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OPTIMAL PERIODIC CONTROL:
A GENERAL THEORY OF NECESSARY CONDITIONS*

ELMER G. GILBERTf

Abstract. Does time-dependent periodic control yield better process performance than optimal
steady-state control? This paper examines exhaustively the role of first order necessary conditions in
answering this question. For processes described by autonomous, ordinary differential equations, a
very general optimal periodic control problem (OPC) is formulated. By considering control and state
functions which are constant, a finite-dimensional optimal steady-state problem (OSS) is obtained
from OPC. Three solution sets are introduced: 6e(OSS)--the solutions of OSS, 6e(OPC)--the solutions
of OPC, 6e(SSOPC)--the solutions of OPC which are constant. Necessary conditions for elements of
each of these sets are derived; their solution sets are denoted, respectively, by Se(NCOSS),
ff(NCOPC), and (NCSSOPC). The relationship between these six solutions sets is a central issue.
Under various hypotheses certain pair-wise inclusions of the six sets are determined and it is shown
that no others can be obtained. Tests which imply that time-dependent periodic control is better than
optimal steady-state control ((6(SSOPC)= , 6a(OSS) ), including those based on relaxed
steady-state control, are investigated and limits to what tests exist are established. The results integrate
and amplify results which have appeared in the literature. Examples provide insight which supports the
theory.

1. Introduction. Since the 1967 paper by Horn and Lin [13] there has been
an increasing interest in the mathematical theory of periodic processes. The
motivations for this theory came initially from the optimization of chemical
processes [3], but there are other areas of potential application such as vehicle
cruise [10]. The essence of most applications is the optimization of a "continuing
process," a process which is fixed in its characteristics and is expected to operate
continuously over an indefinitely long period of time. The traditional approach to
such problems is to minimize process cost by selecting constant controls subject to
the constraint that the (dynamic) process is in static equilibrium. Although this
"steady-state" approach is simple (time does not appear) and has intuitive appeal,
it is not necessarily best. It may be possible to exploit the process dynamics and
obtain even lower cost. Experiments with actual processes have shown that this
can indeed be the case. The theory has helped to explain some of the mechanisms
for such improvement and suggests situations where "time-dependent" control
may improve performance. Much of the literature on periodic control has been
reviewed by Bailey [3] and Guardabassi, Locatelli and Rinaldi [11].

The natural starting point for a theoretical investigation of continuing
processes is the formulation of a dynamic optimization problem. It is clear from
the preceding discussion that this optimal control problem should satisfy certain
requirements" 1. the system dynamics and control constraints should not depend
explicitly on time, 2. the system state and control functions should be defined on
the time interval (-oo, +oo), 3. a meaningful "optimal steady-state" problem,
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which does not involve time, should result when the system state and control
functions are assumed to be constant. This is the attitude taken in this paper;
everything is based on the optimal control.problem (OPC) which is stated in 2.
The structure of this problem is chosen so that requirements 1 and 3 are met
directly. Requirement 2 is imposed indirectly by assuming that the system state
and control functions are periodic. Although this is not absolutely essential it is
consistent with the previous literature, is a practical constraint, and avoids certain
mathematical difficulties. The problem OPC, which assumes the system dynamics
are represented by ordinary differential equations, is quite general and includes
most of the problems which have appeared to date as special cases.

Because of the special form of OPC there are three notions of optimality
(solutions of OPC, solutions of OPC which are constant, solutions of the steady-
state problem) and, correspondingly, three sets of necessary conditions. Hence
many potential relationships exist between the necessary conditions and the
various optima. The investigation of these relationships is the central theme of this
paper. Apart from its intrinsic interest this investigation is valuable for a number
of other reasons: it puts together in a larger, more consistent framework many of
the scattered results in the literature; it produces stronger tests for optimality and
properness (time-dependent control better than optimal-steady-state control); it
establishes certain limits to what can be proved concerning these tests; it sheds
new light on the role of relaxed steady-state controls.

The paper is organized as follows. Section 2 states the problem OPC and
introduces notation for the three sets of solutions. In 3 the necessary conditions
are derived. The developments are restricted to the "first variation" and are, for
the most part, applications of well established theory. Section 4 introduces
notation for the sets of solutions of the necessary conditions and relates these sets
to the three sets of optima. Section 5 presents a number of examples which show
that it is not possible to obtain more set inclusions than those obtained in 4. Tests
for properness are considered in 6 and it is shown that under certain reasonable
conditions no other tests exist. Tests for optimality and relative optima are also
discussed. Section 7 treats relaxed steady-state optima; one of the main conse-
quences is an extension of the well known results of Bailey and Horn [1].

It is worth noting that the concept of a continuing process seems essential to
much of what follows. While it is possible to pose optimal periodic control
problems which do not satisfy requirements 1 and 3, the results concerning the
comparison of time-dependent and steady-state optima are greatly weakened.

2. Formulation of the problem. In this section a problem of optimal periodic
control is formulated which meets the general requirements of the previous
section. It models a wide class of continuing processes and subsumes a.meaningful
steady-state problem. Solution sets related to the two optimization problems are
defined and some simple facts concerning them are noted.

Before stating the optimal periodic control problem it is necessary to
introduce the following notation and assumptions: /" and k are nonnegative
integers, T R is positive, Uc R is an arbitrary set, Xc R and Y R are
open sets, for -j, , k the functions gi" YxX R are continuously differen-
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tiable, the functions f: Xx U R" and/: Xx U-R are continuous and for each
u U are continuously differentiable in x.

Optimal periodic control problem (OPC). Find u(-), x(. and - which
minimize J subject to

(2.-)

(2.1-2)

(2.1-3)

(2.1-4)

(2.1-5)

(2.1-6)

(2.1-7)

(2.1-8)

-- g0(y, x (0)),

gi(y, x(0)) =< 0, =-/’,... ,-1,

gi(y, x(0)) 0, 1, , k,

1
f(x(t), u(t)) dt Y,Y .

A(t) =fix(t), u(t)) almost all t [0, T], x(0) x0"),

u(. ) q/= {u(. ): u(. measurable and essentially bounded
on [0, T], u(t) U for all t [0, T]},

x(. ) {x(. ): x(. absolutely continuous on [0, T],
x(t) X for all t [0, T]},- (0, T].

Some general comments are in order. Equations (2.1-5) represent the
dynamics of the process and the constraints that x(. and u (.) are periodic on
(-, +o) when appropriate extensions of their definitions are made: x(t + u-)
x(t), u(t + uz) u(t), t [0, -), u integer. The components of f(x(t), u/t)) are
quantities of interest in the optimization problem, e.g., rates of process fuel
consumption, material flow rates, overhead cost rates, value measures of process
products. It is the average of these quantities y, as given by (2.1-4), which appear
in the actual optimization of the process, i.e., the minimization of (2.1-1) subject
to (2.1-2) and (2.1-3). The dependence of the g on x(0) allows consideration of
factors relating to the "start-up" of each cycle of. operatio.n. It also allows
constraints to be imposed on x(0)= x(’).. Note that f and f and the control
constraint set U do not depend on t and the g do not depend on ’. This is essential
if the requirements 1 and 3 of 1 are to be satisfied. The bound (2.1-8) is
consistent with the assumption of periodic operation. While T= +oo is not
allowed, arbitrarily large T is permitted. Thus the quasi-stationary approximation
treated in the literature [3], [11] can be extended to OPC. This is not done here.
The convention/" 0 is used to denote the absence of inequality constraints;
similarly k 0 denotes absence of equality constraints.

By appropriate changes in notation problem formulations considered previ-
ously in the literature become special cases of OPC. For example, the problem of
Guardabassi, Locatelli and Rinaldi [11] requires/" 0 and g, 0, ., k equal to
the components of y; the.problem of Bailey and Horn[l] requires/’ k 0 and go
equal to a general function of y. The problem in [ 1] is somewhat more general than
it may first appear because a simple substitution of variables allows it to include
the case /" 0, k >0 when the functions gi,. >0, are components of y [2].
However, when restricted to the context of continuing systems, none of the
previous formulations have the full generality of OPC.
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The steady-state problem is obtained from OPCby adding the constraint that
x (.) and u (.) are constant. As expected, this yields a finite-dimensional optimi-
zation problem which does not depend on r.

Optimal steady-state problem (OSS). Find u and x which minimize J subject
to

(2.2-1) J go(Y, x),

(2.2-2) &(y,x)<-O,

(2.2-3) &(y, x) 0,

(2.2-4) y f(x, u) Y,

(2.2-5) f(x, u)= O,

(2.2-6) u e U,

(2.2-7) x X.

It is of interest to compare the solutions of OPC with the solutions of OSS.
This can be done conveniently by introducing the following solution sets, all of
which are subsets of 0-//x x (0, T]:

(2.3)

(2.4)

(2.5)

(2.6)

Y(OPC {(u(" ), x(" ), r): (u(’), x(" ), r solves OPC},

Y(SS) {(u(. ), x(. ), ’): (2.1-2)-(2,1-8) are satisfied and
u(. and x(. are constant},

(SSOPC) 5v(OPC) f3 5(SS),

Y(OSS) {(u(. ),x(. ), r): (u(.),x(. ), r) e ’(SS) and
(u (0), x (0)) solves OSS}.

Of course, 6e , the null set, is possible in any of the four cases. The particular
circumstance 6e(SSOPC)= , 6e(OSS) . implies that there exist time-
dependent controls which do better than the best steady-state controls. If
6e(SSOPC) any 6e(SSOPC) is also in 6e(OSS) since g is optimum with
respect to choices in x x (0, T] and 6e(SS)c x x (0, T]. Also, it is clear
that all elements of Se(OSS) and Se(SSOPC) yield identical costs J. This leads to the
following.

Remark 2.1. There are three mutually exclusive possibilities:
(i) 5(SSOPC) 5e(OSS) # ;
(ii) Se(SSOPC)= , ae(OSS)# ;
(iii) Se(SSOPC)= .9’(OSS)= (R).
Possibility (iii) is not apt to occur since for well posed problems it is likely that

Y(OSS) # . Possibility (i) implies that OPC has a steady-state solution and
consequently, there is no advantage (even though OPC may also have time-
dependent solutions) in using time-dependent control. Possibility (ii) implies
time-dependent control can do better than steady-state control (a statement
which holds true even if .9’(OPC) ). Because of the importance of possibilities
(i) and (ii) the following definitions are introduced.
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DEFINITION 2.1. If 5e(SSOPC)= 5e(OSS)# the problem OPC is called
steady -state.

