
Connect-451: A Real Time Connect 4 Board
Processor

Amos Cao
EECS 451

University of Michigan
Ann Arbor, Michigan 48105
Email: amoscao@umich.edu

I. INTRODUCTION

This project outlines a method to capture the state of a
“Connect-4” board game in realtime using a webcam and
basic image segmentation methods. “Connect-4” is two player
perfect information game, which was strongly solved in 1988
[1]. In this implementation, a human player will always play
first as red. The program will then acquired board state using a
webcam, and then calculate a ”good” response for the yellow
player. This is repeated until one player achieves victory by
having four pieces in a row, either horizontally, vertically, or
diagonally.

II. IMAGE ACQUISITION

Images are acquired using a Logitech c270 webcam, which
uses a USB interface to connect to a computer. MATLAB is
then used to pull single frames from the webcam on demand.
The image is then downsampled to 640x480, a resolution
that is selected at the image acquisition step. This is the first
of our in-class DSP tools. Because this program only needs
to detect large featureless disks, downsampling decreases pro-
cessing times while minimally affecting accuracy. Image pre-
processing and segmentation steps are then performed on the
acquired frame, in order to make a game decision. Figure 1
shows an example of a raw acquired frame.

Fig. 1. 640x480 RGB Image Acquired Using MATLAB

The image in Figure 1 was acquired with the board
intentionally tilted to the right. Because of this perspective,
the rectangular shape of the board is warped, resulting in non-
uniform piece holes.

Fig. 2. Transformed RGB Board Image

III. IMAGE PREPROCESSING

A. Corner Tracking

Undoing the effects of perspective will make segmentation
easier by ensuring more uniform board piece size. This can
be accomplished through an image transform, applied with an
implementation by Michael Chan found on Matlab Central [2].
As we are only interested in the board surface, setting the input
transformation coordinates to the corners of the board will also
crop the image to the board, as well as transform it. In order to
detect the corners of the board, green markers made of paper
were taped to the board corners (Fig. 1).

An algorithm selects the four largest green areas from
the image, removing noise using a 3x3 median filter, the
second of our in-class DSP tools. Centroids of each of
those objects are then calculated using regionprops, part of
the MATLAB Image Processing Toolbox. These centroids
correspond with the corners of the board, and are then used as
the input to the Chan Perspective Control function to projective
transform the image into a rectangle. Figure 2 shows the image
transformed board. As long as the camera’s field of view is
kept unobstructed, the board can be rapidly and accurately
transformed, even when the camera is in motion or at an angle.

To test the range angles this system was functional at, the
camera was horizontally and vertically rotated around board
until the transform system stopped working. In the horizontal
case, the image (Fig. 3) was able to be transformed up to an
angle of ±45◦ (Fig. 4). The vertical transformation performed
better (Fig. 5), with the transforms still occuring up to +65◦

(Fig. 6).



Fig. 3. Horizontal 45◦ Rotation

Fig. 4. Horizontal 45◦ Transformation

Fig. 5. Vertical 65◦ Rotation

Fig. 6. Vertical 65◦ Transformation

Fig. 7. Hue Channel after HSV Conversion

Fig. 8. Saturation Channel after HSV Conversion

B. Corner Tracking Issues

The Logitech camera used employs some sort of auto-
brightness correction, which occurs before the image acqui-
sition step in MATLAB. Because of this, hues can become
distorted under different lighting conditions. The thresholds
for detecting the green corners are set to a very narrow range,
in order to exclude pixels which do not belong to the markers.
This often results in the markers not being detected at all
under certain lighting conditions. To improve on this method,
a pattern based tracking method could be employed, similar
to the corners of a QR code which have alternating white and
black concentric squares.

C. HSV Transformation

Next, the RGB color model of the acquired image is non-
ideal for detecting and segmenting colored pieces. The image
is transformed into the hue-saturation-value (HSV) coor-
dinate system, making segmentation based on color much
simpler by minimizing the effects of lighting. This step uses
a DSP tool not mentioned in class. This was implemented
using the MATLAB command rgb2hsv. The hue (Fig. 7) and
saturation (Fig. 8) channels show clear differences in the piece
locations and are good candidates for segmentation, while the
value channel (Fig. 9) is ignored.

