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CONTROLLABILITY AND OBSERVABILITY IN
MULTIVARIABLE CONTROL SYSTEMS*

ELMER G. GILBERTt

1. Introduction. The importance of linear multivariable control systems
is evidenced by the large number of papers [1-12] published in recent years.
Despite the extensive literature certain fundamental matters are not well
understood. This is confirmed by numerous inaccurate stability analyses,
erroneous statements about the existence of stable control, and overly
severe constraints on compensator characteristics. The basic difficulty has
been a failure to account properly for all dynamic modes of system response.
This failure is attributable to a limitation of the transfer-function matrix--
it fully describes a linear system if and only if the system is controllable
and observable.
The concepts of controllability and observability were introduced by

Kalman [1.3] and have been employed primarily in the study of optimal
control. In this paper, the primary objective is to determine the control-
lability and observability of composite systems which are formed by the
interconnection of several multivariable subsystems. To avoid the limita-
tions of the transfer-function matrix, the beginning sections deal with
multivariable systems as described by a set of n first order, constant-
coefficient differential equations. Later, the extension to systems described
by transfer-function matrices is made. Throughout, emphasis is on the
fundamental aspects of describing multivariable control systems. Detail
design procedures are not treated.

2. Definitions and notation. Let a multivariable system S be represented
by

2 Ax + Bu
()

v= Cx/Du

where:
u u(t), p-dimensional input vector.
v v(t), q-dimensional output vector.
x x(t), n-dimensional state vector, n is the order of S.

2(t), time derivative of state
A, constant nth order differential transition matrix.

* Received by the editors July 5, 1962 and in revised form November 1, 1962.
Presented at the Symposium on Multivariable System Theory, SIAM, November 1,
1962 at Cambridge, Massachusetts.

Instrumentation Engineering, University of Michigan, Ann Arbor, Michigan.
Reference [14] gives a historical account of controllability and lists other refer-

ences.
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CONTROLLABILITY AND OBSEI:tVABILITY 1.’29

B, constant, n row, p column, input matrix.
C, constant, q row, n column, output matrix.
D, constant, q row, p column, transInission matrix.

If n 0 the system is said to be static.
The characteristic roots Xi, i 1, n, of A are assumed to be distinct.

This greatly simplifies the proof of theorems and prevents the main course
of the paper from becoming obscured. Besides, there are few practical
systems which cannot be satisfactorily approximated with an A which has
distinct roots.

Let p be an n-th order nonsingular matrix which diagonalizes A :a

(2) p-lAp- A

Define normal coordinates as the components of the n-dimensional state
vector y,

(3) x py.

Then the normal form representation of S is given by

(4)
Ay -t- flu

v /y q- Du,

where

(6)

p-lB, the normal form input matrix,

Co, the normal form output matrix.

The normal coordinates are not unique. If desired, they may be made so by
arranging the Xi in order of increasing magnitude (roots with identical mag-
nitudes may be taken in order of increasing angle) and choosing the column
vectors of p, o, i 1, n, to have unit Euclidean length.

For the purpose considered here, the system S is stable if Re Xi < 0 for
all i.
The rank of the input ru is defined as the rank of the matrix B (or equiva-

lently, the rank of ). It is the "effective" number of inputs which can

See Bellman [15, p. 198.]
Familiar results of matrix theory will be used without comment. These results

can be found in Bellman [15] or other standard texts.
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influence the state vector. The integer (p ru) _>- 0 is therefore the number
of ineffectual inputs. It is possible with no loss of generality to reduce the
number of components of u by (p r).
The rank of the output r is defined as the rank of the matrix C (or 7). It

is the effective number of outputs available for observing the state of the
system. The integer (q r) >- 0 gives the number of outputs (components
of v) which are linearly dependent if D 0. It is possible without loss of
generality to reduce the number of columns of C by (q r).

3. Observability and controllability. A system S is controllable if/ has no
rows which are zero. Coordinates yi corresponding to non-zero rows of/ are
called controllable; coordinates corresponding to zero rows of $ are called
uncontrollable. Uncontrollable coordinates can in no way be influenced by
the input u. Thus a system which is not controllable has dynamic modes of
behavior which depend solely on initial conditions or disturbance inputs.
Disturbance inputs are not indicated in (1) and will not be treated in this
study. Sometimes, they may be satisfactorily handled by means of ap-
propriately introduced initial conditions.
A system S is observable if 7 has no columns which are zero. Coordinates y

corresponding to non-zero columns of 7 are called observable; coordinates y
corresponding to zero columns of 7 are called unobservable. Unobservable
coordinates are not detectible in the output v. Thus a system which is not
observable has dynamic modes of behavior which cannot be ascertained
from measurement of the available outputs.
A few general remarks are in order. First, the definition of controllability

is different from Kalman’s [14]: "A system is controllable if any initial state
can be transferred to any desired state in a finite length of time by some
control action." However, under the restrictions of the previous section the
two definitions are equivalent. More recently, Kalman [16] has taken the
same point of view given in this paper. For some additional remarks see the
note by Ho [17].