DEFINITION 2.2. If 5(SSOPC) , 5(OSS) # the problem OPC is called
proper (compare [5]).

The study of relative minima of OPC and OSS will prove to be of value,
particularly in the case of steady-state minima.

DEFINITION 2.3. (u(’), x(" ), ’) Y(SS) is a strong {weak} relative minimum
of OPC if there exists an e >0 such that for all (t(.), (. ), ) which satisfy (2.1-
2)-(2.1-8) and II(t)-x(0)ll<e (ll(t)-x(0)ll<e, Ila(t)-u(0)ll<e), t[0, T], it
follows that go(y, x(0)) -< go(), .(0)).

DEFINITION 2.4. (U("), X(" ), ’) Se(SS)is a strong {weak} relative minimum
of OSS if there exists an e > 0 such that for all (t, :) which satisfy (2.2-2)-(2.2-7)
and II -x(0)ll < ll -x(0)ll < Ila u(0)ll < it follows that go(y, x(0)) =<
go(, .).

In these definitions I1" denotes any norm on R" or R and y for u =/,
x ;, r ". Corresponding to each of the four types of relative minima, notations
for the set of minima are adopted"

6e(SRMSSOPC), 6e(WRMSSOPC), 6(SRMOSS), S(WRMOSS).

For example,

(2.7) 6e(SRMSSOPC) ((u(.), x(. ), ’)" (u(.), x(. ), ’) 6e(SS)
is a strong relative minimum of OPC}.

Obviously, 6e(SSOPC) Se(SRMSSOPC) Se(WRMSSOPC) and Se(OSS)
6e(SRMOSS)c6e(WRMOSS). By using the same reasoning which led to
Remark 2.1 it is easy to see that 6e(SRMSSOPC)m6e(SRMOSS). However,
6e(SRMSSOPC) does not imply 6e(SRMSSOPC)= (SRMOSS) because
elements of 6e(SRMSSOPC) do not necessarily have the same cost as elements of
6e(SRMOSS). Similar reasoning applies to the case of weak relative minima. All of
this is summarized in

Remark 2.2. The following conclusions are valid: ow(SSOPC)
5e(SRMSSOPC) c 5(WRMSSOPC), ow(OSS) 5e(SRMOSS) c ow(WRMOSS),
5e(SSOPC) = 5e(OSS), 5e(SRMSSOPC) = 5e(SRMOSS), S(WRMSSOPC) =
(WRMOSS).

3. The necessary conditions. Since explicit characterization of 5e(OPC),
5(SSOPC) and 5t’(OSS) is generally difficult or impossible, it is essential to
consider necessary conditions for the elements of these sets. The necessary
conditions for OPC will be obtained by applying some necessary conditions
obtained by Neustadt (summarized in Appendix A). Similarly, known conditions
for finite-dimensional optimization problems (summarized in Appendix B) are
applied to OSS. An entirely separate derivation starting from the necessary
conditions for OPC is required to obtain necessary conditions for elements of
5’(SSOPC). Relationships between the various necessary conditions and the
solution sets introduced in the previous, section are examined in 4.

In what follows: let fx (x, u) and [x (x, u) denote respectively the Jacobian
matrices of f(x, u) and f(x, u) with respect to x; for -],. ., k, let giy (y, x) and
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gix (y, x) denote respectively the Jacobian (row) matrices of gi(y, x) with respect to
y and x; let a prime denote the transpose of a (column) vector or matrix.

TEOREM 3.1 (necessary conditions for OPC). Let

(3.1) H(x, u, p, )=p’f(x, u)+/’)(x, u)

where p s R and R I. Let (u(.), x(. ), r) solve OPC. Then there exist an
absolutely continuous function p(.)’[O,’]R", i6sR and real numbers
a_, , ak such that the following conditions are satisfied"

(3.2-1)

(3.e-)

(3.2-3)

max H(x(t), v, p(t), ) H(x(t), u(t), p(t), )
vU

k

’= E g,(y, x (o)),

p’(t) =-p’(t)fx(X(t), u(t))-’f(x(t), u(t))

almost all t [0, -],

almost all t [0, r],
k

p’(’)-p’(O) " E ag,x(y, x(0)),

ai <-- O, -f, O,
(3.2-4)

aig (y, x(0)) 0, -/’, ", -1,

(a_i, ’, a, p’(r)) # 0.

If f(x(" ), u( )) and (x( ), u(. )) are continuous at the following additional
condition is satisfied"

(3.2-5)
’Y H if T,

’y=H ff<T,

where

(3.2-6) HM max H(x(-), v, p(’), ).
vU

Proof. With the following substitution OPC can be written as GOC of
Appendi,x A: n + l, Ix j + 1, u k + n, ff XxR , 2 (x, ), f(2, Iz)
(f(x, u), f(x, u)); for -],..., k, 0(1, 22, z) gi(’-l(2-), x); for
k + 1, k + n, 0(: A2x -)= X-k X-k where the subscripts denote the com-
ponents of x 2 and x 1^; 0_i_1( 1, 22, .) ’- T; ’ is any real number greater
than T. By choosing X and X2 to be appropriate neighborhoods of 21(0) and
22(.) the constraint y e Y is assured. Using the conditions from Theorem A.1,
letting/3 (p,/), and replacinga by ’ai gives conditions (3.2). To confirm the last
line of (3.2-4), note that the last condition of (A.3-4) can be written (i6’y-
Ht, a-i," ", ak, p’(r)) O. Since (a_i, ., Ok, p’(’)) 0 implies/’y -H4 0,
the last line of (3.2-4) must follow.

Before stating the necessary conditions for OSS it is necessary to introduce a
procedure for obtaining "perturbations" in the constraint set U. This can be done
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in a variety of ways (see, e.g. [7], 17], [ 19]) without being very specific about the
characterization of U. Here the presentation follows Canon, Cullum and Polak
[7]. Let co V convex hull of V and cl V closure of V.

DEFINITION 3.1. A convex cone C(u, U)c R"; u U, is a conical approxi-
mation to U at u if for any collection {ul, , 8Us} of vectors in C(u, U) there
exist an e >0 and a continuous function (: co{u,u+eul,... ,u+e6us} U,
both dependent on {Bu, ., Bu}, such that ((u +u)= u +Bu +o(Bu) where
IIo( u)[I. II ull as 8u 0.

When Uhas simple characterizations so does C(u, U). For example, suppose

(3.3) U= {u: hg(u) O, 1,..., q},

where the h are continuously differentiable on R with Jacobian matrices hgu(U).
Let I(u) {i: hg(u) 0}. Then

(3.4) cl C(u, U)={6u: hu(U)6U N0, I(u)}

if U is convex or {hu(U)}z(u are lineay independent. For more details see [7].
Finally, the assumptions on[ and must be strengthened. When they exist, let, (x, u) and , (x, u) denote respectively the Jacobian matrices of f(x, u) and

[(x, u) with respect to u.
4ssump{ion A1. and f are continuously differentiable on X x 0 where

U U and U R is an open set.
TnEORE 3.2 (necessary conditions for OSS). Let[andsatis[y Assumption

A1 and let (u, x) solve OSS. Then there exist p s R", R and real numbers
a_i, , ak such that the following conditions am satisfied[or any C(u, U) which is
a conical approximation to U at u"

(3.5-1) (p’[,(x, u)+’[,(x, u))6u 0 orall6u eel C(u, U),
k

(3.5-2) fi’= E ag,y(y,x),

(3.5-3) -pZ(x, u)-’fx(X, u)= E agx(y, x),
i=-j

aNO, i=-L O,
(3.5-4) aig(y, x) O, -L -1,

(a_i," ,ak, p’)#O.

Proof. With the following substitutions OSS can be written as FDO of
Appendix B: n + 1, ], u k + n + l, 2 Xx Y, 2 (x, y); for -], , k,
0(, u) g(y, x); for k + 1,. ., k + n, 0(, u) -k (X, U) where the sub-
cripts denote components of f(x, u); for k + n + 1,. ., k + n + L 0(2, u)
’-k-,(X; U)--Y-k-, where the subscripts denote components of (x, u) and y.
Applying the conditions from Theorem B.1, letting p’= (ak+,’’’, ak+,) and

’= (ak.+,+," ", ak+,+), gives the conditions (3.5). The last line of (3.5-4) holds
because (a_i, , p’) 0 and 0 is impossible.

By changing the hypotheses other necessary conditions for OSS may be
obtained.
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Assumption A2. The set

(36) /^(x, U)= {(]’(x, u), )(x, u))" u U}R"+

is convex for all x X.
THEOREM 3.3 (maximum principle for OSS). Let1 and satis]’y Assumption

A2. Let (u, x) solve OSS. Then there exist pR, R and real numbers
t_j, ., k such that conditions (3.5-2), (3.5-3), (3.5-4) and the ]ollowing condi-
tion are satislied"

(3.5-1) max H(x, v, p, ) H(x, u, p, ).
vU

Proo[. Make the same notational assignments as in the proof of Theorem 3.2.
Applying Theorem B.2 gives (3.5-1)’ instead of (3.5-1) while everything else
remains the same as in the proof of Theorem 3.2.

Remark 3.1. By applying Theorem B. 1 to the maximization problem (3.5-1)’,
under Assumption A1, it can be seen that (3.5-1) is a necessary condition for
(3.5-1)’. Thus the conditions obtained in Theorem 3.3 are stronger than those in
Theorem 3.2.

THEOREM 3.4 (necessary conditions for SSOPC). Let (u( ), x( ), ’)
oW(SSOPC). Then there existp R", R and real numbers ce_, , such that
conditions (3.5-1)’, (3.5-2), (3.5-3) and (3.5-4) are satis]ied ]’or u u(O) and
x x(0).

