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Abstract—Many questions in Neuroscience are dependent on 

analyzing neuronal spike activity recorded during certain 

behavior tasks. In other words, neural spike activity is the 

electrical activity that occurs in brain cells when active. For this 

reason data acquired from numerous neurons are essential in 

elucidating the underlying principle of neural information 

processing. Recently, commercially available electrode arrays 

have been developed to detect multiunit neural activity within the 

brain. However, development of efficient and reliable 

computational methods on classifying multiunit data lags behind 

the capabilities of current hardware. In practice, supervised 

spike sorting is tedious and time-consuming. Here, I compare 

and contrast two common spike sorting algorithms, list their 

positive and negative characteristics, and evaluate how well each 

method can reconstruct a spike waveform with a minimal 

amount of coefficients.  

I. FIGURES 

 

 

Figure 1: Top: A 10 second snippet of channel 1’s original 

neural activity of an awake rat recorded for 10 minutes with a 

16 channel carbon fiber microelectrode array in the rat’s 

motor cortex. Bottom: 10 second snippet of channel 1’s neural 

waveform after being passed through a 12th order Butterworth 

band-pass filter with cutoff frequencies at 300Hz and 5000Hz.   

 

Figure 2: Individual 1 millisecond waveforms plotted after a 

detection spike algorithm was implemented.   

 

Figure 3: A 1 millisecond individual waveform taken from 

the detected spikes plot in Fig. 2. This waveform shows the 

characteristics of a single neural spike unit with a peak 

amplitude of -150 µV. 



 
Figure 4: Raw neural activity recorded from the motor cortex 

of a rhesus macaque monkey during a grasping task.  

 
Figure 5: Raw neural data was filtered through a 12th order 

Butterworth band-pass filter with cut off frequencies at 300Hz 

and 5000Hz.  

 

 
Figure 6: The spike detection algorithm captured multiple 

waveforms believed to be single unit spikes. Above is plotted 

“spike” waveforms overlapped on one another.  

 
Figure 7: The detected spike data was then processed through 

principle component analysis for feature extraction. First four 

principle components were selected to reconstruct the original 

spike waveform.  

 
Figure 8: Detected spike data was also processed through 

wavelet transformation. The first 10 coefficients, determined 

from Lilliefors test, were used to reconstruct the original spike 

waveform (red). Then the first 19 coefficients were taken 

using the same test (green). Original signal is shown in blue. 



 
Figure 9: Single unit spike waveform taken from the detected 

spikes data set.  

 
Figure 10: First 4 coefficient clusters plotted after applying 

principle component analysis. Blue designates the first 

principle component, green the second principle component, 

red the third principle component, and teal the 4th principle 

component.  

 
Figure 11: First 10 coefficient clusters plotted after applying 

wavelet transformation. The coefficients were chosen through 

applying Lilliefors test.   

 
Figure 12: Characteristics of an action potential’s rise and fall 

during an event.  

 

A. Introduction 

      Many questions in neuroscience requires analyzing neural 

spike activity within the brain. A spike represents an action 

potential, which by definition is an event where the electrical 

membrane potential of a brain cell rapidly rises and falls. As 

seen in Figure 12, the rise is denoted as the depolarization of 

the membrane potential. Contrarily, the fall denotes the 

repolarization of the membrane potential until it reaches its 

resting state. Action potentials typically last for 1 millisecond. 

Multiple action potentials can be fired at once from a single 

brain cell. These firing patterns can be studied to understand 

brain functionality or be used in brain machine interfaces to 

control external prosthetics. However, in reality recording 

neural activity does not result in obtaining a perfect waveform 

as seen in Figure 12. Neural activity is jumbled with many 

artifacts and noise that makes extracting these spike 

waveforms difficult. Thus, signal processing methods are 

needed to obtain these spiked waveforms. A common protocol 

has been developed to produce various methods. The spike 

sorting protocol undergoes four stages: filtering, spike 

detection, feature extraction, and clustering. Here I perform 

three of the four procedures, evaluating two different methods 

for feature extraction. I list the pros and cons of each method 

and evaluate their ability to reconstruct a spike waveform 

using the minimal amount of coefficients from each method.  