Second, there is a striking similarity in the definitions of controllability
and observability, the rows of playing the same role as the columns of 7.
This is also true of Kalman’s definitions, and means that remarks similar to
those of the previous paragraph can be made about observability. More
importantly, for every conclusion concerning controllability, there is a cor-
responding one concerning observability. This will be evident in the state-
ment and proof of theorems which follow.

Finally, the definitions become more involved when he characteristic

Usually it is desirable to eliminate ineffectual inputs and superfluous columns of
C. Exceptions occur when mplitude constraints are imposed on the u (such as

u < k, 1, p) or noise is present in the measurement of the v.
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uc

U V +

Fla. 1. System S and is partitioned representation

roots are not distinct. The diagonal matrix is replaced by a Jordan normal
form and the conditions on and , are not so simply stated.

In order to deal more concisely with the above concepts consider"
THEOREM 1. A system S may always be partitioned into four possible sub-

systems (shown in Figure 1)"
1) a system S* which is controllable and observable and has a transmission

matrix D,
2) a system S each of whose normal coordinates are observable and unco.r-

trollable,
3) a system S each oj’ whose normal coordinates are controllable and un-

observable,
4) a system Sf each of whose normal coordinates are uncontrollable and

unobservable.
All subsystems have zero transmission matrices except S*. Also, u u u,

v v*+v,andn n*nt-n+ncn.
The proof of Theorem 1 follows directly from equations (4) by partition-

ing y according to the restrictions 1 through 4). A somewhat more involved
partitioning may result when the characteristic roots are not distinct.
Thus the only subsystem which has to do with the relationship of v to u is

S*. The observable system S only adds a disturbance v to the controlled
part of the output v*. Although S, S and Ss appear to have little im-
portance in system analysis this is not necessarily so. If state variables ap-
propriate to the description of S, Sc, and Ss get large, neglected nonlinear
couplings may become important or physical damage of the system may
result. This certainly will be the case if S, S or S are unstable, i.e. there
are hidden instabilities.
From Theorem 1 it is clear that a necessary and sufficient condition for

the absence of S, S, and S is that S be controllable and observable. It is
possible to determine if S is controllable and observable without recourse to
the normal form representation by means of the following theorem.
THEOREM 2. Let bi i 1, p, be the columns of B and cir, i 1,
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q, be the rows of C. A system S is controllable (observable) if and only if the
vectors eki Akbi, i 1, ..., p, k O, ..., n l(ek (Ar)(ci),
i 1, q, k O, n 1) span the n-dimensional coordinate space.
The controllability part of this theorem has been proved using the pre-

viously mentioned alternative definition of controllability [14]. By duality
[13, 16] the observability part may be obtained for an alternative definition
of observability [13]. The fact that the same results are obtained for the
different definitions proves their equivalence.

Proo.-f. First consider the controllability part of the theorem.
To prove necessity assume S is controllable and write

(7)

Since fl [ill fly] has no zero row it is possible to form a vector fl+
]cfl + + k,flv none of whose components is zero. Clearly, the vec-

tors e+ patti+, k 0, n 1 form a subspace of the space defined
by the e. But

(8)

det [e0+ en-+]

o o o2+ 0
0

(det p)(det V)({i32+... n-t-) 0

because the Vandermonde determinant V is nonzero for distinct h, p is non-
singular, and the + are all nonzero. Thus the subspace is n-dimensional.
Therefore the e must span the n-dimensional space.
To prove sufficiency assume the e span the n-dimensional space. Then

for any r O, say

the inner product (r, e) cannot be zero for all k and i. But
k(9) (r, ea) (r, pA fli) (AkoTr, i) kl li

Assume all 1i 0 and a contradiction is obtained. Thus not all 0. By

The superscript T indicates the transpose of a matrix or vector.
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changing r the argument also works on all other rows of . Hence S is co-
trollable.
To prove the observability part of the Theorem note (,r is i-th row

of 7)

ek (Ar)kc (pAp--1)T}I(/iTp--])T

(10) (p-l)TilcpT(p--1 Ti
(p-l) rhk,.

Since (10) is similar to (7) the remain.ig steps are the same as those in the
controllability part.

