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Abstract—Provably asymptotically-stable running-gaits are stability [15]-[17], and to further investigate the role of
developed for the five-link, four-actuator bipedal robot, RABBIT.  passive elements in achieving efficient running with a hopper
A controller is designed so that the Poincag return map [18]. Raibert's control scheme has been augmented with

associated with the running gait can be computed on the basis S . . S . .
of a model with impulse-effects that, perviously, had been used leg-coordination logic to achieve running in prismatic-kneed

only for the design of walking gaits. This feedback design leads to bipeds and quadrupeds [13], [19].

the notion of a hybrid zero dynamics (HZD) for running and to In 2003, both Iguana Robotics and Sony announced (sep-

the closed-form computation of the Poincaé return map on the  arate) experimental demonstrations of running for bipedal

zero dynamics. The main theorem is illustrated via simulation. ohnts with revolute knees. Apparently, the controller of the

Animations of the resulting running motion are available on the . .

web. Sony robot is based on a common heuristic called the zero

moment point (ZMP) criterion, and that of Iguana Robotics is

I. INTRODUCTION based on central pattern generators (CPGs). To our best knowl-

This paper addresses the design and analysis of asyr@@ige, only two other bipeds with revolute knees have been
totically stable running gaits for RABBIT, a five-link, four-designed to perform running—Jogging Johnnie in Munich
actuator, planar, revolute-jointed, bipedal robot [1]. In a s&0], [21] and RABBIT in Grenoble [1], [22]—and running
ries of papers, the authors and colleagues have develop@g not yet been attempted on either one.
new feedback control strategies [2]-[7] that achieve provably m
asymptotically-stable walking gaits in underactuated bipeds, o
such as RABBIT, and demonstrated many of them expeft: The biped
mentally [8], [9]. In regards to running, open-loop trajectories The studied bipedal robot evolves in the sagittal plane with
have been studied in [10], [11]. An objective of this paper is tespect to a flat surface; see Fig. 1. The flat surface will
develop aime-invariant feedback controlléhat realizes these be referred to as the ground. The robot is composed of five
open-loop running trajectories gsrovably asymptotically- rigid links with mass, connected through ideal (i.e., rigid and
stable orbits A key step is to design the feedback controllfrictionless) revolute joints to form a torso and two identical
in such a way that the Poin@areturn map associated with degs, with each leg articulated by a knee. Each leg end is
running gait can be computed on the basis of the models wigrminated in a point so that, in particular, the robot does not
impulse effects studied in [3] for the design of walking gaitiave feet.

This leads to the notion of a hybrid zero dynamics (HZD) for The robot is said to be iflight phasewhen there is no
running, and to the closed-form computation of a restrictemntact with the ground, and istance phasevhen one leg
Poincaé map. The main results are illustrated via simulatioend is in stationary contact with the ground (that is, the leg
The reader may wish to view animations and other supportirgd is acting as an ideal pivot) and the other leg is free. For
material that is available on the web [12]. the stance phase, the leg in contact with the ground is called
the stance legand the other leg is thewing leg

M ECHANICAL MODEL OF ABIPED RUNNER

Il. RELATED WORK

In the early 1980’s, Raibert proposed an elegant concepf- Lagrangian model for flight
alization of running in terms of a one-legged, prismatic-kneed A convenient choice of configuration variables is depicted
hopper [13], [14]. He decomposed his control actions inta Fig. 1. The vector of body coordinateg consisting of
three parts—hopping height, foot touchdown angle, and bothe relative angles$q, ¢2, g3, ¢4)" describes the shape of the
posture—and emphasized the role of symmetry in designibgped. The biped’'s absolute orientation with respect to the
stable running motions. The remarkable success of Raibewt/srld frame is given byys. The biped’'s absolute position is
control law motivated others to analytically characterize itspecified by the Cartesian coordinates of the center of mass,



