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Abstract— This work focuses on friction and table mass 

identification using signal processing techniques. This report 

describes the system, data collection process and analysis of the 

data.     

Keywords—Friction Curve Identification, Table Mass 

Identification, Least Squares, Sampling Frequency, Butterworth 

Filter 

I. INTRODUCTION 

Digital Signal Processing (DSP) tools are used in a wide 
range of applications. The focus of this work is to use DSP 
concepts to identify parameters (friction curve and mass of 
table) of electromechanical system shown in Fig. 1.  

 Section II discusses the theoretical aspects of the 
identification process. Section III describes the system 
identification process. Section IV concludes the paper. 

II. THEORY 

A. Equation of Motion 

The table can be actuated using Linear Motor (LM) and 
Rotary Motor (RM) as shown in Fig. 1. In this work, only LM 
is considered. In the absence of RM, the only forces acting on 
the table include LM force and friction between the table and 
guide ways. The equation of motion of the table is given by 
(1). 

 FLM — Ff(v) = mta           (1) 

FLM is the force exerted by LM on table, Ff(v) is the force 
on the table due to friction between table and guide ways, mt is 
the mass of the table and a is acceleration of the table. 

B. Stribeck Friction Model 

The frictional force between the table and guide ways is a 
function of velocity of the table. From the measured data in 
Fig. 6 it is observed that the relationship between friction force 
and velocity follows Stribeck friction model given by (2) and 
(3). The variation of friction force with velocity for a typical 
Stribeck friction model is shown in Fig. 2. 
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The terms on the right hand side of (2) and (3) denote 
static, coulomb and viscous friction respectively. Plus 
superscript corresponds to motion along the positive direction 
whereas minus corresponds to opposite direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Least Squares 

Least Squares is a standard technique used to approximate 

solution of overdetermined systems (when the number of 

equations is more than number of unknowns). The most 

common application of this technique is fitting data. This 

method estimates the parameters of a model (α) by 

minimizing the sum (S) of residuals (r) between experimental 

data (y) and data obtained (f(x,α)) using the model as 

formulated in (4) and (5). The minimum is obtained by setting 

the gradient of S with respect to each parameter αi to be zero. 

The technique can be classified as linear and non-linear. 
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If the model can be characterized as a linear combination of 

model parameters then linear least squares is used. The 

parameters of the model can be obtained using (6). X is a 

 
Figure 1: Electromechanical System 

 

 
Figure 2: Stribeck Friction Model (Source: [1]) 

 



matrix of coefficients of linear combination and Y is vector of 

experimental data y. 

            YXXX TT 1
                          (6) 

Non-linear least squares have no closed-form solution. 

Iterative numerical algorithms are used to solve for the 

parameters. Most algorithms rely on initial value of 

parameters for accurate solution.   

D. Butterworth Filter 

Butterworth lowpass filters are defined by the property that 

the magnitude response is maximally flat in the passband and 

monotonic in passband and stopband [2]. As shown in Fig. 3, 

Butterworth filter rolls off more slowly around the cutoff 

frequency than the Chebyshev filters or elliptic filter. Also, it 

does not produce ripples. Hence, Butterworth filter is used in 

this work. 

III. SYSTEM IDENTIFICATION 

 Two sets of data are collected, one for friction curve 
identification and another for table mass identification. 

A. Friction Curve Identification 

If the table moves at constant velocity, the friction force at 

that velocity is equal to the force exerted by the linear motor 

on the table according to (1). The table is commanded to move 

according to a trapezoidal velocity profile (constant velocity 

500 mm/s) as shown in Fig. 4. The average of the force 

corresponding to constant velocity is equal to friction force at 

that constant velocity. 

The LM acts as a current amplifier. The force on the table 

is the force constant (57 N/A) times the current through the 

motor. The position of the table is measured using the optical 

linear encoder (LE2) shown in Fig. 1. The velocity and current 

(force) data are discrete in nature and sampled at a frequency 

of 2 kHz. The data is stored in the form of a Microsoft Excel 

csv file. This data can be analyzed with ease using MATLAB.  

The LM force profile corresponding to velocity waveform 

in Fig. 4 is shown in Fig. 5. Fig. 4 and 5 are interpolated forms 

of the data. Force is measured for different constant velocities. 

