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Abstract—Visual tracking is one of the most challenging problems 

in computer vision. Generally speaking, there are mainly two state-of-

the-art methods of visual tracking: exhaustive search and 

neighborhood search. The former one generates candidate bounding 

boxes of different size and realizes tracking via object detection. The 

latter one tracks the object through finding the maximum response near 

the region of last tracked result. This paper uses the method of 

neighborhood search to achieve the goal of real-time tracking. By 

adopting the color attributes, this paper has shown its superior 

performance over multiple datasets. 
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I.  INTRODUCTION 

Visual object tracking, where the objective is to estimate the 
locations of a target in an image sequence, is one of the most 
challenging problems in computer vision. It has important 
applications in multiple fields, especially in human-computer 
interaction, surveillance, and robotics. Similar to many other 
problems in computer vision, visual tracking can be affected by 
factors such as illumination variance, scale variance, occlusions 
and background clutter. 

Most state-of-the-art trackers rely on exhaustive search [1, 2, 
3, 4]. Given an initial object to be tracked, either selected 
manually or acknowledged from ground truth, a model of the 
object is learned. During the process of tracking, multiple 
bounding boxes of different size, angle and shape are generated, 
and then compared with the model in first step. The box with the 
highest similarity thus be chosen as the tracking result. 
Exhaustive search has shown its robustness over multiple 
criterions such as scale variance and occlusions. However, this 
method calls for expensive computation and memory costs, 
especially when the model of object is complicated. 

Another popular method of object tracking is neighborhood 
search [5, 6, 7, 8]. Given an initial object or the tracking result 
of last frame, a model is learned over the local region near the 
object. During the process of tracking, maximum response of 
corresponding features will be chosen as tracking result. 
Intensity or texture information, and color features are state-of-
the-art features used. Though neighborhood search does not 
perform as robust as exhaustive search, especially when heavy 
occlusions and out-of-frame situation happens, it is superior 
over computation and memory costs, which makes it 
competitive over real-time visual tracking.  

A neighborhood search method, CSK tracker, is shown to 
provide high speed among top ten visual trackers. This paper 
will use the idea of CSK tracker, and adopt color attributes to 
improve the performance of it. An evaluation against multiple 
criterions will be presented to show this paper has achieved a 
good balance between speed and robustness. 

 

II. RELATED WORKS 

A. The CSK Tracker 

The CSK tracker [9] learns a kernelized least squares 
classifier of a target from a single image patch. CSK tracker 
exploits the circulant structure that appears from the periodic 
assumption of the local image patch.  

A classifier is trained using an single image patch 𝑥 of size 
𝑀 × 𝑁 whose centroid is the target. The tracker considers all 

cyclic shifts 𝑥𝑚,𝑛 , 𝑚 ∈ {0,1, … , 𝑀 − 1}, 𝑛 ∈ {0,1, … , 𝑁 − 1} as 

training examples, they are labelled with a two dimensional 
hamming window 𝑦 , such that 𝑦(𝑚, 𝑛)  is the label for 𝑥𝑚,𝑛 . 

Thus the further the example is away from the centroid, the 
lower value of the label it will be assigned. The classifier is 
trained by minimizing the least squares problem over 𝑤. 

𝜖 = ∑ |〈𝜙(𝑥𝑚,𝑛), 𝑤〉 − 𝑦(𝑚, 𝑛)|2

𝑚,𝑛

+ 𝜆〈𝑤, 𝑤〉          (1) 

Here, 𝜙 is the mapping to the Hilbert space induced by the 
kernel 𝜅, defining the inner-product 〈𝜙(𝑥), 𝜙(𝑦)〉 = 𝜅(𝑥, 𝑦). 𝜆 
is the regularization parameter. Equation (1) is minimized by 

𝑤 = ∑ 𝑎(𝑚, 𝑛)𝑚,𝑛 𝜙(𝑥𝑚,𝑛), where the coefficients 𝛼 are: 

𝐴 = ℱ{𝛼} =
𝑌

𝑈𝑥 + 𝜆
                              (2) 

Here ℱ is the notation of Discrete Fourier Transform(DFT). 