The position of the center of mass can be expressed in terms

of ¢ per
Tem(q)
= J1lq 5
[ycm(q)} fila) ©)
where f; is determined from the robot's geometric parameters
(link lengths, masses, positions of the centers of mass). Hence
_ Isxs |
=1 o |4 (6)
0q
The method of Lagrange results in
@) (b) © Dy(av)d + Cs(av, d)d + Gs(q) = Bsu, (7)
Fig. 1. Different phases of running with coordinate conventions Iabelewhere' ’
The robot is shown (a) at the end of the stance phase; (b) during flight; and D ( ) - A( ) n m@fl(Q) (9f1 (Q) (8)
(c) at the beginning of the stance phase just before impact. To avoid clutter, s\db) = b dq dq
the coordinate conventions have been spread out over the single support and
flight phases even though they apply to all three phases. leg-1 is presenteamd
bold. Angles are positive in the clockwise direction. _ Tyxa
Bsu = 0 9

(Zem, Yem)- The vector of generalized coordinates is denot

asgqgr := (qiy 45, Tcm,y ycm)/-
A dynamic model,

eéjecause the kinetic energy is invariant under rotations of the
body, D, depends only omy,.

Introducing the state vectar; := (¢/,¢’), the Lagrangian
Di(qu)ds + Ct(qv, 4t)dr + Gr(qr) = Bru, (1) model (7) is easily expressed as

is easily obtained with the method of Lagrange whias the is = fs(ws) + gs(@s)u. (10)

inertia matrix, the matrixCy contains Coriolis and centrifugal o state space is taken Y, = {zs = (¢,d") | q €

terms, andG; is the gravity vector. In these coordinates, th@ i € IR°}, where the gonfigur;tion sp7acQ is a
Sy ’ S

inertia matrix has the special form simply-connected, open subset @fr, 7)5 corresponding to
D { Agy)  Osx2 } physically reasonable configurations.
f =

@ _
D. The impact model

wherem is the total mass of the robot antidepends only on  The Cartesian position of the end of leg-2 can be expressed
qv, because the total kinetic energy is invariant under rotatiopsterms of the Cartesian position of the center of mass and
and translations of the body. The principle of virtual workhe robot’s angular coordinates as

yields that the external torques are - .
[ ’ } =[ } ~ fala), (11)

Bfu — |: é4><4 :| u, (3) Y2 Yem
3x4 where f, is determined from the robot’s parameters (links
wherew is the vector of actuator torques applied at the folengths, masses, positions of the centers of mass); see (5).

O2x5  mlaxo

joints of the robot. When leg-2 touches the ground at the end of a flight phase,
Introducing the state vectar; := (¢f, ¢;), the Lagrangian an impact takes place. The impact model of [23] is used, which

model (1) is easily expressed as represents the ground reaction forces at impact as impulses.
) The impact is assumed inelastic, with the velocity of the

ar = fr(ze) + gi(ze)u. (4)  contact leg end becoming zero instantaneously; furthermore,

The state space is taken &Q; == {7 == (¢, ) | gt € after impact, the contact leg end is assumed to act as an ideal

Q¢, ¢ € IR7}, where the configuration spag is a simply- pivot. This model yields that the robot’s configuratigp is
connected, open subset 6f7, 7)® x IR? corresponding to unchanged during impact, and there are instantaneous changes

physically reasonable configurations of the robot. in the velocities. The velocity vectors just before and just after
impact, are denoted, , ¢~ andg;", ¢ respectively.
C. Lagrangian model for stance The robot’s angular velocity vector after impact is given by

For the stance phase, the generalized coordinates can b¢+ 0fs' 0fs -1 ' ofy [ i-
taken asg := (q{,,¢5) = (¢1, - ,g5)’. Since the robot's legs ¢ = [A + ma—q 8_q] (Aq_ + ma—q { y‘im D ;
are identical, in the stance phase, it will be assumed without a2
loss of generality that leg-1 is in contact with the groundyhich, for later use, is written as
Moreover, the Cartesian position of the stance leg end will be

identified with the origin of théx —y)-axes of a world frame. it = Algr 47 ). 13)



E. Some linear and angular momentum relationships where (13) has been used.

A few linear and angular momentum properties of the The transition from stance phase to flight phase can be
mechanical models are noted. Let,, denote the angular initiated by causing the acceleration of the stance leg end
momentum of the biped about itenter of massin the flight © become positive. If torque discontinuitteare allowed—
phase,c., can be computed by, = % = Asg, where 8S they are assumed to be in this paper—when to transition

