
Real-time Visual Tracking
EECS451 Final Project

Chengcan Ye

EECS, University of Michigan

Ann Arbor, Michigan, U.S.

yeccan@umich.edu

Abstract—Visual tracking is one of the most challenging problems

in computer vision. Generally speaking, there are mainly two state-of-

the-art methods of visual tracking: exhaustive search and

neighborhood search. The former one generates candidate bounding

boxes of different size and realizes tracking via object detection. The

latter one tracks the object through finding the maximum response near

the region of last tracked result. This paper uses the method of

neighborhood search to achieve the goal of real-time tracking. By

adopting the color attributes, this paper has shown its superior

performance over multiple datasets.

Keywords—visual tracking; color attributes.

I. INTRODUCTION

Visual object tracking, where the objective is to estimate the
locations of a target in an image sequence, is one of the most
challenging problems in computer vision. It has important
applications in multiple fields, especially in human-computer
interaction, surveillance, and robotics. Similar to many other
problems in computer vision, visual tracking can be affected by
factors such as illumination variance, scale variance, occlusions
and background clutter.

Most state-of-the-art trackers rely on exhaustive search [1, 2,
3, 4]. Given an initial object to be tracked, either selected
manually or acknowledged from ground truth, a model of the
object is learned. During the process of tracking, multiple
bounding boxes of different size, angle and shape are generated,
and then compared with the model in first step. The box with the
highest similarity thus be chosen as the tracking result.
Exhaustive search has shown its robustness over multiple
criterions such as scale variance and occlusions. However, this
method calls for expensive computation and memory costs,
especially when the model of object is complicated.

Another popular method of object tracking is neighborhood
search [5, 6, 7, 8]. Given an initial object or the tracking result
of last frame, a model is learned over the local region near the
object. During the process of tracking, maximum response of
corresponding features will be chosen as tracking result.
Intensity or texture information, and color features are state-of-
the-art features used. Though neighborhood search does not
perform as robust as exhaustive search, especially when heavy
occlusions and out-of-frame situation happens, it is superior
over computation and memory costs, which makes it
competitive over real-time visual tracking.

A neighborhood search method, CSK tracker, is shown to
provide high speed among top ten visual trackers. This paper
will use the idea of CSK tracker, and adopt color attributes to
improve the performance of it. An evaluation against multiple
criterions will be presented to show this paper has achieved a
good balance between speed and robustness.

II. RELATED WORKS

A. The CSK Tracker

The CSK tracker [9] learns a kernelized least squares
classifier of a target from a single image patch. CSK tracker
exploits the circulant structure that appears from the periodic
assumption of the local image patch.

A classifier is trained using an single image patch 𝑥 of size
𝑀 × 𝑁 whose centroid is the target. The tracker considers all

cyclic shifts 𝑥𝑚,𝑛 , 𝑚 ∈ {0,1, … , 𝑀 − 1}, 𝑛 ∈ {0,1, … , 𝑁 − 1} as

training examples, they are labelled with a two dimensional
hamming window 𝑦 , such that 𝑦(𝑚, 𝑛) is the label for 𝑥𝑚,𝑛 .

Thus the further the example is away from the centroid, the
lower value of the label it will be assigned. The classifier is
trained by minimizing the least squares problem over 𝑤.

𝜖 = ∑ |〈𝜙(𝑥𝑚,𝑛), 𝑤〉 − 𝑦(𝑚, 𝑛)|2

𝑚,𝑛

+ 𝜆〈𝑤, 𝑤〉 (1)

Here, 𝜙 is the mapping to the Hilbert space induced by the
kernel 𝜅, defining the inner-product 〈𝜙(𝑥), 𝜙(𝑦)〉 = 𝜅(𝑥, 𝑦). 𝜆
is the regularization parameter. Equation (1) is minimized by

𝑤 = ∑ 𝑎(𝑚, 𝑛)𝑚,𝑛 𝜙(𝑥𝑚,𝑛), where the coefficients 𝛼 are:

𝐴 = ℱ{𝛼} =
𝑌

𝑈𝑥 + 𝜆
 (2)

Here ℱ is the notation of Discrete Fourier Transform(DFT).

𝑌 = ℱ{𝑦} and 𝑈𝑥 = ℱ{𝑢𝑥} , where 𝑢𝑥(𝑚, 𝑛) = 𝜅(𝑥𝑚,𝑛, 𝑥) is

the output of the kernel function. Equation (2) holds if and only
if 𝜅 is shift invariant, thus Gaussian RBF kernel is chosen.