Proo[. Introduce the following notation: c’=(_j,...,tk), g’(y,x)=
(g_j(y, x),. ., g(y, x)), gy(y, x) Jacobian matrix of g(y, x) with respect to
y, g(y, x) Jacobian matrix of g(y, x) with respect to x. Since u(. and x(. are
constant let u(t)=-u* and x(t)=x* and define: ]*=fx(X*, u*), )r* =L*(x*, u*),
y*=](x*,u*), g*y=gy(y*,x*), g*=gx(y*,x*). Clearly, (u(.), x(.), tr)
0(SSOPC) for all tr (0, T]. Thus, for each tr, (u(.), x(. ), tr) must satisfy the
conditions of Theorem 3.1. For each tr let ai (o’), -/’,. , k, and p(o-, denote
corresponding ci and p(. whose existence is guaranteed by Theorem 3.1. It is
easy to show that (3.2-5) is satisfied automatically for -= tr and imposes no
conditions on c(tr) and p(o-, ). By introducing the sets

(3.7) V*={(ce, p)" ct<-O,i=-f, O; ctig(y*,x*)=O,i=-f, ,-1},

c* t,)" u*))<-_o
(3.8) for all v U}

the conditions imposed by (3.2-1)-(3.2-4) on t(tr) and p(o-, can be written

(3.9-1). (a (tr), p(tr, r)) 0,

(3.9--2) (a(o’), p(tr, t)) V* f’) C* for all [0, o-],

(3.9-3) p’(tr, t)=-p’(tr, t)f*-a (tr)gy [x for all t [0, o’],

(3.9-4) o’-l(p’(r, tr)-p’(tr, 0))= a’(o’)g*.

These conditions must hold for all tr (0, T]; ,6’ a’g*y has been used to eliminate
/’.
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With the use of the variation of parameters formula condition (3.9-3) can be
written

(3.10’1) p’(tr, t) p’(tr, O)P(t) + a’(tr)Q(t)

where the matrices P(. and Q(. are analytic on [0, T] and satisfy the condi-
tions" P(0) the identity matrix,/5(0) -f**, Q(0) 0, 0(0) -g**. Note that if
a(tr), p(tr, satisfy (3.9) then Aa (tr), Ap(tr, do also, where X is a positive real
number. Thus a(tr), p(tr,. can always be normalized so that (3.9-1) becomes

/ IIp(, , Because of (3.10-1) and the properties of P(. and Q(.
there therefore exists a (0, T] such that (3.9-2) yields

(3.10-2)
a (at), p(o’, t)) V* n c* n p): .5 Ilall+llpll 1.5}

forall t, tr [0, "].
Finally, by using (3.10-1) and the propertie.s of P(. and Q(-) it is possible to
write (3.9-4) as

(3.10-3) -p’(tr, O)f**-a’(o’)g***+,(o’)=a’(o’)g** foralltr[O, ],
where y(tr) --) 0 as tr -) 0.

Now let ((rq} be a sequence in [0, 2] such that o-q --) 0. From (3.7) V* is closed
and C* is closed because it is the dual cone [20] of the set {(/3,p): fl=
g*((x*, v)-(x*, u*)), p =/(x*, v)-f(x*, u*), v U}. Thus the set on the right
side of (3.10-2) is compact and there exists a subsequence of {try}, {tr,}, such that
tr, --)0, a (tr,)--) t and p(tr,, 0)/ where (,/) V*N C* and .5 =< II, ll/llt ll_-< 1.5.
This shows that &,/5 satisfy (3.5-1)’ and (3_5-4)/ and/’=.._d"g* ,satisfies (3.5-2).
From (3.10-3) and 3,(tr,)--)0 it follows that ,f** A,

-a gy f -ag,, which verifies
(3.5-3).

Remark 3.2. The conditions in Theorems 3.3 and 3.4 are the same. Thus the
reasoning used in Remark 3.1 shows that the conditions in Theorem 3.2 (with
u u(0), x x(0)) are necessary conditions for the elements of 6e(SSOPC).
However, since this (weaker) set of conditions arises from OSS it has no value in
distinguishing the difference between "steady-state" and "time-dependent" con-
trol. Similar observations have been made in more restrictive circumstances by
Horn and Lin [13].

Remark 3.3. It is not difficult to modify the preceding developments if " is
fixed (-= T). All the theorems are unchanged, except that condition (3.2-5) is
eliminated from Theorem 3.1. The proofs are the same except: r T is treated as
an equality constraint in the application of Theorem A. 1 to the proof of Theorem
3.1, the elements of the sequence {crq} in the proof of Theorem 3.4 are given by
o’q (q)-lT.

Several comments concerning Theorem 3.1 and its relation to previous
results in the literature are in order. There are, of course, many necessary
conditions which can be written. Theorem 3.1 represents a good compromise in
getting strong necessary conditions with weak hypotheses. Previous derivations of
necessary conditions [2], [8], [13] have required stronger assumptions, apply to
more specialized problems, and have given the same or weaker conditions. It
seems essential to follow a line of proof similar to that which has been taken
above. The comprehensive approach taken by Bailey [2].adapts the conditions
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from 18] by a change of variables. This approach applied to OPC would require
the gi, # 0, to be twice differentiable (a hypothesis which for Bailey’s problem is
evident from equation (29) of [2]). Moreover, inequality constraints would be
handled by the trick of Valentine which gives somewhat weaker necessary
conditions (a- 0, -L" ’, -1, omitted from(3.2-4)). The requirement on the
continuity of f(x(. ), u(. )) and )(x(. ), u(. )) which is needed for (3.2-5) is
satisfied automatically when u (.) is piecewise continuous with a finite number of
discontinuities. This accounts for the absence of the continuity requirement in the
conditions obtained in [2]. Additional necessary conditions, e.g. the derivative
condition onH expressed by equation (17) of [ 14], require additional hypotheses
which appear to be quite strong or difficult to verify generally. The necessary
conditions obtained in [5], [12] are of considerable interest, but they involve
consideration of the second variation and therefore go beyond the scope of this
paper.

Consider what happens if OPC is modified by replacing g,. (y, x) by ge(y, x, ’)
for -/’, ., k. The modified OPC is not a continuing process in the sense of 1
because requirement 3 is not satisfied. All of the preceding definitions and results
can be generalized to the modified OPC, except for Theorem 3.4. The proof of
Theorem 3.4 fails because (u(.),x(.), r*)=St’(SSOPC) no longer implies
(u(.),x(’),r)6e(SSOPC) for all r(0, T]. Since much of what follows
revolves about Theorem 3.4, this shows the importance of requirement 3. A
similar observation applies to the relaxation of requirement 1.

4. Relationships between the necessary conditions and the solution sets. In
order to simplify references to the necessary conditions and make clearer their
relationship to the solution sets introduced in 2 it is helpful to introduce the
following definitions:

(4.1)
6e(NCOPC) {(u(- ), x(" ), r): equations (2.1-2)-(2.1-8) are satisfied and

there exist p(. ),/, ce_., ., ak such that the conditions of
Theorem 3.1 hold},

(4.2)
0(NCOSS) {(u(" ), x(" ), r)" (u(’), x(" ), r) e Y(SS) and there exist p,/5,

a_., ., ak such that the conditions of Theorem 3.2 hold
with u u (0) and x x (0)},

(4.3)
9(NCSSOPC) {(u(" ), x(" ), ’): (u(’), x(" ), ’) e b(SS) and there exist p,

/if, a_j, ., ak such that the conditions of Theorem 3.4
hold}.

The set 6e(NCOSS) has been defined as a subset of q/x N’x (0, T], even
though Theorem 3..2 requires (u, x)e Ux X. This is done as was the case with
5(OSS) to emphasize the fact that steady-state control is a special case of
time-dependent control and to allow a direct comparison of all solution sets.

With the above definitions Theorems 3.1-3.4 can be paraphrased
compactly by the following inclusions: 6(OPC)c0(NCOPC); if A1 is satis-
fied O(OSS) O(NCOSS); if A2 is satisfied O(OSS) 5(NCSSOPC);
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5(SSOPC)c 6e(NCSSOPC). Furthermore, if A1 is satisfied it is clear from
Remark 3.2 that 6e(NCSSOPC)c 6(NCOSS).

Since Theorem 3.4 was obtained from Theorem 3.1 it is tempting to surmise
that 6(NCSSOPC) c 6(NCOPC). The following example shows that this conclu-
sion is not valid.

Example 4.1. k =]=0, n =/= 1, X= Y=R, U=[-1, 1]R, T= 1, f=
-x + u, )r= x, go y-x-x. Application of the conditions in Theorem 3.4
shows that ow(NCSSOPC) is characterized by elements of the form: u(t) x(t) =-- 1
or -1, - (0, 1]. Now consider those elements of 6e(NCOPC) which also belong to
0(SS). Application of the conditions in Theorem 3.1 is more difficult because p(.
is not necessarily constant. However, in this example it is not difficult to integrate
(3.2-3) and verify that 0(NCOPC)f3 6e(SS) is characterized by elements of the
form" u (t) x (t) 1, - (0, 1]. The elements u (t) x (t) -= 1, - (0, 1] are
excluded because condition (3.2-1) requires p(t) <-0 on [0, -] and this turns out to
be impossible. Thus 6e(NCSSOPC) 6e(NCOPC). Under the assumption which
follows it is possible to prove 0(NCSSOPC) 6e(NCOPC).

Assumption A3. The functions g_j(y, x),..., gk (Y, X) depend only on y.
THEOREM 4.1. Let A3 be satisfied. Then 5(NCSSOPC) c 5v(NCOPC).
Proof. Suppose (u(.),x(. ), -) 6 5(NCSSOPC) and let u u(0), x--x(0).

Then there exist pR", / 6R and real numbers a_j,..., ak which satisfy
(3.5-1)’, (3.5-2)-(3.5-4). Because gx (Y, x)=0, i= -],..., k, this impl.ies p(t)=-p,, -,’", ak satisfy (3.2-1)-(3.2-4). Since f(x(t), u(t))=-O and y =f(x(-), u(.))
condition (3.2-5) is satisfied as an equality. Thus (u(.), x(. ), -)6 5(NCOPC).

Remark 4.1. For OPC problems which do not satisfy A3, Theorem 3.1 may
(as Example 4.1 illustrates) offer a stronger test for (u(.), x(. ), -) 5e(SSOPC)
than Theorem 3.4. This is not surprising because Theorem 3.4 is obtained from
Theorem 3.1 by drawing certain conclusions as - 0. Unfortunately, the test may
be much more difficult to apply because the (constant-coefficient, linear) differen-
tial equations (3.2-3) must be considered. For OPC problems which do satisfy A3
(this includes almost all the problems which have appeared in the literature on
periodic control) Theorem 4.1 shows that Theorem 3.4 provides at least as strong
a test as Theorem 3.1.