Ay is the fifth row of A. The model (1) f/ields conservationinto the flight phase becomes a control decision. Here, in view

of Tem of simplifying the analysis of periodic orbits in Section VI, the
Gem = 0: (14) fransition is assumed to occur at a fixed point in the stance
phase. Hencefl! = 0,(q)— 05, whereb(q) := L +go+q5 is
in addition, the angle of the hips with respect to end of the stance leg (see
Zem =0 and gem = —y, (15) Fig. 1) andé; is a constant to be determined. The ensuing

initial value of the flight phases;", is defined so as to achieve

which correspond to linear momentum conservation. R - i ; .
Let o; denote the angular momentum of the biped aboe?gntlnwty in the position and velocity variables, using (5) and

the end of leg; for i = 1,2. The three angular momenta ar ) T
related b _
y . { fi(g™)
0; = Ocm +m ((ycm - yi)j?cm - (xcm - xi)ycm) . (16) A%(x;) = q-f . (20)
For the stance phase; can de determined by; = %{: = { af‘lég’) g

Ds 54, where Dy 5 is the fifth row of Ds. o ) ] ] ]

The impact model of [23] yields conservation of angulggontinuity of the torques is not imposed, and hence neither is
momentum about the impact point. Since the impact occui@ntinuity of the accelerations. It is assumed that the control
in the flight phase on leg-2 and the stance model assumes @ in the flight phase will be designed to achiejg > 0;
stance leg is leg-1 the conservation of momentum relationS8€ [11]-
expressed as L V. CONTROL LAW DEVELOPMENT
oy =o0,. a7

A. Stance phase control

As in [3, Sec. V], define the output

The overall biped robot model can be expressed as a

IV. HYBRID MODEL OF RUNNING

nonlinear hybrid system containing two state manifolds (called Ys = hs(a) = gb — has © 65(q) (21)
“charts” in [24]): on (7), where the twice continuously differentiable function
X, = TO has : IR — IR* encodes the stance-phase gait. It is assumed
iy _ that the associated decoupling matrix is invertiibg(q) :=
% Fre(@n) = fileo) +grlae)u [h.,65]" is a diffeomorphism,
st = {xf e TQOs | Hfs(l‘f) = 0}
Te ot = ANgy) Zs :={xs € TQs | hs(xs) =0, Ly hs(zs) =0} (22)
(18) is an embedded two-dimensional submanifoldZad,, and,
X, = TQ, SfnZ, is an embedded one-dimensional submanifold g¥,.
Foi (@) = films) + gslas)u The feedback control is chosen to be continuous and to
Y “ Sf B {‘ e TQ‘ | ﬁf( ) =0} renderZ invariant under the closed-loop dynamics as well as
s T s s s\Ts) = attractive in finite-time (the exact hypotheses are CH2-CH5 in
T af = Aley) 3, IV.C]):

where, for examplef; is the flow on state manifold;, S§ _
is the switching hyper-surface for transitions betwé&nanfd us(ws) = (Lo L hs(ws)) ™ (v(hs(ws), Ly.hs ()
X, T¢ : S — X, is the transition function applied when — L} hs(xs)), (23)
e € st

The transition from flight phase to stance phase occ
when leg-2 impacts the ground. Hendé; (z¢) = y2; recall
(11). The ensuing initial value of the stance phasg,

wherewv renders the origin ofj; = v globally asymptotically
Yhble with finite-convergence time. The closed-loop system is
denoted

is determined from the impact model of Section IlI-D. A Jers(@s) := fs(®s) + gs(ws)us(s)- (24)
relabeling matrixR is applied to the angular coordinates to The feedback control

account for the impact occurring on leg-2 while the stance . 1o

model assumes leg-1 is in contact with the ground: ug(s) = =(Lg, Lp. hs(ws)) ™ Ly hs(2s) (25)

At(ep) =

Rq~ 1This is a modeling decision. In practice, the torque is continuous due to
- , (19) actuator dynamics. It is assumed here that the actuator time constant is small
RA(z;) enough that it need not be modeled.



rendersZ; invariant under the stance-phase dynamics; that isShereh, ¢ is at least twice differentiable. Then the following

for every z € Z, can be easily shown: for any value of,

Froro(2) 1= f2(2) + 9o (2)u2(2) € Tu Z.. (26) 1) itlzllt;decoupllng matrixLg, Ly he, iS everywhere invert-
Z is called thestance-phase zero dynamics manifatd 2 = 2) ¢ ;,: (R}, G5, Tems Yem] 1S @ global diffeomorphism on
faero(2) is called thestance-phase zero dynamidllowing Oy;

the development in [1], [3](fs,01) is a valid set of local  3) the flight-phase zero-dynamics manifold,
coordinates foZ, and in these coordinates the zero dynamics
has the form e = {[Ef S TQf | hf(.%‘f,af) =0, Lffhf(xf,af) = 0},