The detection step is performed by cropping out a patch 𝑧 of
size 𝑀 × 𝑁 in the new frame, the detection scores are calculated
as �̂� = ℱ−1{𝐴𝑈𝑧} , where 𝑈𝑧 = ℱ{𝑢𝑧} , and 𝑢𝑧(𝑚, 𝑛) =
𝜅(𝑧𝑚,𝑛, �̂�). Here �̂� denotes the patch of target appearance, which

will be updated frame by frame. The tracking result in the new
frame will be the maximum response in �̂�.

B. Color Attributes

Recently, color attributes obtained excellent results for
object recognition, object detection and action recognition.
Color attributes [10] are linguistic color labels assigned by
human to represent colors in the world. In a linguistic study by
Berlin and Kay [11], it was concluded that English language
contains eleven basic color terms: black, blue, brown, grey,
green, orange, pink, purple, red, white and yellow. In the field of
computer vision, color naming is an operation that associate
RGB values with linguistic color labels. According to [10], a
32 × 32 × 32 look-up table which maps RGB values to a
probabilistic color representation is learned via Google Image.
As seen in Fig. 1, each row of color names sums up to 1.

Fig. 1. Example of color names feature

Intuitively, RGB values with lower intensity have greater
possibility over dark colors and vice versa.

Apart from the gray scale information used in CSK tracker,
now we can combine color attributes as features to train the
model. However, the dimension of color attributes is 11, which
is computation expensive, thus we introduce PCA to compress
the dimension of features.

C. Principal Component Analysis

PCA was invented by Karl Pearson [12], it is a statistical
procedure the uses an orthogonal transformation to convert a set
of observations of possibly correlated variables into a set of
values linearly uncorrelated variables called principal
components. The number of principal components is less than or
equal to the number of original variables, thus can be used to
compress the dimension of features.

Given a 𝑁 × 𝑝 observation matrix 𝑋, each row 𝑥𝑖 denotes an
observation. First, we can extract the mean vector 𝑚 using:

𝑚 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 (3)

Then compute the covariance matrix 𝐶 using:

𝐶 =
1

𝑁 − 1
∑(𝑥𝑖 − 𝑚)𝑇(𝑥𝑖 − 𝑚)

𝑁

𝑖=1

 (4)

After that we can obtain the 𝑝 × 𝑝 eigenvector matrix of 𝐶
via eigenvalue decomposition. Each eigenvector represents a
principal component. By taking the first 𝐿 columns, we will get
a 𝑝 × 𝐿 matrix 𝑃, called projection matrix.

𝑌 = 𝑋𝑃 (5)

Using the above equation, we receive a compressed matrix
𝑌 which has 𝑁 rows but only 𝐿 columns. Such dimension
reduction steps can be very useful in visualizing and processing
high-dimensional datasets.

III. THE ALGORITHM

The flow chart of the algorithm will be shown in Fig. 2, and
the algorithm will be illustrated generally. Further details are
presented in the following parts.

Fig. 2. Flow chart of the algorithm

 Given the target’s coordinates of frame 𝑛 − 1, the goal is to
find the target’s coordinates of frame 𝑛. If 𝑛 = 1, we will
select the target manually or get the target’s information from
ground truth. Otherwise, we need to compute the coordinates
through Fast Detection, which has been introduced in Part II.A.

 After obtaining the target’s coordinates, we need to update
the model of the target. Specifically, updating the coefficients
𝛼 in Part II.A. First, cropping out a patch near the target’s
centroid (𝑥′, 𝑦′), take the pixels within it as examples. Second,
we compute the gray scale feature and color attributes as
introduced in Part II.B. The next step is to compress the
dimension of the features extracted using PCA, and record the
appearance as �̂�. After that, the coefficients 𝛼 can be updated
by combining the new appearance with the old observation.
The visual tracking algorithm operates by doing this frame by
frame. The procedure of compressing feature dimension and
updating coefficients 𝛼 will be introduced in detail.

A. Feature Dimension Compression

As introduced before, we will use PCA to compress feature
dimension. Take the examples in a patch as input, a projection
matrix needs to be computed. However, since the appearance of
the target in each frame is not independent, we developed a
strategy to update the projection matrix frame by frame, rather
than create a brand new projection matrix. The procedure is
summarized in Algorithm 1.