IV. IMAGE SEGMENTATION

Segmentation intends to decide whether each pixel in the
image belongs to:

1) A red game piece
2) A yellow game piece



Fig. 9. Value Channel after HSV Conversion

3) The blue board

The MATLAB rgb2hsv command creates a hue channel
with values ranging from 0 to 1. By looking at this channel,
ranges for each color were determined manually: 0 < x < 0.07
for red, 0.14 < x < 0.18 for yellow, and 0.59 < x < 0.65 for
blue.

While this method fully captured the pieces, some noise
is introduced in the empty board spaces. Looking at the
saturation channel however (Fig. 8), the empty board positions
are close to black as they contain no bright color. A basic
intensity threshold applied to the saturation map results in a
mask that contains target areas (bright colored pieces) while
neglecting empty spaces. The threshold value for this mask
was experimentally set at 0.3 (Fig. 10).

Fig. 10. Saturation Mask: Thresholded at 0.3

An AND operation is used to combine the previous color
masks with the saturation mask, which then undergoes a hole-
filling operation as the pieces are known to be solid. While this
captures the general shape of the pieces, some of the edges are
noisy due to the conservative thresholds used (Fig. 11). A 10-
pixel wide pillbox kernel is convolved with the image to
smooth out the piece edges. This represents an additional
out of class DSP tool. This results in much cleaner piece
segmentation (Fig. 12) for the red, yellow, and blue areas as
shown in Figures 13, 14, and 15, respectively.

Each mask is then divided into 6x7 cells, with each cell
corresponding to each board piece space. Each cell is then
quantified for what percentage of its area is white; a threshold
of 10% was experimentally set to determine if a cell contains
a piece. The board state can then be quantified as a 6x7 array
(Figure 16), with each coordinate representing if a board cell

Fig. 11. Pre Pillbox Filtered Red Piece Mask (Zoomed)

Fig. 12. Post Pillbox Filtered Red Piece Mask (Zoomed)

Fig. 13. Hue+Saturation Based Red Piece Mask

Fig. 14. Hue+Saturation Based Yellow Piece Mask



Fig. 15. Hue+Saturation Based Blue Board Mask

Fig. 16. MATLAB Array Showing Simplified Board State

is red, yellow, or empty. A value of ’1’ has been chosen to
represent red, ’2’, is yellow, and ’0’ is empty.

This matrix is then plotted as circles to display the game
state to the player (Figure 17).

V. COMPUTING A RESPONSE

A. The Minimax Algorithm

As Connect-4 is a perfect information zero-sum game
similar to chess and checkers, the same approaches can be used
to compute move responses [3]. The most basic algorithm is
known as “minimax”, which seeks to “minimize maximum
loss” while choosing a move. In a basic minimax implementa-
tion, the computer plays all valid moves it can make. For each
of these moves, the computer then plays all possible human
responses. The computer can then play its response to each of
those human responses, and so on, forming a “tree” of future
game states. Ideally the computer would be able to compute

Fig. 17. Drawn Representation of Game State Matrix

Fig. 18. Time to Compute An Arbitrary Search Depth

Fig. 19. Time to Compute An Arbitrary Search Depth (Log Scale)

all game possibilities, however this is infeasible in Connect-
4, as the number of possible game states on a 6x7 board is
4, 531, 985, 219, 092.

Thus, the computer can only “look forward” a certain
amount of moves in a game tree, then evaluate the terminal
nodes for favorability. This number is referred to as “search
depth”, and is measured in “plies,” where one ply is one player
placing a piece. Assuming all columns of the board are open
to drop a piece, the number of possibilities evaluated is

O(bd),

where b is the branching factor (number of open columns,
usually 7) and d is the search depth.