_— 1 (35)
b = 1(6,) 7 27) is a six-dimensional embedded submanifoldltd;
. 4) S;nNZ; is a five-dimensional embedded submanifold of
o1 = mgxcm(95)7 TO;s:
where I(d,) plays the role of an inertia. Moreover, in these 5) (gs, Zem, Yem, Tem, Tem, Jem) iS @ set of global coordi-
coordinates St N Z; is given by nates forZ;; and
o _ _ _ U _ 6) the flight-phase zero dynamics is given by (14), (15) and
{50 lag =2710.07). §~ =dgoy. oy emy, O Mefontp y given by (14). (15)
(28) gs = Hl,f(UCIII7me7j;CIIIa le) (36)
where . .
dhy 771 0 where (36) arises from evaluating
— _ | @
(5T [1) e 4
As o . Ocm A5l(qb) .
For later use in computing a Poinéareturn map on the 55\4b) =7 A55\db
zero dynamics, it is noted that (27) has Lagrangian [3, Egn 7;.
(59)] Lsero := Kyero — Vieror Where The feedback controller is defined as
1 2
Kiero = 5(01) (30) Uf(.rf7af) = —(Lgfofhf(.'Ef,af)>_1(Kphf(.rf7af)
A
Viero(0) = = / I()mgiem(€) d€;  (31) + Kal ghe(we,ac) + L hs(es,ar)), - (38)
o

where §r + Kq9r + Kpyr = 0 is exponentially stable. Let

. N , .
the choice of the lower limit); is grbltrary and will be %¢ == (z},a})" and denote the right-hand side of (4) and the
selected later. Also for later use, define

dummy variablsis = 0 in closed loop with (38) by

Ao(qo) | ._ 0f1(g0) .- _
{ o) } =, 0 (32) s (@) == [ (J;f(xf) + gr (¢ )ug (2¢) ] ' (39)
so that . — C. Closed-loop hybrid model
|: Lem :| — |: )\x(qo) :|O' (33) . .
Jem Jlsinz, M(go) |1 The closed-loop hybrid model is
B. Flight phase control B X = Jij x A
The overall goal of the flight-phase controller is to land the  y, . Fap: (@) = far(@)
robot in a favorable manner for continuing with the stance St = A{(zg,a¢) € X | Hi(2¢) =0}
phase. It will turn out that a particularly interesting objective T af = Ayap) = Ajxy)
is the following: if the robot enters the flight phase from the (40)
stance-phase zero dynamics manifalf], control the robot X, = TO,
so that it lands orZ; in a fixed configuration. The analytical o i
motivation for this objective will be made clear in Section . . Feis : (&) = fas(zs)
VI. The feasibility of landing in a fixed configuration will . St = {2,€TQs | Hi(zs) =0}
be illustrated in Section VII with a feedback controller that Thoaf = AlaD), of = wf(z),

depends on:y andthe final value of the state of the preceding . ) ] )
stance phase. To realize such a controller as a state-varid¥i¢rews is at least continuously differentiable.
feedback, the flight-state vector is augmented with dummy\/| Ex;STENCE AND STABILITY OF PERIODIC ORBITS
variables,a; = 0, whose value can be set at the transition
from stance to flight. Leti; € A := RIim(ar),

In other regards, paralleling the development of the stal
phase controller, define the output

The Poincag return map is a well known tool for de-
ntceémining the existence of periodic orbits and their stability
properties; for its use in hybrid systems, see [2], [25]-[27].
This section first defines the Poinéasection and the Poind@ar
yr = he(gr, ar) == qb — ha i (Tem, ar), (34) return map that will be used for analyzing periodic orbits



of (40). Analytical results are then developed that allow a Suppose that\ : SN Z, — Zs, whereZ; is the stance-
practical means for characterizing stability of certain runninghase zero dynamics manifold. Then, from [3], (45) has a

gaits.