𝑌 = ℱ{𝑦}  and 𝑈𝑥 = ℱ{𝑢𝑥} , where 𝑢𝑥(𝑚, 𝑛) = 𝜅(𝑥𝑚,𝑛, 𝑥)  is 

the output of the kernel function. Equation (2) holds if and only 
if 𝜅 is shift invariant, thus Gaussian RBF kernel is chosen. 

The detection step is performed by cropping out a patch 𝑧 of 
size 𝑀 × 𝑁 in the new frame, the detection scores are calculated 
as �̂� = ℱ−1{𝐴𝑈𝑧} , where 𝑈𝑧 = ℱ{𝑢𝑧} , and 𝑢𝑧(𝑚, 𝑛) =
𝜅(𝑧𝑚,𝑛, �̂�). Here �̂� denotes the patch of target appearance, which 

will be updated frame by frame. The tracking result in the new 
frame will be the maximum response in �̂�. 



B. Color Attributes 

Recently, color attributes obtained excellent results for 
object recognition, object detection and action recognition. 
Color attributes [10] are linguistic color labels assigned by 
human to represent colors in the world. In a linguistic study by 
Berlin and Kay [11], it was concluded that English language 
contains eleven basic color terms: black, blue, brown, grey, 
green, orange, pink, purple, red, white and yellow. In the field of 
computer vision, color naming is an operation that associate 
RGB values with linguistic color labels. According to [10], a 
32 × 32 × 32  look-up table which maps RGB values to a 
probabilistic color representation is learned via Google Image. 
As seen in Fig. 1, each row of color names sums up to 1. 

 

 

Fig. 1. Example of color names feature 

 

Intuitively, RGB values with lower intensity have greater 
possibility over dark colors and vice versa.  

Apart from the gray scale information used in CSK tracker, 
now we can combine color attributes as features to train the 
model. However, the dimension of color attributes is 11, which 
is computation expensive, thus we introduce PCA to compress 
the dimension of features. 

C. Principal Component Analysis 

PCA was invented by Karl Pearson [12], it is a statistical 
procedure the uses an orthogonal transformation to convert a set 
of observations of possibly correlated variables into a set of 
values linearly uncorrelated variables called principal 
components. The number of principal components is less than or 
equal to the number of original variables, thus can be used to 
compress the dimension of features.  

Given a 𝑁 × 𝑝 observation matrix 𝑋, each row 𝑥𝑖 denotes an 
observation. First, we can extract the mean vector 𝑚 using: 

𝑚 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

                                     (3) 

Then compute the covariance matrix 𝐶 using: 

𝐶 =
1

𝑁 − 1
∑(𝑥𝑖 − 𝑚)𝑇(𝑥𝑖 − 𝑚)

𝑁

𝑖=1

                (4) 

After that we can obtain the 𝑝 × 𝑝 eigenvector matrix of 𝐶 
via eigenvalue decomposition. Each eigenvector represents a 
principal component. By taking the first 𝐿 columns, we will get 
a 𝑝 × 𝐿 matrix 𝑃, called projection matrix. 

𝑌 = 𝑋𝑃                                             (5) 

Using the above equation, we receive a compressed matrix 
𝑌  which has 𝑁  rows but only 𝐿  columns. Such dimension 
reduction steps can be very useful in visualizing and processing 
high-dimensional datasets. 

 

III. THE ALGORITHM 

The flow chart of the algorithm will be shown in Fig. 2, and 
the algorithm will be illustrated generally. Further details are 
presented in the following parts. 

 

 

Fig. 2. Flow chart of the algorithm 

 

 Given the target’s coordinates of frame 𝑛 − 1, the goal is to 
find the target’s coordinates of frame 𝑛. If 𝑛 = 1, we will 
select the target manually or get the target’s information from 
ground truth. Otherwise, we need to compute the coordinates 
through Fast Detection, which has been introduced in Part II.A. 

 After obtaining the target’s coordinates, we need to update 
the model of the target. Specifically, updating the coefficients 
𝛼 in Part II.A. First, cropping out a patch near the target’s 
centroid (𝑥′, 𝑦′), take the pixels within it as examples. Second, 
we compute the gray scale feature and color attributes as 
introduced in Part II.B. The next step is to compress the 
dimension of the features extracted using PCA, and record the 
appearance as �̂�. After that, the coefficients 𝛼 can be updated 
by combining the new appearance with the old observation. 
The visual tracking algorithm operates by doing this frame by 
frame. The procedure of compressing feature dimension and 
updating coefficients 𝛼 will be introduced in detail. 