4. Observability and controllability of composite systems. In this
section the controllability and observability of composite systems are
related to the controllability and observability of their subsystems. Theo-
rems 3 and 4 treat respectively the parallel and cascade connection of two
subsystems. Successive application of these theorems extends the result to
composite systems which consist of many subsystems connected in parallel
and cascade. Theorem 5 is the central theorem of the paper. It states con-
ditions for the controllability and observability of a general feedback sys-
tem.
THEOREM 3. Let the parallel connection of systems Sa and Sb .form a com-

posite system S (see Figure 2). Then:
i) n na- n,;
ii) k n la na klb nbb
iii) a necessary and sucient condition that S be controllable (observable) is

that both Sa and S be controllable (observable).
To prove Theorem 3 let S and Sb be represented in normal form. Then

FIG. 2. Parallel connection of S and S
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from the notation in Figure 2 the normal form of S can be chosen so that

(11)
3 L3A " [’/’a"Yb], D D + D.

Simple inspection of (11) yields all parts of the theorem.
THEOREM 4.. Let the cascade connection of system Sa followed by Sb form a

composite system S (see Figure 3). Then"
i) n-- nanb;
ii) ),., M Xla, Maa, Xlb, Xnbb
iii) a necessary (but insufficient) condition for the controllability (observ-

ability) of S is that both Sa and Sb be controllable (observable);
iv) if Sa and Sb are both controllable (observable) any uncontrollable (un-

observable) coordinates of S must originate, when designated according to
characteristic root, in S S

Using the normal form representations of Sa and S yields-- I Aa 0 1 I a I IYal(12) 3b’Ya Ab
X 2V bDa U, where x--

Y

v [D% %Ix q- DDu.

as the set of equations representing S.
To put these equations in normal form define

(13) x= I y’ y=
_

x,

where --(/)Aa - Abb --3b’Ya, i.e.,

(14) [o]
kia- kjb

denotes the ij element of 3bTa. The assumption of distinct roots

U=UcI Vb= V

\
V’

/

FIG. 3. Cascade connection of Sa followed by &
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requires h. bib 0 all i and j. It is easily shown that

(15)
Ay -t- flu

v ,y q- Du,

where

(16) Ab (--, + flbD,)

/ [(Db/. + 5’b)’b], D D.D,.

Results i) and ii) follow immediately from inspection of (15). Consider
the controllability parts of results iii) and iv). From (14) and (16) it is
obvious that a null row of , or fib will result in a null row of . Thus the
necessity of iii) follows. It is also clear that -a + flbDa may have a null
row even if a and/b do not. Thus iv) and the remainder of iii) hold. Cor-
responding reasoning applied to the columns of , yields the observability
results.

Formulas (16) can be used to determine if S is controllable or observable.
Unfortunately, a fair amount of work is involved and there appears to be no
way of getting simpler sufScient conditions for the controllability or ob-
servability of S.

It is helpful to consider a few simple examples where S is uncontrollable
or unobservable even though S, and S are controllable and observable.
Let Sa and Sb be given by:

(17) )la Yla Yl Ylb

V2a Yla.

Then if xl y and x y define the state vector of S,

o](18) 0 --2
x + ul

vl=[0 1]x.

In this example S is uncontrollable and unobservable because the matrices,
De, Db, ’Ya, b, which "couple" Sa and Sb are such (D, Db 0, b’ 0)
that the input ul never reaches the normal coordinate of Sb and the normal
coordinate of Sa is not passed on to the output v. This particular situation
cannot happen in single-input, single-output systems, since it would imply
either 0 or tb 0.
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For the second example let

la --Yla "- Ul
(.9)

Vla Yla - Ul Vl Ylb Ulb.

Taking the state vector of S as xl y, x2 Yl gives

(20) -2
x +

and for

v= [1 -1]x-u,

11(21) P= 1

the normal form representation is

(22)
Y-- 0 -2

y +
v- [0 --1]y-- ul.

Equation (20) shows that x yla and x2 Ylb can individually be con-
trolled and observed. Yet from equation (22), S is clearly uncontrollable
and unobservable. This apparent paradox is resolved by observing that the
uncontrolled (and therefore unalterable) coordiate y2 xl -t- x:

--Ya - Yib. Therefore y.ta and yl_ cannot independently be controlled
or observed.
A third example arises, applicable to the parallel connection of Sa and

Sb, if the assumption in section 2 of distinct characteristic roots is waived.
Then iii) of Theorem 3 becomes analogous to iii) of Theorem 4, in that the
stated condition is necessary but not sufficient. Let Sa and S be identical
first order systems

(23)

Then S is given by

/ --yo + Ulc C a, b.