B. Method Description 

The spike sorting methods were used on two different 
neural sets. The first neural set was recorded for 10 minutes 
from awake rats within the motor area of the rat’s brain. The 
second neural data set was recorded for 10 minutes from rhesus 
macaque monkeys during a hand grasping task. A 96 channel 
Blackrock Utah array was implanted into the motor area (M1) 
of their brain. After loading the data into Matlab, I then used 
the signal processing toolbox incorporated within Matlab to 
further filter the data with a 12th order Butterworth band pass 



filter with cutoff frequencies at 300 and 5000 Hz. The 12th 
order band pass filter was chosen to have a -240 dB per decade 
roll off. This range is typical in cleaning up most of the noise 
seen in neural activity data. Based on hardware specifications 
of the Tucker Davis Technologies recording system, I sampled 
the signal at 24 kHz. The recording system consists of ZC16 
head stage, RA16PA pre-amplifier, and RX6 Pentusa base 
station. The pre-amplifier has a high pass filtered at 2.2Hz, 
anti-aliased filtered at 7.5 kHz. After filtering the data, I 
manually snipped out any sections that blatantly looked like 
artifacts. From there I created a spike detection algorithm. The 
spike detection captured waveforms above a certain threshold 
as seen in Fig. 2. The threshold was calculated using the root 
mean square of the signal. Overall, the algorithm captures the 
indices whose data points are above threshold. Then, the 
maximum peak value of each waveform is determined. That 
maximum value acts as the pivot point to capture samples 
before and after the peak value. 1 millisecond of samples was 
captured for each peak found. Principle component analysis 
and wavelet transformation methods were utilized on the 
captured spiked waveform dataset. For principle component 
analysis, the first four principle components were used to 
reconstruct the original spikes waveform. Contrarily, for 
wavelet transformation the coefficients were selected through a 
Lilliefors test, which compares the cumulative distribution 
function of the signal with that of a Gaussian distribution with 
the same mean and variance. The deviation from normality was 
then quantified (Quian Quiroga et al., 2004). These selected 
coefficients were used to reconstruct the original spike 
waveform. The root squared mean error was then calculated to 
evaluate the performance of reconstruction with the minimal 
amount of coefficients.   

C. DSP Tools 

I’ve implemented two main in-class DSP tools, an IIR band 
pass filter and sampling techniques. The band pass filter had 
cutoff frequencies at 300 and 5000 Hz. In addition, I 
implemented two out-of-class DSP tools.  First, I used 
principle component analysis (PCA), which is defined as an 
orthogonal linear transformation. The method measures the 
greatest variance by some projection of the data onto an 
arbitrary line. From there, the first coordinate with the greatest 
variance is defined as the first principle component and the 
second greatest is the second principle component. 
Mathematically the transformation has a row vector x(i) of X 
that projects onto a set of m-dimensional vectors v(k) = 
(v1,v2…,vm)(k) to form a new vector of principle component 
scores t(i) = (t1,t2,...,tp)(i). In other words, the data points are 
transformed to a new basis. PCA has a unique property of 
dimension reduction, which reduces the representation of the 
signal to a few vector components. Typically, the first two or 
three principle components contain more than 80% of the 
energy of the signal (Glaser and marks, 1968; Abeles, 1977). 
To date, this method is the most commonly used feature 
extraction technique for spike sorting. The second method, 
wavelet transformation, is a time-frequency representation of 
the signal. This transformation provides optimal resolution in 
both time and frequency domains and eliminates the 
requirements for signal stationarity (Quian Quiroga et al., 

2004). Mathematically, it is defined as the convolution 
between the signal and the wavelet functions.  