Algorithm 1 Projection Matrix Computation

Input:

 Frame number 𝑛; Object appearance �̂�𝑛

 Previous covariance matrix 𝑄𝑛−1; Parameter 𝜇

OutPut:

 Projection Matrix 𝑃𝑛; Covariance Matrix 𝑄𝑛

1: Calculate covariance 𝐶 using �̂�𝑛

2: Set 𝑅 = (1 − 𝜇)𝑄𝑛−1 + 𝜇𝐶

3: Do Eigenvalue decomposition 𝑅 = 𝐸𝑆𝐸𝑇

4: Take the first 2 column of 𝐸 as projection matrix 𝑃𝑛

5: Take the largest 2 singular values as diagonal components

 of Λ

6: Update covariance matrix 𝑄𝑛 = (1 − 𝜇)𝑄𝑛−1 + 𝑃𝑛Λ𝑃𝑛
𝑇

 With the use of Algorithm 1, we do not need to store all the
previous covariance matrices, but only the last covariance
matrix using a learning parameter 𝜇. Thus, the memory cost of
the algorithm is greatly decreased, but the consistence of target’s
appearance is preserved.

B. Coefficients 𝛼 update

To achieve visual tracking that is robust to appearance
changes, it is necessary that the target model is updated frame
by frame. As in Eq. (2), coefficients 𝛼 are represented via DFT,
and 𝛼 are the closed form solution to Eq. (1). By updating 𝛼, we
can update the solution to least squares problem in each frame,
thus it is equivalent to update the target model. The procedure is
summarized in Algorithm 2.

Algorithm 2 Coefficients 𝛼 update

Input:

 Frame number 𝑛; Object appearance �̂�𝑛; Parameter 𝛾

 DFT of previous 𝛼, denotes 𝐴𝑛−1 =
𝐴𝑛−1

𝑁

𝐴𝑛−1
𝐷

OutPut:

 DFT of 𝛼, called 𝐴𝑛 =
𝐴𝑛

𝑁

𝐴𝑛
𝐷

1: Calculate circulant kernel 𝜿 using �̂�𝑛

2: Build a 2-d hamming window 𝒚

3: Set
𝐴𝑛

𝑁

𝐴𝑛
𝐷 =

ℱ(𝒚)⨀ℱ(𝜿)

ℱ(𝜿)⨀(ℱ(𝜿)+𝜆)
, where ℱ denotes DFT and ⨀

 denotes point-wise production

4: Update 𝐴𝑛
𝑁 = (1 − 𝛾)𝐴𝑛−1

𝑁 + 𝛾𝐴𝑛
𝑁

5: Update 𝐴𝑛
𝐷 = (1 − 𝛾)𝐴𝑛−1

𝐷 + 𝛾𝐴𝑛
𝐷

6: Set ℱ(𝛼) = 𝐴𝑛 =
𝐴𝑛

𝑁

𝐴𝑛
𝐷

 With the use of Algorithm 2, we only need to store the

current model {𝐴𝑛
𝑁 , 𝐴𝑛

𝑫, �̂�𝑛}. This also contributes to the high
speed and low memory cost of the algorithm.

IV. EXPERIMENTS

The code is implemented in Python, numpy, pylab, and
matplotlib library is needed. A public dataset1 and a commercial
dataset are used, both including ground truth information.

Due to the time limitations, control experiments are not
designed. Thus, we will only discuss the superiority and
inferiority of this paper.

A. Tracking Results Format

Fig. 3. Example of tracking result

 As in Fig. 3, frame number is shown at the top of the

figure. Within the leftmost figure, the red box denotes the

tracking result, and the bot dot denotes the ground truth

information. The middle figure shows the template used to

extract grayscale feature and color attributes. The rightmost

figure is the local response of the algorithm, and the brightest

point denotes the target’s coordinates.

Fig. 4. Error by frame figure

1 dataset available at: https://sites.google.com/site/trackerbenchmark

 /benchmarks/v10

Fig. 4 shows the error by frame figure. The horizontal axis
denotes the frame number, and the vertical axis denotes the
Euclidean distance between the tracking result and the ground
truth. This figure is used to detect where this tracker lost its
target.

B. Tracking Results

 The following figure shows this tracker can track its target
with high performance. Due to the paper’s length limitation, not
all the examples in the dataset will be presented, but videos of
tracking results will be attached when submitting.

Fig. 5. Example of tracking results

 From Fig. 5, we can see that this tracker has excellent
performance, especially when the target does not has
significant variance. However, in the real world, the
environmental changes can affect the tracker greatly, thus we
will test the tracker on more challenging sequences.

C. Partial Occlusions

Occlusion is one of the most important factor that can

affect the performance of a tracker, especially for those using

neighborhood search. However, this paper updates the model

of the target frame by frame, which greatly offsets the effects

of occlusions.