1-1 0 I [111(24) 2
0 -1 x-i- u.

While yl x and y x are controllable, they are not independently
controllable, since their difference is given by the solution of

(25) (- ) -(x- x).

THEOREM 5. Systems Sa and S .form respectively the forward and return
paths of a feedback system S (see Figure 4). Let the cascade connection of Sa

Ul
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U VEI = VU

/

F.c,. 4. Feedback system S with S,, in the forward path and S in the return path

followed by Sb be Sc and of Sb followed by Sa be So. Assume that (I - D,D)
is nonsingular. Then:

i) n=n+n,
ii) a necessary and sutcient condition that S be controllable (observable) is
that S(So) be controllable (observable),
iii) a necessary but not sucient condition that S be controllable (observ-
able) is that both Sa and S be controllable (observable),
iv) if S and S are both controllable (observable)any uncontrollable un-
observable) coordinates of S are uncontrollable unobservable coordinates

of S( So) and originate in S.
Before going on with the proof, a few general observations are made.

The nonsingularity of (I - DD), which is equivalent to the nonsingular-
ity of (I - DbDa), is physically reasonable, for if it is broken the static gain
D (I - DaDb)-D D(I + DbD)- of the closed-loop system S is unde-
fined. Introduction of systems S and So is a natural consequence of proving
separately the controllability and observability parts of the theorem. Since
controllability involves only the influence of the input u on S, the system
shown in Figure 5a suifices. Similarly, determination of observability leads
to the system of Figure 5b. Statements analogous to ii) of Theorems 3 and
4 are not possible, since feedback alters characteristic roots.
By employing

a U Yb
(2)

and the equations describing S and S, the equations describing S are
obtained. Inspection of these equations shows i) is true; however, they are
too complex to yield a simple proof of ii).
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(a) (b)

FIG. 5. Systems for determining the controllability (a) and observability (b) of
feedback system.

Consider first the controllability part of ii). From Figure 53

Yb )c
(27)

Uc U- Yc.

Using these equations and the normal form equations for St gives (x yc)

(28) Ax + Bu

for S, where

(29) A c- Bc
(30) B flc(I + DbDa)-1.

It is easily shown from the nonsingularity of (I + DbDa)-1 that a row of B
will be zero if and only if the corresponding row of /c is zero. Thus B has
non-zero rows if and only if Sc is controllable.
The sufficiency part of ii) is proved by contradiction. Let Sc be control-

lable and assume that S is uncontrollable. Then from Theorem 2 the vectors
eke, lc 0, n 1, i 1, p cannot span the n-dimensional space.
That is, a non-zero vector r exists such that

(r, e) 0,
(31)

k- 0, ,n-- 1, i 1, ,p.

Or equivalently,

(32) r’AkB rr(Ac- B)B O, ] 0,..., n 1.

Evaluating (32) starting with k, 0 gives

rrB 0

(33) r(A- BS’c)B r Afi 0r AcB (r B)cB

rr (A. Bc)’-IB : -Br n, O.

From Theorem 2 it can be seen that the columns of the matrices AB,
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/c 0, n 1 span the n-dimensional space if and only if B has no zero
row. Since by the previous paragraph B has no zero row, this and (33)
imply that r is zero. Thus the contradiction is obtained.
The necessity part of ii) is obvious from the discussion at the end of

section 4.
The observability part of ii) is proved by starting with Figure 5b and

So. Then S is given by

2= Ax
(34) A Ao oC, C (I + DaDb )-l’yo

Y Cx
The above steps can then be applied to the columns of C with the desired
results.
Theorem 4 applied to the determination of Sc and So gives iii).
Consider the controllability part of iv). From (28), (29), and (30) it can

be seen that if the i-th row of/c is zero, 2i Xix. Thus the uncontrollable
coordinate yi xi is unchanged by feedback. Moreover, by Theorem 4 this
coordinate must originate in Sb. Similar arguments give the observability
part of iv).
The most important result of Theorem 5 is ii). It says that closed-loop

controllability and observability can be ascertained from the open-loop
systems Sc and So. Thus one is not forced to deal with intricate closed-loop
equations.
When Sb is static an even simpler situation exists. Then iv) implies that

S is controllable and observable if Sa is controllable and observable.
Further information on uncontrollable and unobservable coordinates can

be gleaned from Theorems 3, 4, and 5. Let S denote the combination of
systems S, S, and Sz, that is, the part of system S which is not controllable
and observable. From Theorem 1 it is clear that the coordinates of
$2, S, are uncontrollable or unobservable in the composite system S.
Thus Su, S, are part of Su. To see what happens to the remaining
coordinates of Sa, S, it is sufficient to examine by means of Theorems
3, 4 and 5 the interconnection of the controllable and observable system
Sa*, S,*, As an example take the feedback system of Theorem 5" S
consists of Sa and S plus the coordinates of S* which are uncontrollable
in the system Sa* followed by S* and unobservable in the system Sb* fol-
lowed by S*.

