be expressed in terms of wi(t,ul)$ the weight- 

ing function for L, and $Act) [see (5.9)]. For  example, if 
t=o, 

w:,I(t,‘TI)=)”:(t,uI)\k2(a]). (6.1 1) 

In the above  formulas the bracket notation of (5.9) and 
(5. IO) has  been  suppressed because u( t )  is scalar valued. 
Similar calculations can  be made for i>2. 

The  preceding results are easily interpreted because, 
contrary to Figs. 1 and 2, all the operations indicated in 
Fig. 3 are  on scalar variables. It is  seen that the effects of 
nonlinear distortion (measured by y2,y3,y4; . . ) can be 
kept  small by keeping lel( small. This  can  be  achieved by 
high open-loop gain, which tends to make the error (el) in 
the linearized  model ( L )  small. If L has much “resonant 
peaking,” the distortion “near” the resonant frequency 
will be large. This follows for two reasons: 1)  in this 
frequency  range lel[ is large, and 2) the operator L, which 
amplifies the multiplier outputs, tends to make ly21, 
(y31, Iy4), . . + large. More specific analyses of distortion 
effects  in feedback systems are described in [21],  [22], and 
[ 261. 

VII. CONCLUSION 

Sections I1 and I11 present a general methodology for 
obtaining functional expansions which represent the re- 
sponse of nonlinear differential systems. The variational 
approach provides a  convenient recipe for deriving the 
concrete form of the terms in the expansions, and precise 
results concerning the approximation errors (Theorems 2.4 
and 2.5) or convergence of the expansions  (Theorem 3.3) 
are available. These features are illustrated by the devel- 
opments in Sections IV, V, and VI. In addition, the 
variational formula (1.2) provides a  simple justification for 
a variety of techniques [IO], [ 181,  [25], and [26]  which have 
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been  proposed for the derivation of Volterra  series. The 
methodology extends to other types of dynamic systems 
as well. For instance, discrete-time  systems,  similar  in 
form to (1.4)-(1.5) or (1.6)-(1.7), can  be treated in an 
analogous fashion [13] and the results of Section VI (e.g.. 
Fig.  3) can  be generalized to  the case where L“ is char- 
acterized abstractly as a linear, causal operator. 

Theorems 4.1-4.4 and 5.1-5.4 give  precise conditions 
on general  classes of differential systems  which assure the 
validity of functional expansions. Not surprisingly,  these 
conditions are reminiscent of those  which occur in the 
usual  theory of power  series. For the  system  (1.4)-( IS), 
Theorem 4.4  gives an alternative path  to Brockett’s Theo- 
rem 1 [5], [6] .  Theorems 4.2 and 4.3  show that many of the 
results  in [5] are valid whenf,g,h  are finitely differentiable 
instead of analytic in x .  Theorems 5.1-5.4  extend  these 
results to the much more general  system  (1.6) and (1.7). 
For the special  case of stationary systems ( t  does not 
appear in f and h) where xo(t),uo(t) are constant,  Theo- 
rems 5.1-5.4 justify developments which  have appeared  in 
many papers and reports [4], [lo], [l 11, [18],  [21],  [22],  [23], 
[25],  [26].  However, in opposition to a frequently ex- 
pressed  belief, the functional expansions are not neces- 
sarily  Volterra  series  (see the remarks preceding Theorem 
5.1). In [7] the response of bilinear differential systems to 
initial conditions is characterized; Section V shows that 
similar characterizations can be obtained  for very  general 
nonlinear differential  systems. It is worth noting that 
Theorems llke  4.1-4.4 and 5.1-5.4 can be proved with 
little modification when the t dependence is  more  general. 
For example, in Section V, j ,  h and u need  only be 
measurable in t if simple  integrability conditions are in- 
troduced. For k = 1 ,  Theorems 4.2, 4.3 and 5.2,  5.3 justify 
rigorously the validity of linear models for nonlinear 
systems.  Such justification is  usually  neglected;  [8],  which 
applies to t E [0, -t cc) instead of t E[O, TI,  is an exception. 