Wψ X(a, b) = ⟨x(t) | ψa,b(t)⟩ 

where ψa,b(t) are dilated or contracted, and shifted version of 
a unique wavelet function ψ(t),  

ψa,b(t) = |a|^-1/2 ψ((t-b)/a)  

where a and b are scale and translation parameters, respectively 
(Quiroga et al. 2014).  

 In spike sorting, determining what features best separate 
different shapes of spike waveforms is critical. Most recently, 
Quiroga et al. 2014 has demonstrated with simulated neural 
data that wavelet transformation performs better than PCA. 
Here I am interested in determining the minimum amount of 
coefficients needed to fully reconstruct a spike waveform. 
Using Matlab’s wavelet toolbox I ran the wavelet coefficients 
selection 1-D reconstruction GUI. The GUI allowed me to 
manually select the coefficients that was selected through 
Lilliefors test. The way the wavelet decomposition algorithm 
works is a signal is filtered through a low-pass and high pass 
filter to split the signal into its high scale, low-frequency 
component and its low-scale, high frequency component. The 
two signals are then down sampled to maintain the original 
signals length. This down sampling still retains the important 
information to reverse the process and reconstruct the signal. 
Filter design is important in canceling out the effects of 
aliasing and determines whether perfect reconstruction is 
possible. Thus, the low- and high-pass decomposition filters 
are often closely related to their associated low- and high-pass 
reconstruction filters. With this algorithm, wavelet 
decomposition can occur at multiple levels. The Haar wavelet 
is the simplest wavelet and is used in the wavelet 
transformation of the neural data. Its mathematical 
representation is 

 

 

where ψ(t) is the wavelet function and Φ(t) is the scaling 
function. I chose this wavelet due to its orthogonal property to 
analyze local features of the input signals.   

D. Results 

      After obtaining the detected spikes data, I took one 

captured spiked waveform as seen in Figure 9 and ran both 

PCA and wavelet transformation on the signal. For PCA the 

first four principle component scores were used. Figure 7 

shows the original waveform and the reconstructed waveform. 

The root means squared error was calculated with a result of 

39.45. Its normalized root mean squared is 2.71%. Figure 8 

shows the reconstructed signals using the wavelet coefficients. 

The top 10 and the top 19 coefficients were chosen to 

reconstruct the waveform.  Their root mean squared error were 



calculated to be 124.96 and 42.40 respectively. Their 

normalized root-mean-square are 8.6% and 2.92%. This 

demonstrates that principle component analysis stores most of 

the signal’s information within a few components. Whereas, 

wavelet transformation spreads the signal’s information in its 

coefficients to reconstruct the signal. Thus, more coefficients 

are needed to reconstruct the spike waveform as well as PCA. 

In addition, Figure 10 and Figure 11 shows the plotted 

coefficients for PCA and wavelet transformation respectively. 

In Figure 11 the top 10 coefficients of the wavelet 

transformation are plotted. The plot demonstrates that wavelet 

coefficients have distinct separation from one another, which 

benefits in classifying certain features of the signal, whereas 

Figure 10 shows that PCA coefficients overlap one another 

which may not be beneficial in feature extraction and wave 

separation. 

 

E. Discussion 

    In spike sorting, feature extraction is an important step in 

identifying and separating spike waveforms that originate 

from different brain cells. It has been proposed that wavelets 

provide a good method for feature extraction due to its optimal 

resolution in time and frequency domains (Letelier and 

Weber, 2000; Hulata et al., 2002). The advantage of this is 

that wavelets discern localized shape differences since wavelet 

coefficients are localized in time. Contrarily, PCA retains 

most of the signal’s information within the first three principle 

components. Overall, this is not optimal for cluster 

identification as seen in Figure 10. Thus, wavelet 

transformation may be a better candidate in feature extraction 

and waveform separation when implementing spike sorting 

methods.  
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