5. The transfer-function matrix. The traditional approach to the analysis
and synthesis of multivariable systems is based on the transfer-function
matrix rather than the differential equations (1). To obtain a transfer-
function representation of a system S, it is assumed that the output vector v
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is entirely due to input forcing u, i.e., initial conditions are zero. Let La-
place transforms be denoted by upper-case letters.
Then

w(s)
where s is the Laplace-transform variable and H(s) [H.] is the q by p
transfer-function matrix. The element H(s) is the scalar transfer function
which relates the i-th output and the j-th input.
To obtain the transfer-function matrix from the differential-equation

representation consider:
THEOREM 6. Given a system S defined by equations 1 and (4), the transjr-

function matrix is

H(s) C(Is A)-B + D y(Is A)-I + D

=1 s- i* + D

where the matrices K have ranlc one.
The first two expressions for H follow directly from the Laplace transform

of (1.) and (4) with x(0) y(0) 0. Since (Is A)-1 is diagonal, the
second expression can be written out in terms of the columns of y, y, and
the rows of 5, 5i’:

37 II ’’ - .D.

For any i corresponding o an uncontrollable or unobservable coordinate,
y or 5’ is zero. Thus the sum needs to be taken only over the characteristic
roots associated with S*. K 7,, , being a vector outer product, is of
rank one.
The important, and not surprising, conclusion of Theorem 6 is that a

transfer-function matrix represents the controllable and observable part of
S, S*. It has been noted in Theorems 4 and 5 that controllability and
observability of subsystems does not assurethe controllability and observabil-
ity of a composite system. Thus transfer-function matrices may satisfac-
torily represent &ll the dynamic modes of the subsystems but fail to repre-
sent all those of the composite system. Furthermore, the loss of hidden
response modes is not easy to detect because of the complexity of the trans-
fer-function matrices and matrix Mgebra. Since differential equations offer
a safer basis for describing inultivariable systems it is valid to ask why
transfer-function matrices should be used at all. The answer is that fre-
(tuency domain design procedures and the smaller size of H (it is q X p
rather than n X n) often make computations more manageable.
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If the transfer-function matrix of a physical system is given it is generally
impossible to derive the corresponding differential-equation representation.
This is because the state variable choice is not unique and all information
concerning systems Sc, S, and Ss is missing. It is possible, however, to find
a set of differential equations (1) or (4) which yield the same H(s) as a
prescribed H(s). Procedures for doing this are described below. The main
result is stated here as a theorem and gives the required order of the dif-
ferential equations.
THEOREM 7. Given a rational transfer-function matrix H(s) whose elements

have a .finite number oj’ simple poles at s , i l, m in the finite
s-plane. Let the partial .fraction expansion of H be,

(38) H s _, K____ -t- D,

where

(39) K,z lim(s- ):)H(s),

(40) D limH(s).

Let the ran of the i-th pole, ri be defined as the ran]c of K Then H(s) can be
represented by differential equations (l) or (4) whose order is

(41) n E r,i.
i-----1

The eigenvalues of A and A are distinct if and only if all r 1. It is impossible
to represent H(s) by a differential equation whose order is less than n.

First it will be shown how H(s) can be represented by a set of differential
equations.

Since the matrix K is of rank r there are r, linearly independent columns
in K. Let eel, j 1, r be such a set of columns. Then every column
of K, can be expressed s a linear combination of the e.. A compact nota-
tion is

(42) K,i E,iF

where E,z is a q X r matrix which has columns e.. To determine F pre-
multiply (42) by Er. Then
(43) ErK ErEF.
But the determinant of EfE is the Gram determinant [19] of the e., and
is nonzero because the c.,; are linearly independent (this is a good test for
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picking a linearly independent set eii). Thus
TE --1 T(44) F (Ei ) E K.