The form of the variational equations has a number of 
important implications with  respect to the general theory 
of nonlinear systems,  which  will be only suggested  in what 
follows. The variations are given exact& by the solution of 
differential equations of relatively low order (compare 
with  [5]). This is a potential advantage in developing 
efficient numerical techniques for the evaluation of the 
kernel functions which appear in the functional expan- 
sions. It also shows that if a Volterra  series  is  realizable in 
the form (1.4)-(1.5), then each term in the series  is indi- 
vidually  realizable. This generalizes a conclusion con- 
tained in Brockett’s Theorem 4 [5]. Alternative approaches 
to many  other results  in  [5]  follow from the formulas of 
Section  IV. For example,  necessary and sufficient condi- 
tions that (1.4)-(  1.5)  have a finite  Volterra  series can  be 
given  in  terms of the A’s, B’s and C’s which appear  in 
(4.7),  (4.8),  (4.1 I), and (4.12).  If it  is  desired to  char- 
acterize the variations (4.6) and (4.10) as the solutions of 
bilinear differential equations, the trick  used  in the Carle- 
man bilinearization [5 ] ,  [17] can be applied to (4.7).  (4.Q 
(4.1 I), and (4.12). To illustrate, the term x:=zl.,. which 
appears in Fig. 1, can be obtained by  solving 

i , , , = . f , X x , + x , X i , = ( A x , + B u ) x x ,  

+ x , X ( A x , + B u ) = ~ , ~ , z , , , + ~ , , , ( x , X i ; ) ,  

which  is bilinear in x,,zI,,, and c. This  approach differs 
from [5] in that  the bilinear equations give the variations 
exactly (in [5]  there  is a remainder term resulting from the 
truncation of the infinite order Carleman system). Finally, 
Figs. 1 and 2 can be interpreted as general structural 
results concerning the realization of nonlinear, causal 
operators  as differential  systems. For instance, if an oper- 
ator is a 2-power of the class  (1.6)-(1.7),  it can be realized 
by the first  two  “layers” of Fig. 1. This realization has 
similarities  with the realization of bilinear operators dis- 
cussed  in [I], [16], and [20]. In fact, the principal results of 
these papers can be obtained very  simply  using the tools 
of Section V 1131. 

APPENDIX 

Theorem A.1: Assume that f: qn X qrn X [0, TI+’%!’ is 
continuous and has continuous first partial derivatives 
with  respect to x and u in qn X qrn X[O, TI. Let L% = 
C([O, TI, am) and ‘3 = c([O. TI, an). Suppose that (1.6) 
has a solution x, for u = u, E and [ =to E 9 i n .  Then 
there  exist constants p > O  and K > 0 such that for all 
u E  9 and (E  W satisfying IIu - uoll + l[-[ol < p ,  1) the 
system  (1.6) has a solution x €  3, and 2) IIx- xoll < 

Proof: Omitted.  The general idea is to write an in- 
tegral equation for i = x - x o  and show that for 1 1  u - uoll 
and 1[-t01 sufficiently  small it corresponds to R = T(R) 
where T is a contraction. 

Remark A.2: By an obvious change in notation, Theo- 
rem A. 1 applies  to  (1.4). 

Remark A.3: For I I u - ~ ~ l l + 1 [ - < ~ 1  <p. it follows that 

Remark A.4: The theorem is  valid if 9 is replaced by 

~ ( l l ~ - u o l l + I t - ~ o l ~ -  

IIXII Ko=KP+ llxoll. 
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Abstruct-Results and  concepts  in  the theory of weak convergence of a 
sequence  of  probability measures are applied to convergence problem for 
a variety  of  recursive  adaptive  (stochastic  approximation-like) methods. 
Similar techniques have  had  wide  applicability  in areas of operations 
research  and in some other areas in stochastic control.  It is quite  likely  that 
they will play  a  much  more  important  role in control theory than they do at 
present,  since  they allow relatively  simple  and natural proofs  for  many 
types of  convergence  and  approximation  problems. Part of  the aim of  the 
paper is tutorial: to introduce the ideas  and to show how  they might be 
applied. Also, many of  the results are new,  and  they can all be generalized 
in many directions 

recommended by Y. Bar-Shalom, Chairman of the Stochastic Control 
Manuscript received November 22,  1976; revised April 25,  1977. Paper 

Committee. This work was supported in part by the Air Force Office of 
Scientific Research under Grant AF-AFOSR-76-3063, by the  National 
Science Foundation  under Grant Eng-73-03846-A01, and by the Office 
of Naval Research under Grant  NONR NOOO 14-76-C-0279. 

in& Brown University, Providence, RI 02912. 
The  author is with the Division of Applied Mathematics and Engineer- 

I. INTRODUCTION 

HE aims of this paper  are twofold. The first aim is 
T tu to r i a l .  The technique of and the results in the theory 
of weak  conoergence of a sequence of probability measures 
have found  many useful applications in  many areas of 
operations research and statistics [l], [2]. Their role  in 
control theory has been  relatively limited, being confined 
mainly to the work  in [3], [4] which deals with control 
problems  on diffusion models.  Yet, its intrinsic power, as 
well as the nature of the past successes,  suggest that its 
role in control theory should be deeper  than it  is at 
present. The techniques are particularly valuable when 
convergence or approximation ideas are being dealt with. 

In order to illustrate the possibilities, the ideas of weak 
convergence theory will be applied (the second goal of the 
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