Now consider a variation of Example 4.1.
Example 4.2. Same as Example 4.1, except T= 2. It is easy to show

0(NCSSOPC) is the same as in Example 4.1 and that 5(NCOPC)ffl 5e(SS) is

c.haracterized by elements of the form: u(t)=-x(t)=--1, z(0, -*]. Here -*=
1.5936.. is the positive root of z 2(1 e-). Elements of the form u(t) =- x(t) =-
-1, - (-*, 2] are excluded from 5(NCOPC) because (3.2-3) shows that it is
impossible for p(t)>-O on (0, -] if - > -* and p(t)>-O is required by (3.2-1). The
characterization of 5(NCOPC)f’l 5(SS) leads to the following observation.

Remark 4.2. Let (u(.), x(. ),-) 5v(SSOPC). Since this implies
(u (.), x (.), -) 6 5(SSOPC) for all - 6 (0, T] the conditions in Theorem 3.1 apply
to (u(.), x(. ), -) for all - (0, T]. If Theorem 3.1 is to be exploited fully for
testing (u(.), x(.), )0(SSOPC) all values of - (0, T] must be considered.
This is illustrated by Example 4.2. For z (-*, 2] there are no elements of 0(SS)
which satisfy the conditions of Theorem 3.1. Thus it may be concluded that
5(SSOPC)- For - (0, -] it cannot be concluded from Theorem 3.1 that
5(SSOPC) .
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Using the results of 2 and this section it is now possible to summarize
compactly what is known about the sets 6e(OPC), 6e(SSOPC), (OSS),
6e(NCOPC), (NCSSOPC), and 6e(NCOSS).

THEOREM 4.2. (i) 6e(SSOPC) c 6e(OSS), (ii) 6e(SSOPC) c 6e(OPC), (iii)
e(oPc) e(NCOPC), (iv) e(SSOPC) e(NCSSOPC), (v) if A1 is satisfied
(OSS) c e(NCOSS), (vi) if A1 is saaslied 5e(NCSSOPC)c 6e(NCOSS), (vii) if
A3 is satisfied 6e(NCSSOPC)c 6e(NCOPC), (viii) if A2 is satisfied 6e(OSS)c
6e(NCSSOPC).

In reading the theorem it should be noted that assumptions A1 and A3 are
satisfied in many applications of the theory. Assumption A2 is strong and, as will
be seen later, has strong implications. Are there additional inclusions beyond
those listed in the theorem? The answer is generally no, a conclusion which is
made precise in the next section. The inclusions of Theorem 4.2 are summarized
in Fig. 1.

6e(OPC) 6e(NCOPC)

U U A3

6e(SSOPC) 6e(NCSSOPC)

N N A1

se(oss) Se(NCOSS)
A1

Without A2

6e(OPC) m 6e(NCOPC)

U U A3

5e(SSOPC) Se(OSS) 6e(NCSSOPC)

n A1

6e(NCOSS)

With A2

FIG. 1. Summary of Theorem 4.2. See (2.3), (2.4), (2.5), (4.1), (4.2) and (4.3) for definitions
solution sets.

The results of the previous section are also related to the solution sets of
relative minima. For example, let (u(.), x(. ),.-) 6a(SRMSSOPC). Then if X is
replaced by XN{;: II;-x(0)ll<e), >0 sufficiently small, (u(.),x(. ), ’) is a
regular minimum and the conditions of Theorem 3.4 apply without change to
(u (.), x (.), z). Thus (u (.), x (.), z) 6e(NCSSOPC). Similar arguments apply to
weak relative minima but in the cases of Theorems 3.3 and 3.4 it is necessary to
introduce a weak form of the maximum condition,

(4.4) max H(x, v, p, ) H(x, u, p, ),
v, IIv-ull<e

and define

S(WNCSSOPC) {(u(. ), x(. ), -): (u(.), x(. ), ’) 6a(SS) and there
exist p,/, a_z, , ak. such that conditions (4.7), (3.5-
2), (3.5-3) and (3.5-4) hold with u u(0) and x x(0)

(4.5) for some e > 0}.

In addition the following assumption, which is not necessarily stronger than A2,
must be introduced.

Assumption A4. There exists an g>0 such that the set
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fi(x, un{u.llu-oll<  )}) (see (3.6) for notation) is convex for all x6X,
v U, e

The conclusions which follow along with the inclusions of Remark 2.2 are
summarized as follows.

THEOREM 4.3. The inclusions displayed in Fig. 2 are valid.
Some applications of these inclusions are discussed in 6.

(NCSSOPC) (WNCSSOPC) (NCOSS)
A1

5(SSOPC) 5e(SRMSSOPC) 5e(WRMSSOPC)

N N N

5e(OSS) 6t’(SRMOSS) 5e(WRMOSS) Y(NCOSS)
A1

NA2 0A4

9(NCSSOPC) 9(WNCSSOPC) m 9(NCOSS)
A1

FIG. 2. Theorem 4.3

5. Some examples. The examples of this section serve a number of purposes.
First, they show that it is not possible to prove more inclusions than those which
are contained in Theorem 4.2; this conclusion is formalized in Theorem 5.1 and
extended somewhat in Theorem 5.2. Second, they delimit certain tests for
optimality; this is discussed in the next section. Finally, they provide insight into
the difficulties of applying and solving the various necessary conditions and into
the wide variety of circumstances and phenomena which can occur in OPC
problems.

Example 5.1. k=]=0, n=l=l, X= Y=U=R, T>4rTr, /=-x2+u,
[=-2x2+ u 2, go Y. The assumption T=Cr is sufficient to assure that the
characterization of the solution sets is not changed by T. If T</,r one element
of.5(NCOPC) disappears (d below) and everything else remains the same.

Omitting details, the conditions contained in Theorem 3.1 can be sum-
marized as follows. From (3.2-2),/ fro. It is easy to show that for Cro 0, (3.2)
cannot have a solution and without loss of generality the case a.o < 0 can be treated
as ao=-l. Condition (3.2-1) gives

(5-.1) u

The remaining conditions are (3.2-5) and

(5.2) -x 2 +1/2p, /5 2xp-4x,

(5.3) x(0) x(z), p(0) (0, T].

Figure 3 shows the (x, p)-phase plane for (5.2). Each characteristic curve corre-
sponds to a fixed value ofH in the relationH=-px2+ 1/4p2+ 2x 2. The points
labeled a, b and c are constant solutions of (5.2) and (5.3) and satisfy (3.2-5) with
ff’y H for all z e (0, T]. The only other solutions of (5.2) and (5.3) are d, which
has period T, and all the other solutions "inside" d (excluding c) which have
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periods - (x/r, T). Calculation shows that for all these "time-dependent"
solutions of (5.2) and (5.3), /’y =--y<HM. Thus by (3.2-5) d is the only
"time-dependent" solution of the conditions in Theorem 3.1. Because for each
(x(.), p(. ), ’) there is a corresponding (u(.), x(. ), ’) the labels a, b, c and d
can be used also to designate sets of elements in 0-// (0, T]. In particular,
oW(NCOPC) "corresponds" to a, b, c and d, i.e., it is the union of elements
designated a, b, c and d.

By using Theorems 3.2 and 3.4 it may be verified that both 6e(NCOSS) and
6(NCSSOPC) correspond to a, b and c. Moreover, 6e(OSS) corresponds to a and b
and the cost associated with a and b is J 1. Suppose there exist u (.), x (.) and -which satisfy (2.1-2)-(2.1-8) and give J <-1. This implies

(5.4)

-1 >- (--2X 2 + U dt (--2X 2 + U 2) dt

_1__ (u2_2u) dt

which in turn implies

0 >- (u2_ 2u + 1) dt (u 1)2 dt.

This inequality is false and thus a and b are "contained" in 5e(OPC). Any
additional elements of O(OPC) must be elements of Se(NCOPC). But c has cost
J 0 and it can be shown that d has cost J> 1. Thus 6e(OPC) corresponds to a
and b and 6(SSOPC)= 6(OPC).

The above results are summarized in the first lineof Table 1. It is easy to show
that 6(SRMOSS), 5(WRMOSS), ow(SRMSSOPC) and (WRMSSOPC) all cor-
respond to a and b. The element d is a "time-dependent" strong relative minimum
of OPC.

Example 5.2. k=f=0, n=/=l, X= Y=R, U=[-2,2]cR, T>0, f=
-x + u + 1, f= x(u + 1)(u 1)2, go Y. For (u(.), x(. ), ’) e ow(SS), x u + 1 and
y =(u+ 1)2(u-1), Thus (OSS) corresponds to u(t)=- 1, x(t)=2, ’e(0, T]
(labeled a) and u(t)----1, x(t)=-O, -e (0, T] (labeled b). Consideration of (3.5)
shows that 9(NCOSS) corresponds to a, b and u(t)=-O, x(t)=-l, ’e(0, T]
(labeled c).

Theorem 3.1 leads to the characterization of 5e(NCOPC). From (3.2-2),
/ ao and inspection of (3.2-3) and (3.2-4) shows that ao 0 is impossible. Thus
without loss of generality assume ao 1. The maximization of

(5.6) H=p(-x + u + 1)-x(u + 1)(u 1)2

with respect to u U is complicated somewhat by the fact that the maximizing u
may be in the interior or in the boundary of U, depending on x and p. Let L1, L2,
L3, L4 be rays emanating from the origin of the (x, p) plane which do not contain
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the origin and have, respectively, slopes" 1 2095. (the root of 16-- 16i-, -, 3- 3

E-Efi -t-q
16 "16" 3 3

1/2q =0), 7, 2.5097... (the root of -+/1 +zq +1/2q =0), 15. Let A:, A2, A3,

FiG. 3. (x, p)-phase plane for Example 5.1

TAttLE
Characterization qfsolution setsfor examples

Example 6e(SSOPC) 6e(OSS) S(NCSSOPC) 6e(NCOSS) Se(OPC) 6e(NCOPC) OSS OPC

5.1, 5.7 a, b
5.2
5.3(i), 5.8(i)
5.3(ii), 5.8(ii) a
5.4 a, b
5.5
5.6

a,b a,b,c a,b,c a,b
a,b b a,b,c
a a a b
a a a a, d

a,b a,b a,b,c a,b
a,b a,b,c a,b,c d
a,b a,b a,b,c d

a, b, c, d
b

a, b, c, d
a, b, c, d

a, b
a, b, c, d (?)

a, b, d

-1
0
0

-1
0
0
0

-1

-1
-1
0

<0
-1

* Minimum does not exist.
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A4 be the open sectors bounded by these rays (see Fig. 4). Then the maximizing u
is given by

u =2, (x, p) Ax UL.,

-2 or 1.4651 , (x, p) e L3,

(5.7) =-2, (X, p) A3 I.J L4,
--/’1 "t" 43- (X, p) A4,.