A. Definition of the Poincd return map

Following [2], define thestance-time-to-impact functién
TI,S :TQs— RU {OO}, by

inf{t > 0|pas(t,x0) € ST} if 3 ¢ such that
TI,s = (Pcl,s(tvx()) € S;C
0 otherwise,

(41)

where . 5(t, o) is an integral curve of (24) correspondng

t0 @a,s(0, z9) = zo. From [2, Lemma 3]I7 s is continuous

at pointszg where0 < Tl,s(x0)~< oo and the intersection

with S,f is transversal. HenceY; = {z; € A, | 0 <
TIS@S) < oo and Lfch.H (Pars(Trs(xs), x5)) # 0} is

open, and consequentlﬁ; = A} ~1(X,) is an open subset

of Sf It follows that thegenerallzed Poincd@ stance map
P, : S§ — S! defined by

Py(w1) := pas(T1s(Af(zr)), Af (1)),

is well-defined and continuous (the terminology of
generalized-Poincd& mapfollows Appendix D of [28]).
In analogous fashion, thgeneralized Poincdr flight map

P;: Sf — S3, is defined by
Pr(ws) = e r(Tr e (Al(s), wl(ws)), Al(ws), wi(ws)). (43)

In [28, Appendix D], it is proved that’; is continuously
differentiable. ThePoinca® return mapP : S! — S! for
(40) is defined by

(42)

P:=PF,0F;. (44)

B. Analysis of the Poincérreturn map
Theorem 1 (Connecting running to walking): Let P be

the Poincaé return map defined in (44) for the hyrbid running g3
model in (40).P is also the Poincérreturn map for the system

with impulse effects
@) = fas(@®) 27(t) €S
Zd'{ o) = A cwes @

whereS := Sf and A := At o P;.

Proof: This follows immediately from the construction 2)

of the Poincag return map in [2, Eq. (14)]. [ |

hybrid zero dynamics, which may be called thgbrid zero
dynamics of running

faero(2)
Azero (27 )

where the restricted impact map4s,c,;, := A| SnZ. and fero
is given by (26). The key properties in walking gaits that led
to a rich analytic theory werg,-invariance A : SNZ, — Zj,
and what one may cadlonfiguration determinismr o A(S N
) consists of a single point, where: TQ, — Qg is the
canonical projection. How to achieve these conditionsXo
A$ o P; through design of the flight-phase controller will be
detailed in Section VII.
Let g, be as defined in (28) and suppose that A(S N
Zs) = {q7}. Then (5) can be used to define the positions
of the center of mass at the beginning of the stance phase,
(xd,,vd,), and the end of the stance phase,, ,y..). In
the following, it is assumed that the center of mass is behind
the stance leg a the beginning of the stance phase, and thus,
wdn < 0.
Theorem 2 (Characterization of restricted impact map):
Suppose that\ : SN Z; — Z; and7 o A(S N Zs) = {qq }.
In the coordinatesd; ,o; ) for S N Z, the restricted impact
map is given by

z
o+

2= ¢ SNZ
z= €SN,

(46)

a

Aero (0 07) [ o ] @7)
zero\Ug ;01 ) = 5(0;) ’
where
Hon) = xor — By v e
and
a = *szg(l';rm)2(yérm - ycjn)
= mag A (g) (49)
= 1+mag A\ (g ) + m(Yhy — Yem) A (d0 )-
The proof is given "In the Appendix.
Remark 1:

1) Whena = 0, that is, the center of mass has the same
height at the beginning and end of the stance phase,
d(oy) = (x —|B])oy is linear, exactly as in walking.
In terms of the coordinate®; , (™ := 3(oy )?), where
the (generalized) kinetic energy of the stance-phase zero

This observation is important because models of the form
(45) have been studied in the context of walking gaits. Under
certain conditions on the impact map, powerful analysis and
feedback design tools have been developed for this class of
models [3], [4], and the viability of the feedback designs has
been confirmed experimentally [8], [9]. The identification of
running with walking indicates how certain results developed 3
for walking may be extended to running. In this section and the
next, several results along this line of reasoning are developed
and illustrated on an asymptotically stable running gait.