The number of possibilities quickly becomes unwieldy:
looking 5-plies ahead means searching 16807 possiblities, 6-
plies is 117649 possiblities, and 7-plies is 823,543. Figures
18 and 19 show the effects of this exponential complexity on
execution times.

B. Scoring The Game States

Because most terminal nodes of a search tree do not
contain wins, the minimax algorithm must know which trees
are “better” outcomes for the computer. This is done by a
scoring algorithm, which uses simple heuristics to determine
which player is winning for any given board sate.

In this implementation, a negative score means the human
is thought to be favored, and a positive score means the



Fig. 20. Example Board with Score −11

computer is thought to be favored. The scoring is based on
several rules, of which are assigned points. The points are
then summed to form the final board score. The rules are as
follows:

1) Four adjacent spaces contain 3 pieces of the same
color, and one empty space: 10 points to the control-
ling player.

2) Three adjacent spaces contain 2 pieces of the same
color, and one empty space: 5 points to the controlling
player.

3) A corner space is controlled: 1 point to the controlling
player.

4) One of the two central spaces is controlled: 3 points
to the controlling player.

An example board is shown in Figure 20, which has a score
of −11. This is due to condition 1 being met for red (−10),
condition 2 being met for both red and yellow (+5,−5), and
condition 3 being met for red (−1).

C. Alpha-Beta Pruning

A naive minimax implementation searches all terminal
nodes at a specified depth in order to return the highest
scoring move. In practice, an exhaustive search is unneeded,
as sometimes a branch being searched can be determined to
be worse a previously searched branch, and therefor cannot
influence the final outcome. When this happens, the branch is
“pruned” by stopping the search, proceeding to the next branch
as usual. This strategy is known as “alpha-beta pruning”, and
aims to decrease computational complexity while returning an
identical output as a normal minimax search. An ideal alpha-
beta implementation will search best moves first, yielding an
complexity improvement of O(

√
bd), allowing the search to

run twice as deep in the same amount of time. At worst, the
complexity reverts back to standard minimax: O(bd) [4].

In implementation, the minimax performance was boosted
from searching 5-ply in ˜7 seconds to searching 8-ply in the
same amount of time (approx. 350 times faster).

The alpha-beta pruning also has a very interesting side ef-
fect. If the game extends past turn 30, the board often has very
limited moves: either many columns will be completely full,
or playing a column will result in an instant loss for a player.
Because of this, most trees are immediately pruned, allowing

the algorithm to easily search to depths of 15 or higher. This
results in the computer playing a stronger endgame, forcing a
win from many moves in advance.

VI. TESTING AND OUTCOMES

In over 60 played games against 12 humans, the computer
has lost three times. Average move time is approximately
8 seconds. The realtime board image capture is resistant to
bumps and occasional loss of corner tracking due to an arm or
hand being in the field of vision, however is temperamental in
different lighting conditions. The implemented AI is extremely
strong against human players of any skill level graduate
students. Future improvements to the system could include:

• Not using MATLAB for speed boosts, increasing
search depth

• Implementing a pattern based corner tracking system

• Use machine-learning based methods and datasets of
Connect-4 games to weight the scoring heuristics

Overall, I was happy to learn new variations on image
segmentation techniques, and I was able to program my first
game AI. It was a lot of fun!

REFERENCES

[1] V. Allis, “A Knowledge-based Approach of Connect-Four”, Vrije Uni-
versiteit, Amsterdam, The Netherlands, 1988.

[2] M. Chan, “File Exchange”, MATLAB Central, 09 March 2012. [Online].
Available:
http://www.mathworks.com/matlabcentral/fileexchange/35531-
perspective-control–correction. [Accessed 7 December 2014].

[3] Cornell Department of Computer Science, ”Assignment A4: Connect 4
AI,” 2014. [Online]. Available:
http://www.cs.cornell.edu/Courses/cs2110/2014sp/assignments/a4/A4ConnectFour.pdf.
[Accessed 7 December 2014].

[4] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
Prentice Hall, 2003.