Once F is known K can be expressed as

where ffs is the j-th row of F. Thus

(6) H() f
= ’= 8- X

This formula is similar to (37) except that there are r vector outer products
for each X. Thus H(s) can be represented by (4) where

X1 I1 0 0

0

(7) L 0

I-..El 1
nd L is identity trix of order r. Thus th root X is of multiplioity
nd :r,.
To sho that re,libation of lor order is o possible, the ploe

transform of (4) is tken, defining transfer-function mtrix . However,
to cover 11 possibilities it is essential that A tk its most tnrl form,
Jord normal form. For o5motristic root of ultiplioity f, this ns
tkt th number of Jordan blocks ith this ohmotristio root is not xd,
only tSt ll the blooks tken together form mtrix of order f. Hoeeer,
shos that ll Jordan blocks must be of order one if is to hve simpl

poles (unless some modes re unoontrollble or unobservble, hioh only
increases the order of (4)). Furthermore, the rank of the residue of

X is no treater thn th ultiplioity of X. Thus if is to hv th
form of H in (3S) th dierntil qutios () ust hv miimu
order

ri.
i=l

If the equations () hve order grtr thn n, th rlition is either
unoontroilble, unobserwhle, or both.
Theor 7 provides solution of th synthesis problem, sinoe once



CONTROLLABILITY AND OBSERVABILITY ]_43

differential equations (1) or (4) are known, they can be realized as a physi-
cal system (example, an electronic differential analyzer). Furthermore, the
synthesized system uses a minimum number of dynamic elements. The as-
sumption of simple poles can be relaxed, but at the expense of considerable
additional complexity. Kalman [16] gives an alternative procedure for
determining n.
Theorem 7 and a simple example illustrate how the order of a system

represented by a transfer-function matrix may be underestimated. Let

s+l s-t-1
(4s) H()=| ---1 1 s+l +

(s- 1)(s-2) s-t-2
s+2

A first glance it might be guessed that the system has order two, but
rl -t- r2 2 -t- 1 3, so the minimum order is three. One realization of an
equivalent third order system is shown in Figure 6. It is possible that the
actual order of the system may be greater than three. For example, in
Figure 7 the order is five.

Underestimation of system order is the reason why most erroneous
stability analyses have gone unnoticed. In a stability analysis the number
of characteristic roots considered should at least be equal to the sum of the
minimum orders of all the subsystems. This is easily checked by means of
Theorem 7--and errors in many references gave been noted.

If a transfer function matrix has any poles of rank greater than one, the
assumption of distinct characteristic roots, which was made in all prior
developments, is violated. If such transfer functions are encountered,
an approximating system may be set up (use approximation to equations
(47)) which has poles of rank one. Then all the previous results can be
used.
From the above discussion it is clear that each element of H(s) is an

integral part of the whole description. Thus it is generally not permissible
to partition a transfer-function matrix into several transfer function
matrices and treat the resulting matrices as though they describe distinct
systems. Yet, this has been done consistently in the representation of
plants which have more inputs than outputs [9, 12]. As a consequence er-
roneous statements have been made concerning the existence of stable
feedback systems.

McMillan [18] defines the degree of a square ration al matrix, which is equivalent
to n, but the development is more complicated being based on the Smith normal
form of a polynomial matrix. He also shows that if the matrix is an impedance matrix,
it may be synthesized by a passive network with n, and no fewer, reactive elements.

See for example [10, 11].
This has been noted by the author in a discussion [12].
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U2(s)

-t- v(s)

FI(. 6. Third order representation of H(s).

U2(s)
Fl.(. 7. Fiftlt order representa.tion of H(s)

6. Transfer-function representation of multivariable feedback systems.
Once the limitations of transfer-function matrices are recognized, it is
possible to apply them successfully to the analysis and synthesis of feedback
systems. In what follows it will be assumed that ll transfer-function
matrices have simple poles of rank one. This will keep the transfer-function
representations consistent with the differential-equation representations
specified earlier.

Let Ha and H be transfer-function matrices representing Sa and S in
Figure 4. Then the developments,

(49)

(50)

and

(1)

(52)

Ua-- V- Vb-- U- HV U- HbHaU,,

(I + H,Ha)-’U,
V HaUa Ha(I -- HbHa)-’IU,

V H(U- Vb) HaU- HaHbV

(1 n- HHb)-HaU,
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give alternative expressions for the transfer-function of the feedback sys-
tem S,

(53) ti II(I + HbHa)-1 (I -t- HaIIb)-lHa.
H represents the controllable and observable part of S, S*.
The remaining part of S, S, was considered at the end of section t.

Systems S and S naturally are missing from the representation H be-
cause they are not represented in Ha and H. The coordinates of S* which
are not controllable and/or observable in S correspond to the poles of H
which do not appear in HH and/or HaHb. In the derivation for H it is
easy to see where the poles of H are lost: (49) gives those of HbHa and
(51) gives those of HH. It is not so easy to see that no additional poles
are lost, a difficulty which has to do with complexities in evaluating the
inverse of a matrix of rational functions. This is one of the reasons that led
to the more careful treatment of section 4.
Suppose that all the subsystems which make up H md II are con-

trollable and observable. This is a reasonable assumption if transfer-
function matrices are to be used. Then from the preceding it is plain that
the characteristic roots of the feedback system are given by: 1) the poles
of H (these roots correspond to the dynamic modes in S which are con-
trollable and observable), 2) the poles of H which do not appear as poles
of HaHn, and/or HHa, 3) the poles of the trm’sfer functions representing
the subsystems of Sa and S which do not appear respectively in Ha and Hb.