=2or-.5873..., (x,p)

e [-2, 2],
Conditions (2.1-5) and (3.2-3) yield
(5.8) =-x+u+l,

x =p =0.

=p+(u+l)(u-1)2,
(5.9) x(0) x (’), p(0) p(z), " e (0, T].
With u given by (5.7), equations (5.8) lead to the characteristic curves shown in
the (x, p)-phase plane, Fig. 4. The point x =p =0 corresponds to a constant
solution if and only if u(t)-l. Points on the ray Lx below Px correspond to a
discontinuity in u(t) (u(t) at the discontinuity may be defined to be either 2 or
-.5873...). Above Px solutions of the system (5.7)-(5.8) cannot be continued
across Lx because from both A1 and A4 they lead into L1. On L3 solutions of
(5.7)-(5.8) intersecting above P3 or below P2 can be continued across L3 with a
discontinuity in u(t). On L3 between P2 and P3 solutions lead away from L3, going
upward if u (0)= 1.4651 and downward if u (0)= 2. Thus the only solution of
(5.7)-(5.8) which satisfies (5.9) is u(t)--1, x(t)O, p(t)=-O. This solution also
satisfies (3.2-5) for all - e (0, T] and hence 6e(NCOPC) corresponds to b in Table
1. It is also clear that Se(NCOPC)= 9(NCSSOPC).

The following argument shows that Se(SSOPC)= ;. Suppose to the con-
trary. Then 6e(SSOPC) c 6e(NCSSOPC) implies that Se(SSOPC) corresponds to b
in Table 1. But this contradicts Se(OSS)= Se(SSOPC) (Remark 2.1). Finally,
Se(OPC) because there are no "time-dependent" solutions of (5.7)-(5.8).

The above results are summarized in Table 1. Perhaps the most interesting
conclusion is that 6e(NCSSOPC) is a proper subset of 6e(OSS). Clearly,
6e(SRMOSS) 6e(WRMOSS) correspond to a and b. It is not difficult to show that
with weak variations from u(t) -1, J< 0 can be obtained. To obtain J< 0 in the
neighborhood of x(t)-2 it is necessary to use strong variations from u(t) 1.
Thus 6e(SRMSSOPC)= ; and 6e(WRMSSOPC) corresponds to a.

Example 5.3. k=0, ]=1, n>0, 1=2, x=Rn, Y=R2, U=R, T>0, f=
ax +bu, f*l=--1/2({’X)2, ]2 1/2U 2, go Yl, g-x Y2-- 1. a is a real n xn matrix and
b, ee R n. This example is a special case of the problem considered in [6]. If e’x is
interpreted as the output of the linear system Ax +bu, it corresponds to
maximizing the average output power subject to a constraint on the average input
power. Assume A is stable (characteristic roots of A have negative real parts),
(A, b) is controllable, (e’, A) is observable [22] and let

(5.10) G(s) c’(Is A)-Xb
denote the system transfer function.
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p L2

A

-2 2 3

A4

L
L4

FIG. 4. (x, p)-phase plane for Example 5.2

Consider the characterization of 5e(NCOPC). From (3.2-2),
First, assume t_l 0. Conditions (3.2-1), (2.1-5) and (3.2-3) give

(5.11) U (_)-lp,,
(5.12) =Ax +l)u, #’=-p’A + ((oe’x)e’,

(5.13) x(0) x(z), p(0) p(z), " E (0, T].
SinceA has no characteristic roots with zero real parts, ao 0 implies p(t) =- 0 and
thus u(t)=-O. But this gives g_x(y)<0 which contradicts (3.2-4). Since ao=0 is
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impossible, take ao=-l. The system (5.11)-(5.12) is a linear, constant-
coefficient, differential system of order 2n which has a periodic solution if and only
if the characteristic equation has at least one root with real part zero. A simple
calculation shows that there exist characteristic roots +/-ico (co eR, co =>0,

4"i-) if and only if

(5.14) -a_ G(ico)G(-i)= lG(io)l=,

an equation which always has a solution for a-1 < 0 because controllability and
observability imply G(ico) 0. Since y2 1 for a-l<0, there must exist a u(t)
satisfying (5.11)-(5.13) of the form

cos (wt + 0), w _-> z__",
+,, o =0,

where 0 is arbitrary. The only remaining condition which must be satisfied if
(3.2-5). A rather lengthy but straightforward computation shows that HM--/Yy
-o(d/doo)lG(ico)l2. Thus co in (5.14) is a permissible value if and only if

w=0 or

2zr d
(5.16) w>-- and --wlG(iw)[2=0 or

27r d
w =-- and ---wlG(iw)l =< O.

Now consider a_l 0. The possibility ao 0 is excluded because it implies p(t) =- 0
which violates (3.2-4). Thus take a0 =-1. Then it follows from (3.2-1) that
p’(t)b 0 on [0, -] and u is not determined by (3.2-1), i.e., u is a singular control.
The condition p’(t)b-0 can be shown to imply" u(t)=q cos (cot+O) where 0 is
arbitrary, 0_-<q_-<2, co>=2r/T, G(ico)=0; or u(t)---q where -x/_-<q_-<x/,
G(0)=0. Thus for a-l-0 the conditions on co agree with (5.14) and (5.16)
(observe that (d/dco)lG(ico)12=O for co suchthat G(ico)=0). In the (relatively
rare) circumstance that (5.14) and (5.16) permit multiple solutions (co=
w,..., coz< satisfies (5.16) and [G(|coi)lE=[G(|col)[E=-a_l, i=2,... ,K) and
u(t) =Y. U cos (co:+O) is periodic with period -_-< T then this u(t) corre-
sponds to a family of solutions of the necessary conditions for OPC provided the
U are chosen so that g_(y)= 0 (or g_(y)_-< 0 if a_ G(ico)= 0).

Application of Theorem 3.4 shows that 5e(NCSSOPC) may be obtained by
specializing the above results to the case where x(t) and p(t) are constant. Thus for
G(O) O" u(t)--+/-/r, x(t)=qzA-11)4r, - (0, T] corresponds to 5e(NCSSOPC).
For G(0) 0: 5e(NCSSOPC) corresponds to u(t) =-q, x(t) =--A-ll)q, - (0, T],
q [-x/, x/]. It is also clear from the form of H and U that 0(NCOSS)-
5(NCSSOPC).
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Simple arguments (see [6]) show that 6e(OPC) . Since for elements in
6e(NCOPC), go(y)=-IG(ko)[ it is clear that 6e(OPC) corresponds to those
elements in 6e(NCOPC) with o maximizing IG(io)] on (0} LJ [2r/ T, +oo). The
maximum exists and is positive (because Ia(i,o)l= > 0 or some o and [G(ko)l2 o 0
as o o +oo) and can occur only at a finite number of frequencies (because
is rational in o2). 6e(SSOPC) if and only if IG(io)l_-< G(0) for all o >-2r/T.
6e(OSS) corresponds to u(t)=-+/-/, x(t)--:A-lb4r, " E (0, T] if G(0) 0 and to
u(t) =-q, x(t) -A-ibq, " E (0, T], q [-4, /] if G(0) 0.

Since the elements of the solution sets are characterized in terms of [G(io)l it
is easy to determine them even though n may be large. Figure 5 gives two cases
whose solution sets are summarized in Table 1. With the possible exception of d in
Case (ii) it should be obvious what is meant by the designations of the solutions.
For d, u(t) U + U2 cos (a3t + 0), U1 +zU 1, " (a3)- 27r. It is clear
that 6e(NCOPC) may contain many more elements than Se(OPC). Unfortunately,
for most other OPC problems, the suboptimal extremals are not so easily deter-
mined and rejected as they are in this example.

c
d

0
o

2"." 2"."
case (i) case (ii)

FIG. 5. Designation of solution sets for Example 5.3

Example 5.4. k =/" 0, n 1, X Y U R, T> 0, f
-x +(u- 1)2(u + 1)2,/r=x, go y. Make the following designations’ (a) u(t) 1,
x(t)=-O, -(0, T]; (b) u(t)-=-l, x(t)=O, z(0, T]; (c) u(t)-=-O, x(t)=-l, -E

(0, T]. Then the characterizations for 6e(OSS), 6e(NCOSS) and 6e(NCSSOPC)
given in Table 1 can be verified easily. Inspection of (3.2-3) shows that only the
allowed solution for p(t) is p(t) do. This implies 6e(NCOPC)= 6e(NCSSOPC).
15rom (2.1-5) and the form off it follows that x(t) >- 0 for all (0, T]. This implies
J=y =>0 and J=0 is only possible if x(t)=-O. Thus 6e(OPC)=6e(SSOPC)=
se(oss).

Example 5.5. k=]=0, n=2, /=1, X=R
f -x-x2+ u,= (x- 1)2(x + 1)- (x2), go y. Make the following designa-
tions: (a) u(t)--x(t)--1, x.(t)=-O, -(0, T]; (b) u(t)-x(t)=-l, x2(t)--O,
’(0, T]; (c) u(t)=-x(t)--x(t)=-O, -(0, T]. Then the characterizations for
6e(OSS), 6e(NCOSS) and 6e(NCSSOPC) given in Table 1 can be verified easily.
Let u(t)= 1 +A cos ot. Then y may be computed easily from (2.1-4) and (2.1-5).
For o >/ and A > 0 sufficiently small the computation shows that y < 0. Since
the optimal cost for OSS is J 0 this proves that 6e(SSOPC) . From standard
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existence theorems it follows that 6(OPC) . Let the elements of (OPC) be
designated by d. Since A3 is satisfied it is clear from Theorem 4.1 that a, b, c, d are
"included" in 6(NCOPC). It is not known if there are additional elements in
6e(NCOPC).

Example 5.6. k=O,]=l,n=l=2, X= Y=R2, U={u" u3>u}R T--
3rr, f=x2, f2=-x-xa+u2, 1=(u-l)2(u1+l)2-1/2(x2)2, /2=1/2u3, g0=y,
g_ y.-1. In each of the following designations assume that x(t)=-ua(t)=-q2,
u3(t)=-q3, x2(t)--O, q3[0, 2], q3>-q, z(O, T]" (a)u(t)--1, (b)u(t)-=-l, (c)
u(t)=O. The characterizations of 6(OSS), 6e(NCOSS) and 6e(NCSSOPC) are
given in Table 1. To minimize J in OPC it is necessa,ry and sufficient to separately
minimize the average of each of the two terms in f(x(t), u(t)). The first term is
minimized by u(t)-= + 1 and the second term leads to a minimization problem of
the type considered in Example 5.3, because at the minimum u3(t) (U2(t)) (see
also Example 5.8). This problem has a solution of the form: u2(t)=x.(t)=
2 cos (t+0), u3(t) 4 cos

9 (t+O),Xl(t)=2sin (t+O) r 2r, OR. Let the set of
all (u(.), x(. ), r) characterized in the above fashion be denoted by d. Then
6(OPC) corresponds to d. It can be shown that 6(NCOPC) corresponds to a, b
and d.