 

A. Feature Dimension Compression 

As introduced before, we will use PCA to compress feature 
dimension. Take the examples in a patch as input, a projection 
matrix needs to be computed. However, since the appearance of 
the target in each frame is not independent, we developed a 
strategy to update the projection matrix frame by frame, rather 
than create a brand new projection matrix. The procedure is 
summarized in Algorithm 1. 

 

Algorithm 1 Projection Matrix Computation 

Input: 

           Frame number 𝑛; Object appearance �̂�𝑛 

           Previous covariance matrix 𝑄𝑛−1; Parameter 𝜇 



OutPut:      

           Projection Matrix 𝑃𝑛; Covariance Matrix 𝑄𝑛 

 

1:  Calculate covariance 𝐶 using �̂�𝑛 

2:  Set 𝑅 = (1 − 𝜇)𝑄𝑛−1 + 𝜇𝐶 

3:  Do Eigenvalue decomposition 𝑅 = 𝐸𝑆𝐸𝑇 

4:  Take the first 2 column of 𝐸 as projection matrix 𝑃𝑛 

5:  Take the largest 2 singular values as diagonal components    

     of Λ 

6:  Update covariance matrix 𝑄𝑛 = (1 − 𝜇)𝑄𝑛−1 + 𝑃𝑛Λ𝑃𝑛
𝑇  

 

 With the use of Algorithm 1, we do not need to store all the 
previous covariance matrices, but only the last covariance 
matrix using a learning parameter 𝜇. Thus, the memory cost of 
the algorithm is greatly decreased, but the consistence of target’s 
appearance is preserved. 

B. Coefficients 𝛼 update 

To achieve visual tracking that is robust to appearance 
changes, it is necessary that the target model is updated frame 
by frame. As in Eq. (2), coefficients 𝛼 are represented via DFT, 
and 𝛼 are the closed form solution to Eq. (1). By updating 𝛼, we 
can update the solution to least squares problem in each frame, 
thus it is equivalent to update the target model. The procedure is 
summarized in Algorithm 2. 

 

Algorithm 2 Coefficients 𝛼 update 

Input: 

           Frame number 𝑛; Object appearance �̂�𝑛; Parameter 𝛾 

           DFT of previous 𝛼, denotes 𝐴𝑛−1 =
𝐴𝑛−1

𝑁

𝐴𝑛−1
𝐷  

OutPut:      

           DFT of 𝛼, called 𝐴𝑛 =
𝐴𝑛

𝑁

𝐴𝑛
𝐷 

 

1:  Calculate circulant kernel 𝜿 using �̂�𝑛 

2:  Build a 2-d hamming window 𝒚 

3:  Set 
𝐴𝑛

𝑁

𝐴𝑛
𝐷 =

ℱ(𝒚)⨀ℱ(𝜿)

ℱ(𝜿)⨀(ℱ(𝜿)+𝜆)
, where ℱ denotes DFT and ⨀  

     denotes point-wise production 

4:  Update 𝐴𝑛
𝑁 = (1 − 𝛾)𝐴𝑛−1

𝑁 + 𝛾𝐴𝑛
𝑁 

5:  Update 𝐴𝑛
𝐷 = (1 − 𝛾)𝐴𝑛−1

𝐷 + 𝛾𝐴𝑛
𝐷 

6:  Set ℱ(𝛼) = 𝐴𝑛 =
𝐴𝑛

𝑁

𝐴𝑛
𝐷 

 With the use of Algorithm 2, we only need to store the 

current model {𝐴𝑛
𝑁 , 𝐴𝑛

𝑫, �̂�𝑛}. This also contributes to the high 
speed and low memory cost of the algorithm. 

 

IV. EXPERIMENTS 

The code is implemented in Python, numpy, pylab, and 
matplotlib library is needed. A public dataset1 and a commercial 
dataset are used, both including ground truth information. 

Due to the time limitations, control experiments are not 
designed. Thus, we will only discuss the superiority and 
inferiority of this paper. 