In the course of system synthesis and stability analysis all characteristic
roots of the feedback system must be considered. Procedures for handling
the characteristic roots in category 1) have been developed reasonably well
in the literature. Therefore, additional effort here will be directed at 2) and
3). In particular, the problem of pole cancellation in multiplying two
transfer-function matrices will be explored. This problem applies directly
to 2), and often to 3), since the systems Sa and S are usually a cascade
connection of subsystems. If S or S are themselves feedback systems
they must first be analyzed as feedback systems before progress can be
made on the analysis of the overall feedback system.

7. Pole cancellation. Consider the cascade connection of the controllable
and observable systems S and S (not the Sa and S of the previous see-

tion, see Figure 3). The transfer-function representation gives

(54) H

If H has fewer poles than the sum of poles in Ha and H, pole cancellation

The special case where S is static and S is the cascade connecion of two sub-
systems has been considered in [9, 12]. The results obtained are not as general as those
of the next section.



1.46 ELMNR G. GILBERT

has occurred and the system S is uncontrollable or unobservable. To go
further, a more detailed notation is required.

Let Ha be written as

() Ho ha

where ha is the characteristic polynomial for Sa,

(56) ha a(t Xla) (t’ Xnaa) ]a O.

Since it has been assumed that Ha has simple poles of rank one, ha has no
repeated linear factors.1- The elements of the matrix 5Ca are polynomials
in s. Such a matrix is said to have a factor, if every element of the matrix
has the same factor. Since Sa is controllable and observable 3Ca has no
factors common with ha. Similar remarks apply to Hb.

Using the notation

(57)
and

(58) h hbha,

system S is controllable and observable if h and 3e do not have common
factors. Any linear factor of h cancelled in H by a like factor of 5e corre-
sponds to an uncontrollable or unobservable mode in S. Unless the ele-
ments of 5Ca and 3eb are in some way related, the possibility that h and 5C
will have common factors is remote.
The most common situation which causes a and 5C to be related is that

of compensation where either Ha or H is fixed, and the other (the com-
pensator) is chosen to make H equal a desired transfer-function matrix
H. Clearly, if he does not equal hha the compensated system S will be
uncontrollable or unobservable. Thus certain constraints must be imposed
on He if S is to be controllable and observable. Often it is suttieient to
require that only the unstable modes of Sa and S be controllable and
observable in S. This reduces the number of constraints.
The following treatment of constraints assumes pre-eompensation (H

fixed) and Hb square (Pb qb). The assumption that Sa is controllable and
observable is reasonable because a minimum order realization of Ha must
be controllable and observable. Also, it is pointless to consider an I-I which
corresponds to an uncontrollable or unobservable system.

Formally, compensation requires

(59) Ha H-I[Ie.
10 Here the term factor means a non-consta,nt factor.
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Therefore Itbl must not be identically zero..This is assured if Bb and C
have rank p. Expansion of (59) yields

(60) It. [adj H] H h [adj b]

Let the greatest common divisor of the numerator and denominator be g.
Then

and

because and h cannot have a common factor if S is to be controlluble
and observable.
From (57), (58), (61), and (62)

gild

(64) h hh 3C g

Since h g- is the only fctor common to both h nd ( and h do
not hve common fetors) its linear fctors give ll the modes which re
uncontrollable nd unobservble in S. Suppose all unstable modes of
re to be controllable nd observable. Then ll linear factors of h
which go to zero in the right-hlf s-plane must be included in g, or equiva-
lently s common factors of h 3 nd h [dj ] 3. This hppens only
if 1) h includes the right-hlf-plne fctors of h, nd 2)[dj ]
includes the right-hlf-plne fctors of .
Very often the constraints cannot be imposed as indicated. Consider the

example

Both poles hve rank one. Constraint 1) requires h to hve the fctor
(s 1). Suppose 2) is to be stisfied with 3C diagonal. Then