Fig. 6. Example of partial occlusions

 For this example, there are heavy occlusions over the

target from frame 60 through frame 90, however, the target is

still well tracked. From the error by frame figure(not presented

due to length limitations), the greatest error is less than 40

pixels. However, similar to most trackers, this tracker is not

robust to full occlusions if lasts for a few frames, because it

only saves the appearance of last frame to achieve the goal of

real time.

D. Scale Variance

Scale variance, including size variance, shape variance and

angle variance, is another important factor that affects a tracker.

The following figure shows this tracker has little robustness

when occuring size changes if the target becomes bigger and

bigger. It is reasonable because we use neighborhood search,

and only take the local region into consideration. Thus when the

target becomes bigger, the new appearance is just a part of the

target.

Fig. 7. Example of scale variance

 In this example, the rider comes closer to the camera, thus

the size is variant. The shape is also variant because of the

sports of riding. From the error by frame figure(not presented

due to length limitations), we can see the tracker lost its target

around frame 150, where the target’s size increases greatly. I

tried to implement local exhaustive search, that is, generate

multiple bounding box around the target but not within the

whole image. However, it makes little differences when this

kind of scale variance happens. Unfortunately, I will leave this

problem for further research.

 The good news is that the tracker is robust to scale

variance if the target becomes smaller. Because during the

process of shrinking, the target’s appearance is always within

the bounding box.

E. Illumination Variance

Unfortunately, the datastes do not contains examples with

strong illumination changes. However, according to [9], the

CSK tracker is brightness invariant. Since this paper is based

on the idea of CSK tracker, it is highly prossible that this

strength is inherited.

CONCLUSIONS

A real-time visual tracker is developed based on the CSK
tracker. A 50+ fps speed is achieved using QVGA images. The
tracker proves its robustness over a public dataset and a
commercial dataset, and performs well against partial occlusion

and illumination variance. Though, it has many works to do to
improve its invariance against scale changes.

I used DFT (Part II.A), hamming window (Part II.A) and
circulant convolution (Part II.A) as in-class tools. I used PCA
(Part II.C), kernel skills (Part II.A) as out-class tools.

The coolest thing about this project is I learned a new
programming language – Python. This language show its
strength over data preprocessing and programming easiness.
However, it is difficult to debug.

The most painful thing is dealing with the scale invariance
of the algorithm. The problem is common to most visual tracker,
after reading tons of paper, I realized a compromise between
robustness and performance should be made.

REFERENCES

[1] Fulkerson, Brian, Andrea Vedaldi, and Stefano Soatto. "Class
segmentation and object localization with superpixel neighborhoods."
Computer Vision, 2009 IEEE 12th International Conference on. IEEE,
2009.

[2] Vijayanarasimhan, Sudheendra, and Kristen Grauman. "Efficient region
search for object detection." Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on. IEEE, 2011.

[3] Wang, Shu, et al. "Superpixel tracking." Computer Vision (ICCV), 2011
IEEE International Conference on. IEEE, 2011.

[4] Kalal, Zdenek, Krystian Mikolajczyk, and Jiri Matas. "Tracking-learning-
detection." Pattern Analysis and Machine Intelligence, IEEE
Transactions on 34.7 (2012): 1409-1422.

[5] Toshev, Alexander, Ben Taskar, and Kostas Daniilidis. "Object detection
via boundary structure segmentation." Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010.

[6] Jiang, Hao, and S. X. Yu. "Linear solution to scale and rotation invariant
object matching." Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on. IEEE, 2009.

[7] Hinterstoisser, Stefan, et al. "Gradient response maps for real-time
detection of textureless objects." Pattern Analysis and Machine
Intelligence, IEEE Transactions on 34.5 (2012): 876-888.

[8] Van de Sande, Koen EA, et al. "Segmentation as selective search for
object recognition." Computer Vision (ICCV), 2011 IEEE International
Conference on. IEEE, 2011.

[9] Henriques, João F., et al. "Exploiting the circulant structure of tracking-
by-detection with kernels." Computer Vision–ECCV 2012. Springer
Berlin Heidelberg, 2012. 702-715.

[10] Van De Weijer, Joost, et al. "Learning color names for real-world
applications."Image Processing, IEEE Transactions on 18.7 (2009): 1512-
1523.

[11] Berlin, Brent. Basic color terms: Their universality and evolution. Univ
of California Press, 1991.

[12] Pearson, Karl. "LIII. On lines and planes of closest fit to systems of points
in space." The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science 2.11 (1901): 559-572.