2Flows from one surface to another are sometimes called impact maps or
functions.T7 ¢ could also be called théme-to-flight function

dynamics is used instead of the angular momentum, the
second entry in (47) becomes

8.(CT) = (X* + B¢

20C + (280 + % (50)
Implicit in the construction of5 := S’ is the condition
20~ + (26¢7)% > 0. Also a part of the construction
of S is the condition thafl; ; is a positive real number;
under the assumptions made dx this is equivalent
to checking thatyl,, > vz, and A,(¢;) < 0 do not
simultaneously occur.



Let P : S — S be the Poincdr return map for (45), and A. Stance Phase Controller Design

hence, also for (40), and suppose that SN Z; — Z,. Then
P:SnNZ, — SN Z,. Define the restricted Poin@rreturn
mapp: SNZ; — SN Zs by

p= Plgny - (51)

On the stance phase of the running trajectaty,varies
betweery! = 1.2758 rad andd; = 1.8849 rad. As in [5], an
outputys = hs(q) := g» — has © 0s(q) is designed so that it
vanishes (nearly) along the stance phase of the periodic orbit,
and thus the orbit will be an integral curve of the stance-phase

The restricted Poincarreturn map is important because it ig€ro dynamics. For this, the functidn s was selected to be a
scalar and, by [2, Theorem 2] (see [3, Sec. IV]), asymptdeurth-order polynomial irés. The design method in [11] that
ically stable fixed points of it correspond to asymptoticall{s used to compute the periodic orbit essentially guarantees
stable periodic orbits of the hybrid model (45), and hence, tBat the technical conditions of Section V are satisfied/for

asymptotically stable running gaits.
Theorem 3 (Closed-form for p): Suppose thatA : S N
Zy— Zsandmo A(SNZ) = {qf }. Let (67 ,07) € SN Zs,
and set(~ := 1(o; )% Then
p(¢7) = (" +8%)¢
«
—XV2a(" + (267 + 5 -

with domain of definition

‘/;ero(og)a (52)

Dy:i={C" >0 |6(¢7) = Vo >0,

zero

2a¢” +(26¢7)* > 0}, (53)
whered, is defined in (50), and

max . _

zero (54)

max
0F <0.<05

szero(es)-

Moreover, the first derivative of the restricted Poiricagturn
map is

dp ey a+43%¢C
dC—(C )=X"+8) —x 20l T I (55)

nevertheless, the conditions are formally verified. Ohgés
known, so isZ;, and, by construction) NT'Q, C Z,. Define

S&={(g,9) | 0s(a) = 67 }.
B. Stability of the periodic orbits

The data required to determine the restricted Poicaap
p in Theorem 3 can be computed directly frohy;s. This was
done and yieldedv = 27.3270, 5 = —0.0129, x = 0.9549,
and V.o = —257.68. Computingp results in(* = 801.5 and
u = 0.7855. Sincepu < 1, if a flight-phase controller can be
determined to meet the conditions of Theorem 3, the orbit will
be asymptotically stable. A plot of the restricted Poilgcarap
is provided in [12].

C. Flight Phase Controller Design

The flight phase controllerys = h¢(gr,a¢) = g —
hat(Tem,a), ar = wi(x7), is to be designed so that(S N
Zs) C Zs andm o A(S N Zg) is a single point. These two
conditions will hold if, and only if,

A(SN Z,) C Z,n Snit,
Analogously to (28) and (29)7, N St is given by

(56)

The proof is given in the Appendix. The following corollary {(¢d,d") | ¢ = ®:1(0,6), ¢" =qfof, of € R},

is immediate.

Corollary 1 (Exponentially stable fixed points):
Suppose that* € D, is a fixed point ofp. Then it is
exponentially stable if, and only if,

a+462¢*
2a¢* + (26¢*)?

pi= 03+ %) —x
satisfies|u| < 1.

VII. 1 LLUSTRATION ON RABBIT

(57)
where
+ %hs ' 0
qo:{Ai] [1] )
4=qy

From Theorem 2, it follows that (56) is equivalent to
Algy 140 01) = (ag do 3(o7)), (59)
which gives specific boundary conditions, juster impact,

to be met by the design of the flight phase controller. In
particular, recalling thay = (g;,¢5)’, it is seen that (59)