(66) [adj b] Cd 1 22d --,11d 822dJ"
Since 1 (s" 1), each element of (66) must include the factor
(s 1), which in this case mea,ns both and ( have the factor (s 1 ).
But (s 1) cannot be a common factor of 5C and h. The same problem
also occurs if .f , 0. As will be seen shortly, the diculty can be
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resolved only by letting He have a pole of rank two at s 1. This is the
same constraint which would result from procedures described in the
literature [9, 12]. It has not been noted previously that it may be relaxed
if He is not diagonal, a fact which is of interest, since present design pro-
cedures are based on diagonalization of the open-loop transfer-function
matrix.
The above analyse camot be extended readily when H, H, or He

have poles of rank greater than one, because then common factors in the
numerator and den.onfinator of Ha, H, and .He do not necessarily imply
that the systems are uncontrollable or unobservable. Theorem 7 offers a
satisfactory alternative approach. System S is controllable and observable
if the order of S as determied from H He is equal to the order of S plus
the order of S. To simplify the application of this statement the following
assumptions are made:i) Ha Hb, and He all have simple poles, ii) H has
poles of rank one, iii) S,. md S are controllable and observable, iv) He,
is diagonal. Then S is controllable nd observable if nd only if

(7)

Define

rnk [lira (s )tt0,] -t-- rank [lim (s X)H,I rank [lim (s X)H,I,

(68) G .H- [g, g,]

and let ( 0 if h. is analytic at s ),, l if h., has a simple pole at
s . Using (59) and ii), (67) can be written as

rank [lim {(s k)hneg.’" (s h)hg,}]

p

,i l h k,,’"(69) ,i=,.

p

i=1

Once the g, are computed, constraints on the h.,:,z such that (69) is
satisfied are easily found. For example, with H, as defined by (65),

(7o) g-’= -1
g=

s

Consider 1. Clearly, (69) holds only if .f. f 1. Thus both hx and
h,e have simple poles at s 1. The same result is true at s --1. Other
values of s X which must be considered are those where H (and also H)
has poles. Since for s 1, g and g are linearly independent, (69) will
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be satisfied automatically. If gl. or g2 had poles they would have to be
included as zeros of hlld or h22d. AS before, it is often suttieient to impose
the constraints only at X values which have positive real parts, letting
some stable modes be uneontrollab!e or unobservab!e. In this example,
the only active constraint would then be that hll, and he have simple
poles at s 1.

Usually, the g are analytic at, s X1, Xnb. In fact with ii), a
necessary and sufficient condition for analytieity at s X is that K. and

p

E Ka’b

have columns which span the p-dimensional coordinate space. Further-
more, if G(s) is analytic at s X then it can be shown that G(X) is of
rank p 1. Thus for X X equation (69) is satisfied if h, i 1, p
have simple poles at s X. Many times, a considerably less severe con-
straint is sufficient. For example, if gl(M) 0(g, g, are linearly
independent) only h, requires a pole at s Xb. Or suppose g,(X)

lclg.t(X,,) q- ]c,g(Xb) where ]c and ]c are arbitrary constants; then (69)
is true if.g= 1, i= 1, 2, 3 and . 0, i=4,..-,p.

Fin,lly, consider an example where G(s) is not analytic at s X.

(71) Hb

(72) G

2s -(s- :t)
(s- 1)(s q- 1) 2(s q- 1.)

-(s- .) -2(s- .)
(s -t- 1) (s q- 1)

(s + 3) ( + 3) |.

I--2(s-- 1.) --4s
!

Take X 1. If ., . 1 (the usual constraint [9, 12]), (69) is not satis-
fied (S is not controllable and observable even if a multip!e pole treatment
is considered); but it will be satisfied if , 1 and h2a has a zero at s 1.
If stable modes are to be controllable and observable 1 42 1 a46 )k 1.
and hld and h must have zeros at s -3.
Though the above is a limited treatment, it does allow solution of many

compensation problems and indicates the complexity of the situation.
With obvious modifications the ease of pos--eompensation (H fixed)
can be handled.
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8. Conclusion. From the foregoing it should be concluded that too great
an emphasis on operational methods (the transfer-function matrix) is un-
wise. Differential equations (1) arise naturally in relating the physical
properties of a system to its response characteristics, and any mathematical
procedure which neglects information contained in these equations should
be viewed skeptically, it It is surprising that physical considerations have
ot raised more doubts about the transfer-function representation earlier.
Certainly, the errors of underestimated order would not have occurred if
any effort had bee made to relate the mathematical representation to the
physical world--for example, by means of system simulation.

Finally, it should be noted that the synthesis of a multivariable feedback
system is truly a formidable task. Unwieldy calculations, complex compen-
sation constraints, and difficulties in evaluating the effect of disturbance
inputs and parameter variations all complicate the search for satisfactory
design procedures. The results developed above should at least provide a
sound basis for this search.
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