Example 5.7. Same as Examp,le 5.1, except for the following changes:
U {u" u2 --> u} R2, f -x2 + u, f -2x2 + u2. This example is essentially the
same as Example 5.1. This can be seen by observing that in the characterization of
all the solution sets it is required that u2(t)= (u(t))2. Thus the designations in
Table 1 hold if: u(t) u(t), u2(t) (u(t))2 where u(t) is given as in Example 5.1;
x(t) is the same as x(t) in Example 5.1.

Example 5.8. Same as Example. 5.3, except for the following changes"
U={u" u2>=u}R 2, f=Ax+bu, f=1/2u2. The modifications are similar to
those used in Example 5.7. This leads to the designations shown in Table 1.

An immediate application of the examples is the following theorem.
THEOREM 5.1. Let A1 {A1 and A3} [A1, A2 and A3] be satisfied. Then it is

not possible to obtain additional inclusions beyond those which are implied by
(i)-(vi) {(i)-(vii)} [(i)-(viii)] of Theorem 4.2.

Proof. Of the 30 nontrivial, pair-wise inclusions involving 6(SSOPC),
(OSS), 6(NCSSOPC), 6(NCOSS), S(OPC), 6(NCOPC) which are possible
(i)-(vi) {(i)-(vii)} [(i)-(viii)] of Theorem 4.2 imply that 8 {9} [11] are satisfied.
Examples 4.1, 5.1, 5.2, 5.3(ii) {5.1, 5.2, 5.3(ii)} [5.5, 5.6] show that with A1 {A1
and A3} [A1, A2 and A3] satisfied the remaining 22 {21} [19] inclusions cannot
hold generally.

Now consider the effect of stronger assumptions. Suppose as is the case in
many practical problems that A1, A3 and 6e(OSS)# are satisfied. Additional
assumptions which are of interest are (i) OPC is proper (6(SSOPC)= 5), (ii)
OPC is steady-state (6(SSOPC)# ), (iii) OPC is proper and A2 is satisfied,
(iv) OPC is steady-state and A2 is satisfied. For each of these cases Theorem 4.2
yields certain implications which are summarized in Fig. 6. It does not follow from
Theorem 5.1 that these are the only implications concerning inclusion which can
be drawn. However, the examples do show this. For instance, suppose that (ii)
holds. Then Fig. 6 implies 13 nontrivial, pair-wise inclusions; Examples 5.1,
5.3(ii), 5.4 (which satisfy A1, A3, 6(OSS) # , and (ii)) imply that the remaining
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17 pair-wise inclusions cannot hold. All of the results are summarized in the
following theorem.

THEOREM 5.2. Let A1, A3 and 9(OSS) f be satisfied. Under the addi-
tional hypotheses (i), (ii), (iii) or (iv) the results ofFig. 6 are true. In each ofthe ]:our
cases it is not possible to prove additional inclusions exist.

9(OPC)c 9(NCOPC) Se(OPC) c 9(NCOPC) St(OPC) c 9(NCOPC)

U U O O

6(SSOPC) 6(OSS) c S(NCSSOPC) 6(NCSSOPC) 5"(OSS) c S(NCSSOPC)

9(NCOSS) 9(OSS) (NCOSS) 9(NCOSS)

(ii) and (iv) (i) (iii)

FIG. 6. Inclusions which are satisfied under A1, A3, S(OSS) O and: (i) OPC is proper, (ii) OPC
is steady-state, (iii) OPC is proper and A2, or (iv) OPC is steady-state and A2

6. Tests for optimality. If 6(OPC) and 6(OSS) are known it is possible to
determine immediately whether or not time-dependent control improves perfor-
mance and, if it does, the amount of the improvement. Since in most practical
problems the solutions of OPC are not obtained easily, other paths must be
pursued. One such path is suggested by Fig. 6. Under assumptions A1 and A3 it is
clear that 6(OSS) Se(NCSSOPC) implies that OPC is proper. Thus it can be
determined that 6(SSOPC)= without obtaining 6(OPC). This motivates the
class of tests investigated in this sectioa. Triples (u (.), x(. ), z) 5(SS) are
considered and it is supposed that it is possible to determine whether or not

6(A) for certain A. The principal concern is if OPC is proper or steady-state,
but tests which may help in the search for solutions of OPC are examined too. The
tests generalize (to OPC) and supplement tests which have appeared in the
literature. An entirely new result is Theorem 6.1 which establishes limits to what
can be tested in certain contexts.

To be complete the idea of Remark 4.2 is incorporated into the discussion.
The condition given there corresponds to checking ff 6(NC’OPC) where

(6.1)
S(NC’OPC) {(t( ), (. ), "): (t(.), (. ), ,) e 5(SS) and for all z e

[0, T] there exist p(. ), p, aw,..., ak such that (3.2-1)-
(3.2-4) are satisfied for u (t) a (0), x (t) -= 2 (0)}.

By tracing the proof of Theorem 3.4, it is easy to see that S(NC’OPC)c
6(NCSSOPC). Moreover, under A3, Theorem 4.1 states that 6(NCSSOPC)
S(NCOPC); since (u(.),x(.), ?)6(NCSSOPC) implies (u(.),x(.),
6(NCSSOPC) for all - (0, T], this shows that 6(NCSSOPC) implies
6e(NC’OPC). These facts and the content of Remark 4.2 are summarized in

Remark 6.1. 6e(NC’OPC) satisfiesthe following inclusions: S(SSOPC)
6(NC’OPC) 6(NCSSOPC). If A3 is satisfied, 6(NC’OPC)= 6(NCSSOPC).

From this and the results of 4, it is clear that the following tests are valid.
Test T1. The existence of , ff 6e(SS), 0 6e(OPC), implies OPC is steady-

state.



738 ELMER G. GILBERT

Test T2. The existence of O, ow(OSS), 6(OPC), implies OPC is proper.
Test T3. The existence of t#, 6e(OSS), S(NC’OPC), implies OPC is

proper.
Test T4. The existence of , O 6(OSS), 6e(NCSSOPC), implies OPC is

proper.
Tests T1 and T2 arise directly from the definitions of proper and steady-state.

Since T1 requires the determination of an element of 6e(SSOPC), it is the most
difficult test to apply in practice. Usually, it involves inequalities which make use
of particular structures in the problem data as in Example 5.1. Test T2 is easier to
apply since it only requires exhibiting an admissible time-dependent triple
(a(.), (. ), ,) which has lower cost than any element of 6e(OSS). See Example
5.5. General tests which implement T2 have been based on sinusoidal perturba-
tions from an optimum steady-state solution [5], 12] and relaxed controls (see [ 1]
and T8 of the next section). From Remark 6.1 it is seen that T2, T3 and T4 are
successively weaker tests. Under A3 Remark 6.1 shows that T3 and T4 are
equivalent; however, when A3 is not satisfied T3 may be a stronger test than T4
(Remark 4.2). Test T4 is stronger than tests of a similar type which have appeared
previously [1], [13] in that it applies to a very general OPC problem and does not
require fx(x(O), u (0)), (x(.), u(. ), -) O(OSS), to be nonsingular. The:following
theorem shows that T1, T2, T3 and T4 are not vacuous and that there exist no
other tests in a reasonable class of tests.

TIJEOREM 6.1. Suppose OPCsatisfies no special assumptions {A3} [A2] (A2
and A3). Then tests T1, T2, T3 and T4 {T1, T2 and T3 T4} IT1, T2 and T3]
(T1 and T2) are not vacuous (always negative) or pairwise equivalent (one test
positive always implies the other test positive). Let O 6e(SS). In the class of tests
which employ an evaluation of all five conditions, (A) or 5(A) for
A OSS, NCSSOPC, NCOSS, OPC, NC’OPC, there exist no tests other than T1,
T2, T3 and T4 {T1, T2 and T3 T4} IT1, T2 and T3] (T1 and T2) which can show
that OPC is proper or steady-state.

Proo[. First suppose that OPC satisfies no special assumption. Attach to
tpSe(SS) the designation h(p) where h(O)=(hoss, hNcssoPc, hNcoss, hoPc,
hNc’o,c) is a five digit binary number such that hA 1 if 5e(A) and hA 0 if
O 5e(A). From Theorem 4.2 and Remark 6.1 it follows that 24 of the 32 possible
values of h() are excluded. The remaining eight with examples taken from Table
1 (where (NC’OPC) 5(NCSSOPC)) and 4 are: (1, 1, 1, 1, 1)Example 5.4
with ---a or b; (1, 0, 1, 0, 0)---Example 5.2 with O--- a; (1, 1, 1, 0, 0)---Example
4.2 with tk--u(t)=-x(t)=--1; (1, 1, 1, 0, 1)Example 5.5 with 4-a or b;
(0,1,1, 0,1)Example 5.5 with 4---c and Example 5.7 with
(0, 1, 1, 0, 0)Example 4.1 with -u(t) x(t)-- 1 and Example 4.2 with
u(t)x(t)-- 1; (0, 0, 1, 0, 0)---Example 5.4 with -c and Example 5.6 with
t#---c; (0, 0, 0, 0, 0)--Example 5.4 with O-u(t)=-1/2, x(t)-- and Example 5.6
with q u(t) =- Xl(t) --1/2, x2(t) --0. The first result of the theorem follows because:
(1, 1, 1, 1, 1) implies T1 positive; (1, 0, 1, 0, 0) implies T2, T3, T4 positive;
(1, 1, 1, 0, 0) implies T2, T3 positive; (1, 1, 1, 0, 1) implies T2 positive. For each of
the four remaining values of h() there are examples of OPC which are both
proper and steady-state. This is a consequence of Table 1, Example 4.2 being
proper (see Remark 4.2) and Example 4.1 being steady-state (to show this
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requires an investigation of the solutions of (3.2) and an application of an
existence theorem to OPC). Thus there are no additional tests for proper or
steady-state. Now consider A3. Since 6v(NC’OPC)=0(NCSSOPC), h(ff)=
(1, 1, 1, 0, 0) and h(ff)= (0, 1, 1, 0, 0) are impossible. The remaining examples
apply as before. Under A2 Theorem 4.2 gives 6e(OSS)c ow(NCSSOPC) and this
eliminates h (if) (1, 0, 1, 0, 0). All of the above stated examples except Example
5.2 satisfy A2 and thus the results for A2 are obtained. When A2 and A3 both
hold, the argument is essentially a combination of the previous two arguments.