Using the method proposed in [11], a time-trajectory of (18jplaces constraints on the body configuration variables, their
corresponding to an average running speetl®Mm/s, was de- derivatives, and;, while the constraint o5 is equivalent to
termined for RABBIT (see [1] for details on the planar, bipedat;” = §(o;), if the other constraints are met.
robot, RABBIT). A stick-figure diagram corresponding to the For the purpose of computation, it is convenient to transform
running motion is given in [12]. Denote b the path traced (59) to conditions inT'Q; instead ofT'Q,. This is done as
out by this trajectory in the state spaces of the hybrid modellows: the boundary conditions (59) specify the height of
of the robot.O intersectsS! and S¢ exactly once each; definethe center of mass at impact, and from this information, the
rf =0nNS;andz; = ONSE. The goal is to design a time-flight time, #¢, is computed for any initial condition i§ N Z;

invariant state-feedback controll@da Section V that ha® as

see (67) in the Appendix. Using (68) and the impact model, a

its asymptotically-stable periodic orbit. Recall that designinfginction go(qg , o, ) is determined such that (59) is equivalent
the controller is equivalent to specifying the output function®s

in (21) and (34) and the parameter update-law in (40).

(0 ,d4p 01 ) — (R g, dolag ,07))- (60)



The design ofhqs can now be given in two steps. First,
define 0-7 |
- - or Impact 8
Tem — T Tem — T
T(xcmyo—;) === T m — — Cm_; (61) S0.2 1
tfTem thw(Q() )01
. . -0. 4 | 1
the real-valued function varies betweer and1 and can be
used to parameterize trajectories frafm Zs to St N Z; -0.82 q;g -0.8 -0.78
in a neighborhood of the periodic orbit. Choose a function
poly(ag, -+ ,a4) : [0,1] — R* such that Fig. 2. The torso angle (x-axis) in units of radians versus its velocity (y-axis)
in units of radians per second in the stance and flight phases. Notice that the
poly(ao, Tt 734)(0) = a1 flight-phase controller has regulated the torso angle to its desired value of
dpoly qg at impact. The plot indicates that a limit cycle is achieved. In fact, the
dr (ao, -~ ,a4)(0) = a2 62) obtained limit cycle corresponds to the original periodic orbit,
oly(at,---,a4)(1) = a . .
poly(ar, -+~ a4)(1) 3 D. Simulation
dpol
I;(:-y(a07"' 7a4)(]~) = Q4,

The controller has been simulated on a model of RAB-
and there existy, - - - , aj for which g, —poly(ag, --- ,a3)(7) BIT. Assuming no modeling error and initializing the closed-

(nearly) vanishes or®. Here, this was accomplished withjgop system off of the periodic orbit—with an error in the

a fourth order polynomial. Off of the orbit, use (62) toye|ocity—yields the simulation data presented in Fig. 2. Addi-
solve foray,--- a4 as functions ofo;” so thatq,(7) = tional plots and animations of the running motion are available
poly(ag, - - ,a4)(7) satisfies the constraints on the body cogt [12]. The robustness of the controller is being evaluated
ordinates imposed by (60). Specifically, set = (¢, )o.» on the compliant contact model used in [5]. The preliminary
az = (R7'qg )y, as = (dy 07 )», @andas = (Go(qg, 7)) results are encouraging.

Define
haf(Tem, 071, a) := poly(ag, . .., a4)(7) (63) VIIl. CONCLUSIONS
with a;(o7), ¢ = 1,...,4 and 7(zem, 07 ). Define ¢gs(0) = . ,
()5 andgé = (R~q)s. A time-invariant feedback control strategy has been devel-

In the second step, the goal is to selegtas a function of OP€d for a bipedal runner. The flight-phase portion of the
o7 so that theg;-component satisfies the constraints. This €ONrol strategy was designed so as to create a generalized
done as follows. The output (63) satisfies all of the conditiofPact map with properties similar to those of the impact maps
of Section V, and hence the evolution gfin the flight-phase that occur in models of walking. This led to the deliberate
zero dynamics is given bifs = #1 ¢(Tems Zems Fems 07+ o). design of a hybrid zero dynamics of running, that is, a low-
In the flight phase.oe, and e, are constant and candimensional, invariant, sub-dynamic of the closed-loop hybrid
be substituted by their values fros N Z,). In addition, system. Asymptotically stable orbits of the hybrid zero dy-
Zem(t) = 2o, + thu(gy )or. Hence,gs = Rys(t, o1, ap). namics are asymptotically stabilizable orbits of the full-order
L:ar?ting ot o note g;heovallue of o theo q’g _ qlr (’0) 4 hybrid model. Using the idea of a restricted Poiiécagturmn
fgf R1¢(t, 07", af)dt is satisfied because, by construction Orpap—dthat IS, the Pomcalrrgturr! map I’(:Stl’l(;]ted to the hybr;d
the output, the orbit corresponds to an integral curve of tfg"0 dynamics—an explicit criterion for the existence of a

flight-phase zero dynamics. Finally, it is verified (numericall eriodic orbit was given, as well as an explicit characterization
that f its stability properties.