A. Tracking Results Format 

 

 
Fig. 3. Example of tracking result 

 

      As in Fig. 3, frame number is shown at the top of the 

figure. Within the leftmost figure, the red box denotes the 

tracking result, and the bot dot denotes the ground truth 

information. The middle figure shows the template used to 

extract grayscale feature and color attributes. The rightmost 

figure is the local response of the algorithm, and the brightest 

point denotes the target’s coordinates. 

 

 
Fig. 4. Error by frame figure 

 

 

1 dataset available at: https://sites.google.com/site/trackerbenchmark 

  /benchmarks/v10  



Fig. 4 shows the error by frame figure. The horizontal axis 
denotes the frame number, and the vertical axis denotes the 
Euclidean distance between the tracking result and the ground 
truth. This figure is used to detect where this tracker lost its 
target. 

B. Tracking Results 

 The following figure shows this tracker can track its target 
with high performance. Due to the paper’s length limitation, not 
all the examples in the dataset will be presented, but videos of 
tracking results will be attached when submitting. 

 

 

Fig. 5. Example of tracking results 

 

 From Fig. 5, we can see that this tracker has excellent 
performance, especially when the target does not has 
significant variance. However, in the real world, the 
environmental changes can affect the tracker greatly, thus we 
will test the tracker on more challenging sequences. 

C. Partial Occlusions 

Occlusion is one of the most important factor that can 

affect the performance of a tracker, especially for those using 

neighborhood search. However, this paper updates the model 

of the target frame by frame, which greatly offsets the effects 

of occlusions. 

 

 
Fig. 6. Example of partial occlusions 

 

      For this example, there are heavy occlusions over the 

target from frame 60 through frame 90, however, the target is 

still well tracked. From the error by frame figure(not presented 

due to length limitations), the greatest error is less than 40 

pixels. However, similar to most trackers, this tracker is not 

robust to full occlusions if lasts for a few frames, because it 

only saves the appearance of last frame to achieve the goal of 

real time. 

D. Scale Variance 

Scale variance, including size variance, shape variance and 

angle variance, is another important factor that affects a tracker. 

The following figure shows this tracker has little robustness 

when occuring size changes if the target becomes bigger and 

bigger. It is reasonable because we use neighborhood search, 

and only take the local region into consideration. Thus when the 

target becomes bigger, the new appearance is just a part of the 

target. 

 

 

 
Fig. 7. Example of scale variance 

 

      In this example, the rider comes closer to the camera, thus 

the size is variant. The shape is also variant because of the 

sports of riding. From the error by frame figure(not presented 

due to length limitations), we can see the tracker lost its target 

around frame 150, where the target’s size increases greatly. I 

tried to implement local exhaustive search, that is, generate 

multiple bounding box around the target but not within the 

whole image. However, it makes little differences when this 

kind of scale variance happens. Unfortunately, I will leave this 

problem for further research. 

      The good news is that the tracker is robust to scale 

variance if the target becomes smaller. Because during the 

process of shrinking, the target’s appearance is always within 

the bounding box. 

 

E. Illumination Variance 

Unfortunately, the datastes do not contains examples with 

strong illumination changes. However, according to [9], the 

CSK tracker is brightness invariant. Since this paper is based 

on the idea of CSK tracker, it is highly prossible that this 

strength is inherited.  

  

CONCLUSIONS 

A real-time visual tracker is developed based on the CSK 
tracker. A 50+ fps speed is achieved using QVGA images. The 
tracker proves its robustness over a public dataset and a 
commercial dataset, and performs well against partial occlusion 



and illumination variance. Though, it has many works to do to 
improve its invariance against scale changes. 

I used DFT (Part II.A), hamming window (Part II.A) and 
circulant convolution (Part II.A) as in-class tools. I used PCA 
(Part II.C), kernel skills (Part II.A) as out-class tools. 

The coolest thing about this project is I learned a new 
programming language – Python. This language show its 
strength over data preprocessing and programming easiness. 
However, it is difficult to debug. 

The most painful thing is dealing with the scale invariance 
of the algorithm. The problem is common to most visual tracker, 
after reading tons of paper, I realized a compromise between 
robustness and performance should be made.  
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