The preceding results and Fig. 2 suggest how a search for solutions of OPC
might proceed. Since the determination of elements of 6e(NCOPC) requires the
solution of the difficult two-point-boundary-value problem (3.2), it is worthwhile
to see what can be learned by trying triples ff (u (.), x (.), ’) ow(SS). If there is
some reason to believe that OPC is proper, it is useful to have tests which indicate
how to begin a search for time-dependent controls. For O 6e(SS) conditions
which may be checked (listed in order of increasing difficulty) include:
ow(NCOSS), the system (3.5); p 5v(WNCSSOPC), for some e >0 the system
(4.4), (3.5-2)-(3.5-4); 4,6e(NCSSOPC), the system (3.5-1)’, (3.5-2)-(3.5-4);
66e(NC’OPC), the system (3.2-1)-(3.2-4) for all -[0, T]. The test
5v(NCOSS) has little value, except perhaps to narrow the search. If elements
4’ 6e(OSS) are known, T3 and T4 may be applied. While there may be fewer
elements that satisfy O .6e(OSS), ow(WNCSSOPC) than T4, this test pro-
vides somewhat greater information than T4. In particular, reference to Fig. 2
shows 6e(WRMOSS) and 4, 6e(WRMSSOPC). This gives

Test T5. The existence of 4’, 4’ ow(OSS), 4’ 0(WNCSSOPC), implies OPC
is locally proper [5], i.e., OPS is proper and for all e >0 there exists a time-
dependent admissible triple (a(.), 2(. ), ,)with Ila(t)-u(0)ll, II(t)-x(0)ll < for
all [0, T] which has lower cost than

Thus if T5 is positive the search for better time-dependent controls may begin
with a guarantee of success in the neighborhood of (u(0), x(0)). If T4 is positive
4’ 6e(SRMOSS) and O 6e(SRMSSOPC). Thus there exist time-dependent
admissible triples (t(.), 2(. ), .) with (t) in the neighborhood of x(0) which
reduce the cost, but large variations, t (t)- u (0), may be necessary. If 4’ 6e(OSS)
and 4’ 6e(NC’OPC) (4’ 6e(NCSSOPC) under A3), 4’ is a likely candidate for
6e(SSOPC). Since ff ow(NCOPC), Theorem 3.1 can reject 4’ only if other
(time-dependent) solutions of (3.2) are found which have lower cost.
However, since it is not known that 4,6e(WRMSSOPC), a search for
better time-dependent controls might prove successful in the neighborhood
of (u(0), x(0)).

If it is not possible to determine elements of 6e(OSS) much less can be said.
Figure 2 suggests several conditions for optimality including
6e(NCSSOPC) f’) 6e(SRMOSS) and O 5v(WNCSSOPC) f3 6e(WRMOSS). Check-
ing (SRMOSS) and 4’6e(WRMOSS) may be difficult. Since
ow(NCSSOPC) c 5v(WNCSSOPC) = 5e(NCOSS) necessary conditions for ele-
ments of 6e(SRMOSS) and 6e(WRMOSS) are of value only if they are stronger
than (3.5). Obvious candidates for such conditions are second order necessary
conditions [9], [15]. Adjoining second order necessary conditions for OSS to the
condition ow(NCSSOPC) can produce a stronger necessary condition for
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elements of 5e(SSOPC) than 4’ 5e(NCSSOPC). This happens in Example 5.1
where elements of 5e(NCSSOPC) corresponding to c are eliminated.

Finally, it should be observed that the following simple tests, evident from
Fig. 2, may be useful.

Test T6. The existence of , p (SS), 0(NCSSOPC), implies that for all
e >0 there exists an admissible triple ((-), g(. ), -), possibly in ow(SS), with
IIx(t)-x(O)ll<e for all t [0, T] which has lower cost than .

Test T7. The existence of , 6(SS), 6e(WNCSSOPC), implies that for
all e >0 there exists an admissible triple (t(.), (. ), ,), possibly in 6e(SS), with
Ila(t)-u(O)ll, II (t)-x(0)ll< e for all t [0, T] which has lower cost than 0.

Remark 6.2. The importance of the assumption A2 is clear. If A2 is satisfied
T4 and T5 are vacuous. Moreover, 6e(SRMOSS) and 9(OSS). are stronger
necessary conditions for 6e(SSOPC) than 9(NCSSOPC). Under A4
6e(WRMOSS) is a stronger necessary condition than Se(WNCSSOPC). Tests
T1, T2, T3, T6 and T7 remain useful.

7. Relaxed steady-state optima. The replacement of an original optimal
control problem by a relaxed optimal control problem is a well established
technique in the application of existence theory [4], [21]. In the treatment of
optimal periodic control problems it has been recognized [1], [3], [11], [13] that
the replacement has.an additional function. Steady-state analysis of the relaxed
problem, which is relatively easy to carry out, may shed light on the dynamic
behavior of the original problem. This path is pursued here; a principal objective
is to extend tile results of [1].

To introduce the relaxed problem let

W (/91 /+n+l /+n+l
,’",o ,z ,...,tz )ew(7.1)

where

(7.2)

/+n+l

W=w’Z
i=1

p =landp _->0, eUfori=l,...,l+n+l

Cg(l+n+l)(m+l)

Define ft. X W’-> R" and f X W--> R by
/+n+l

(7.3) ff(x, w)= pf(x, lz),
i=1

l+n+l

(7.4) )r(x, w) 2 Pi(x, tzi)
i=1

and let

1 r(x(t), w(t)) dt e Y,(2.1-4) y .
(2.1-5) (t)=ff(x(t), w(t)) almost all [0, T], x(O)=x(z),

(2 1-6) w(. 7g’ {w(. )" w(. measurable and essentially bounded on [0, T]
w(t) W for all t [0, T]}.
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The system (2.1-1), (2.1-2), (2.1-3), (2.1-4)r, (2.1-5)r, (2.1-6)r, (2.1-7), (2.1-8),
which is denoted by (2.1)r, constitutes the relaxed OPC problem. The same
substitutions apply with obvious modifications elsewhere, e.g., in the statement of
the relaxed OSS problem, (2.2)r. Solution sets for the relaxed problem are defined
as before and are denoted by 6er( ). By the Carath6odory theorem [20],

(x, W)= co f(x, U). This result and an obvious modification lead to the follow-
ing conclusions.

Remark 7.1. The relaxed OPC problem satisfies A2 and A4.
Suppose that OPC satisfies A2. Then fr (x, W)=/(x, U) and it is possible to

show that for every solution of (2.1) with cost J there is a solution of (2.1) with
cost J. Thus the relaxed problem has no interest when OPC satisfies A2.

DEFINITION 7.1. The sequence {(u( ), xO( ), -)} is an approximate solution
of (2.1) with period - and cost J if: (i) for all q>0 (u"(.),x(.),z)
q/xx(0, T], q(t)=f(xq(t),uq(t)) for almost all t[0, T] and yq=
(1/-) o(X(t), u(t)) dy Y; (ii) for all e >0 there exists an integer Q(e) such
that for q > Q(e)

g,(yO, xO(0))-<e fori=-/’,...,-1, Igo(y,xo(O))-Jl<e,
Igi(y,xo(O))l<e fori=l,...,k and

By suitably adapting well known results [4] the following theorem can be
proved.

THEOREM 7.1. Let (w( ), x( ), ) satisfy (2.1)r. Then there is an approximate
solution of (2.1) with period z and cost J.

Since for every (u(.), x(. ), -) which satisfies (2.1) there exists a w(. such
that (w(.), x (.), z) satisfies (2.1)r, inf J over (2.1) is not greater than inf J over
(2.1). The system (2.1) is of interest because it may have a solution whose cost is
less than can be achieved in (2.1). In such a case the corresponding approximate
solution of (2.1) has particular importance. These observations also apply when
only steady-state solutions are considered. There may exist elements 0 6er(SS)
which have lower cost than the cost of any element 6e(SS). Elements of Ser (SS)
are relatively easy to determine and lead to approximate solutions of (2.1) which
have a particularly simple form" (w (.), x (.), -) 6er(SS) implies
(u" (.), x (.), -) can be constructed as a "chattering" solution [4] in which x (.)
is approximately constant (xO(t)-x(O) for all t[0, T]) and uO(t) takes on the
value/z (0) on a subset of measure p(0)T. As suggested in 6 this motivates an
additional test for proper. Before stating the test it is necessary to extend the
definition of proper to allow for approximate solutions.

DEFINITION 7.2. OPC is approximately proper if OSS has a minimum cost
Joss, and there exists an approximate solution of (2.1) with cost J such that
J< Joss.

Test T8. Suppose there exist p 6e(OSS) and r Ser(SS) such that t# has
lower cost than . Then OPC is approximately proper.

The validity of the test is obvious from Theorem 7.1. It can be seen from
Example 5.2 that the test is not vacuous (take tg(t), t92(t)=1/2, /z(t)l,
/z2(t)--2, x(t)=-1 which gives J=-3). In fact, it is easy to find examples (in
Example 5.2 replace X R by X {x" x < 1.8}) where there exist no ff such that
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T4 is positive and yet T8 is positive. The relationships between T8 and the tests
T4, T5, T6 and T7 is clarified by the following theorem.

THEOREM 7.2. Suppose (u(’), x(" ), ’) 0 5(SS) and 0 9(NCSSOPC)
(@ 9(SS) and 5(WNCSSOPC)). Then there exists (w( ), xr( ), ’)
5r(SS) with lower cost than q. Furthermore, for any e > 0 it is possible to choose
so that IIx (0) x (0)1[ < e (llx (0)- x (0)11 < e and I[l (0) u (0)1[ < e for 1,...,
l+n+l).