P t The principal results were illustrated on a five-link, four-

i (qg — ¢5(0) — / Fyg(t o0, ao)dt) #0, actuator planar biped with revolute joints. A periodic trajectory
dao 0 ap=ag* computed in [11] was interpreted as a desired periodic orbit in

subset about; * and a differentiable functioni{ such that

vi(o7*) = af and

the state space of the robot model. A time-invariant feedback
wb‘

€Bntroller was designed to realize this orbit as an attractive

solution of the hybrid zero dynamics, without, it is very

important to note, the use of trajectory tracking. Very roughly
ty : P » :

4 - - f = speaking, the controller is “clocked” to events on the orbit and

¢5 = a5(0) + /O Fue(t,or, @y (or))dt. (65) not to time. Hence, when perturbed away from the orbit, the

Since (65) is scalar while, has four components, there exisfOPOt'S links regain “synchrony” with respect to the robot's
an infinite number of solutions fow . Hence, a numerical POsition on the orbit and not with respect to time.
optimization was performed to find, for each point in a

neighborhood ot 7}, a value ofaq that steerg;s to qg, while ACKNOWLEDGMENTS

minimizing ||lag — a§||. The flight-phase control design is

completed by formally defining ¢ (g, ar), ar == (o7 ,ap)’, The work of J.W. Grizzle was supported by NSF grant ECS-
andw!(z7) == (o7, wi(ay)). 0322395.



APPENDIX
A. Proof of Theorem 2

By (28), points inS'N Z, are parameterized by, , 4, o7 )-
The position of the center of mass_,,y.,,) is obtained by
evaluating (5) atg, and its velocity is obtained from (33), [5]
(G fam) = (Aa(d9 )01, Ay(go )7 ). The angular momen-
tum about the center of mass can be determined from (16) I8
be

(3]

(4]

(7]

o7 =M (YamAa (90 )01 — Tomry(go oy ) - (66)

Since the transition map from the stance phase to the flighgl
phase preserves positions and velocities, (66) is also the angu-
lar momentum at thbeginningof the flight phase, and because
angular momentum is conserved during ballistic motion, (66[e]
is also the value of the angular momentum at é¢inel of the

flight phase. From the hypothesés : SN Z, — Z; and [1]
mo A(S N Z) is a single point, the position of the center
of mass at the end of the flight phase is known and eq ﬂ
to the position of the center of mass at the beginning of the
subsequent stance phase, which is giver{dg,, y.,). From
this, the flight time ¢, can be computed

\/(yc_m)2 - 29(yérrn - yc_m)
+ )
g

and from (15), the velocity of the center of mass at the efitf]
of the flight phase is determined

{ e (tf)

Yem (tf)

g

cm

[12]
[13]
(14]

e

ty (67) [15]

(17]

(68)

:| Lem

—/ (m)? — 29(5n — vim) &
Equations (66), (68), (16) allow the angular momentum abo%
the contact point at the end of the flight phasg,, to be ]
evaluated, and then (17) allows the evaluation of the angular
momentum about the stance leg at the beginning of tFél
subsequence stance phase. This yields [21]

of =07 = m (YamAa (80 )01 — TamMy(gp )07 ) + [22]

my;n)\ﬂf (q()_)o-l_+m'r:m \/(Ay (q()_)gl_)2 - 2g(y(—3i_m - yc_m),

(69) [23]

which, after simplification, completes the proof. [24]
B. Proof of Theorem 3

From [3, Sec. IV], in the coordinate®s,( = %(0q)?) [29

for Z;, the stance-phase zero dynamics can be integrated as
€(6s) = ¢ — Viero(6s). Evaluating at9; and applying (50) [26]
yields p(¢7) = 6.(¢7) — Vaero (85 ). The domain ofp follows
from [3, Thm. 3]. [27]
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