Proof. Consider w(.) such that pl(t)-=l, tzl(t)=-u(O). Then
(w(.),x(. ), -)9r(SS). Suppose 0 SCr(NCSSOPC). Then there exist p, ,6,
r_.,..., ak which satisfy the conditions of Theorem 3.4 with notation appro-
priately modified to account for the relaxed problem. Since Hr(x, w, p,
H (x, v, p, ,6) for all vW the same inequality holds for all v=
(1, 0,...,, 0,... ,0) such that U. This implies that for the same p,/,
a-i,"’ ", ak, 0 satisfies the conditions of Theorem 3.4, i.e., 5(NCSSOPC).
This is a contradiction and hence @r9r(NCSSOPC). Now suppose
5r(OSS). Then because of Remark 7.1 and Theorem 4.2 Ore 5r(NCSSOPC).
Thus by contradiction Or 5r(OSS) and there must exist an element of 9r(SS)
with lower cost than 0r. The argument still applies ifX is replaced by an arbitrarily
small neighborhood of x(0). Thus the part of the theorem corresponding to

5(NCSSOPC) is proved. For 0 (WNCSSOPC) the argument is the same
except U is replaced by U (q {t" [[t u][-< e} with e > 0 sufficiently small and parts
of Theorem 4.3 are used.

Applying Theorem 7.2 with 6e(OSS) shows that if T4 or T5 are positive
there exists a 0 6er(SS) such that T8 is positive. Additionally, if OPC is proper
then OPC is approximately proper. These facts and the comment before Theorem
7.2 are combined in the following conclusion.

Remark 7.2. T8 is a stronger test for OPC approximately proper than either
T4 or T5.

To put this remark in perspective it should be observed that T8 has a weaker
consequence than T4 or T5. Specifically, there are examples which show that
"OPC is approximately proper" does not imply "OPC is proper."

Example 7.1. f =O, k=2, n l, U=[-1, liaR, T>O, f=-x +u, l=Xz,
2 -u, go y2, g yl. It is clear that (2.1) is satisfied if and only if x(t)=- u(t)=-
0 and J=0. Thus OPC is steady-state. But pl(t)1/2, p2(t) =1/2,/z(t) 1,/x2(t)
-1, x(t)=-O satisfies (2.1) with J=-l. Thus Theorem 7.2 implies OPC is
approximately proper.

Similarly, Theorem 7.2 establishes a connection between relaxed steady-
state solutions and tests T6 and T7. When T6 and T7 are positive there exists a
r ,.r(ss) with lower cost than 4’. Moreover, 4, can be chosen to that the
"chattering" approximate solution of (2.1) corresponding to 0 satisfies the same
closeness requirements as do the regular solutions whose existence is guaranteed
by T6 and T7. If it can be determined that OS’(SRMOSS) (for T6)or

6eiWRMOSS) (for T7) there is no need to resort to the relaxed problem and
approximate solutions; it is clear that there are elements of 6e(SS) which reduce
the costs according to the requirements of T6 or T7. However, relaxed steady-
state solutions may produce larger reductions in cost than the regular steady-state
solutions.
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The main practical value of Theorem 7.2 is that it provides a constructive
approach for seeking controls which improve performance when any of the tests
T4-T7 is positive. Bailey and Horn [1] make the same observation but with
respect to T4 only. Their method of proof is more direct but requires ff S(OSS)
andfx (x (0), u (0)) nonsingular. The key to the proof presented here is part (viii) of
Theorem 4.2 which is a direct consequence of Theorem 3.3.

Remark 7.2 makes it clear that the solution of the relaxed OSS problem
deserves special attention. This is the conclusion of Bailey and Horn. Their
sufficient condition I (equivalent to T8 under certain restrictions) is stronger than
their sufficient condition II (equivalent to T4 under certain restrictions). Because
of Remark 7.1, Remark 6.2 applies to the relaxed OPC problem. Hence, there is a
hierarchy of necessary conditions which can be applied to the solution of
the relaxed OSS problem: 6r(OSS) c 6r(SRMOSS) c 6r(NCSSOPC)
6r(NCOSS). If it is not possible to obtain elements of 5er(SRMOSS) it may be
useful (see below) to combine second order necessary conditions for the relaxed
OSS problem with Cr Ser(NCSSOPC). Also notice that T4 and T5 are useless
when applied to the relaxed OPC problem.

Example 5.2 illustrates some of the points which have been made in the
preceding paragraphs. The solution of the relaxed OSS problem is given by r.
p1=.3896..., p2=.6103,..., /Z 1=-2, /Z2=1.5, X=1.1363"’’, J=
-3.5511 ’". fir is also the (unique) solution of the relaxed OPC problem. This
can be deduced from the application of Theorem 3.1 which yields an (x, p)-phase
plane which is the same as Fig. 4 except: on L1 there is a solution which moves
from P1 toward the origin, on L2 there are solutions which move from P and P3
toward P4, P4 is an equilibrium solution. Thus 6r(NCOPC) has two elements
corresponding to x(t) p(t) 0, J 0 and x(t) =- 1.1363 , p(t) 2.8518. .,
J -3.5511 ... Because the relaxed OPC problem has a solution (an existence
theorem can be applied) the second extremal must be optimal. OPC does not have
a solution but all chattering solutions corresponding to 4, satisfy (2.1-2)-(2.1-8)
exactly and as q --> oo the cost approaches -3.5511 . The elements of 6(OSS)
labeled "a" are in 6(WNCCSSOPC) but not 5e(NCSSOPC). Thus T4 and T6 are
positive but T5 and T7 are negative. This is consistent with elements "a" in
6e(WRMSSOPC) but not 6(SRMSSOPC). For element "b" T4-T7 are all
negative but T8 is positive, ser(NCSSOPC) has two elements corresponding to
x 0 and x 1.1363 . The first element does not satisfy second order neces-
sary conditions for the relaxed OSS problem.

Other examples illustrate that the relaxed OPC problem need not be
steady-state. For instance, Example 5.8(i), which can be shown to be equivalent to
the relaxed version of 5.3(i), is proper.

Appendix A. Necessary conditions for a general optimal control problem.
Consider the following notation and assumptions:/z ad u are positive integers;

C 2 C?R lsposltve; U R sanarbtraryset;X,X,X R are open sets; for
^I ^2

-/x, v the functions #:X X x (0, t) --> R are continuously differenti-
able; the function f: X U--> R" is continuous and for each u a U is continuously
differentiable in . Let(, u) denote the Jacobian matrix of f(x", u) with respect
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to :; let 0e(, 2 z), 0e( .2,x z) and O(, 2, .) denote respectively the
Jacobian matrices of 0(, ^2x z) with respect to , :: and z.

General optimal control problem (GOC). Find u(. ), (. and z which
minimize J subject to

(A. 1-1) J 0o((0), (), ),

(A.1-2) ,((0),:(), z)_-<0, i=-/z,... ,-1,

(A.1-3) 0,(:(0), :(z), -)= 0, i= 1,..., v,

(A.1-4) :(t) =(:(t), u(t)) almost all t [0, ’],

(A.1-5) u(. ) q/= {u(. )" measurable and essentially bounded on [0, t], u(t)
U for all t [0, ’]},

(A.1-6) (" )={(" )’ (" absolutelYA1 continuous on [0, ], ,(t)" for all
t[0, t], (0)X, :(-) ’},

(A. 1-7) - (0, ’).

THEOREM A.1 (necessary conditions for GOC). Let

(A.2) H(x, u, )=’f(, u)

where R. Let (u(.), (. ), ) solve GOC. Then there exist an absolutely
continuous [unction ( ): [0, ’]-)R and real numbers a_,, ., a such that the
following conditions are satisfied"
(A.3-1) max H((t), v, (t)) H((t), a(t), (t)) almost all [0, -],

vU

(A.3-2)

(A.3-3)

t’(o) a0,((0), (), ),

’(’) ,,o,,(X’(o), X’(-), -),

’(t) -ff’(t)f( (t), u (t)) almost all t [0, z],

a-< 0, =-/z,..., 0,

(A.3-4)
a,o,((o), (), ) o,
(a_,,, ., a) o.

=-/z, -1,

Iff(x (t), u (t)) is continuous at " thefollowing additionalcondition is satisfied"

(A.3-5) max H((z), v, (’)) a,Oi,(2(O), 2(z), ’).
U =--I

Proof. With minor changes in notation the conditions are taken from 7 of
[16], assuming that: Zx is fixed, tx ’x 0, the 0i do not depend on ’3 and z(z3).
The regularity condition (7.3) of [ 16] is not required. This can be seen by changing
the proof in 16] to follow the pattern used in [ 17].
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Appendix B. Necessary conditions ,for a finite-dimensional optimization
problem. Consider the following notation and assumption.s"/ and z, are nonnega-
tive integers, f)c R" and XcR are open sets, U U is an arbitrary set, for
=-tz,""", u the functions Oi" 2 x OR are continuously differentiable. Let

0i(, u) and Oiu(, u) denote respectively the Jacobian matrices of Oi(, u) with
respect to and u.

Finite-dimensional optimization problem (FDO). Find u and which
minimize J subject to

(B.1-1) J Oo(., u),

(B.1-2) O,(,u)<-O,

(B.1-3) O,(,u)=O,

(B.1-4) u U,

(B. -5) ..
THEOREM B.1 (necessary conditions for FDO). Let C(u, U) be a conical

approximation to U at u U. Let (u, ) solve FDO. Then there exist real numbers
a_,, , a such that the following conditions are satisfied:

(B.2-1) aOu (, u)6u <= 0 for all 6u cl C(u, U),

(B.2-2) aOe(, u) O,

a -< 0, , , 0,

(B.2-3) aO(, u) O, , 1,

(a_,, .., a) 0.

Proof. Apply Theorem 2.3.12 of [7] letting: the equality constraint corre-
spon to (B.1-3) and 0(, u)=v_u i=-,... ,-1; z (u, , v)R++"; =
UxXx V where V {v: v 0, 1,. , }; (ao, a a," , a, a-a," ",a-,)
correspond to .

TnzoM B.2 (maximum principle for FDO). Assume that for all the
set {(0_,(, u),..., 0,(, u)): u U} is convex. Weaken the differentiability
requirements on the O to the following: for =-,..., u the functions O am
continuous andfor each u Ucontinuously diffemntiable in . en the conditions
in Theorem B. 1 apply with (B.2-1) replaced by

(B.2-1)’ aO(i, u)= max aO(i, v).
i=-- oU i=-

Proof. See Theorem 4.6 of [19] and take note of the comment on p. 221.
Alternatively, the approach taken in 4.2 of [7] may be adapted.

Acknowledgment, The author expresses his thanks to George D. Ianculescu
whose excitement in periodic control motivated his own interest in the subject.
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