The force needed to just start motion of drive in either 

direction corresponds to zero velocity. The data is plotted as 

shown in Fig. 6.  

Using least squares techniques, the friction curve described 
by (2) and (3) is obtained as shown in Fig. 7. The static friction 
constants F

+
stat and F

-
stat in (2) and (3) are the forces required to 

just start the motion of the table in either direction. The linear 
portion of the friction curve is considered (Fig. 2) by fitting the 
high velocity points (linear portion) in Fig. 6 using the curve 
fitting tool in MATLAB 8. The curve fitting tool can fit data 
into linear, exponential, quadratic, cubic, higher order 
polynomials, splines or any other curve desired by the user. 
The polynomial (degree 1) option is used as the desired 
segment is a straight line. This fitting tool uses linear least 
squares described in Section II.C. The slope and intercept are 
the parameters which form α vector. The slopes of the linear  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Lowpass Filters (5th Order) 

 

 
Figure 4: Trapezoidal Velocity Profile (500mm/s) 

 

 
Figure 5: Linear Motor Force corresponding to 500mm/s 

 

 
Figure 6: Friction Force for different velocity values 
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lsqcurvefit function in MATLAB 8. This function solves for 
the constants using non-linear least-squares data fitting 
technique discussed in Section II.C according to (7). In (7), 
Ff,data is obtained from Fig. 6  and Ff

+/-
(vdata) is obtained by 

substituting velocity data from Fig. 6 in (2) or (3). In this work, 
Trust-Region-Reflective Optimization Algorithm with initial 
condition 0.5 for all parmeters is used to find the parameters.   

    minimize ||Ff,data – Ff
+/-

(vdata)||
2
 over all vi

+/-
                         (7)      

B. Table Mass Identification 

For a given LM force, the velocity and acceleration are 
obtained by differentiating the data obtained from LE2. These 
are shown in Fig. 8 to 10. The interpolated data in Fig. 8 to 10 
is collected at a sampling frequency of 10 kHz. A finite-
difference approximation is used and hence, differentiating the 
experimental data amplifies the noise [3]. This is more clearly 
understood if the signal is considered to be superposition of 
desired signal and noise. The desired signal of the original data 
might have high amplitude but low frequency whereas the 
noise signal has low amplitude and high frequency (amplitude 
of desired signal is much larger than noise). Amplitude of 
differentiated signal is product of amplitude and frequency. 
Hence, the amplitude of differentiated noise signal can exceed 
that of desired signal. Differentiating the data (Fig. 9) amplifies 
noise but its amplitude is still lower than desired signal. Further 
differentiation (Fig. 10) results in higher noise amplification 
such that the amplitude of noise is larger than that of desired 
signal.   

Table velocity and acceleration are filtered using a low 

pass Butterworth filter. Fig. 11 and 12 show the filtered data 

for table velocity and acceleration for a 4
th

 order Butterworth 

filter with normalized cutoff frequency 0.1 (1 kHz for 

sampling frequency 10 kHz).   Mass of the table is estimated 

using linear least squares approach (Section II.C) and (1). 

Normalized cutoff frequency of 0.1 (1 kHz) estimates the 

mass of the table to be 38.93 kg. The actual mass of the table 

is 39±0.5 kg. If the normalized cutoff frequency is changed to 

0.5 the estimated mass is 22.13kg whereas at 0.8 it is 17.53kg. 

The normalized cutoff frequency is varied from 0 to 1 for data 

sampled at 10 kHz, 5 kHz, and 2 kHz. The estimated table 

mass for different cases is shown in Fig. 13. Table 1 lists the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Friction Curve fitting 

 

 
Figure 8: Linear Motor Force 

 

 
Figure 9: Table Velocity 

 

 
Figure 10: Table Acceleration 

 

 
Figure 11: Filtered Velocity (Cutoff frequency 1 kHz for 

sampling frequency 10 kHz)  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 1: Range of Normalized Cutoff Frequencies (where estimated mass 

ranges from 38.5kg to 39.5kg) for different Sampling Frequencies 

Sampling 

Frequency [kHz] 

Normalized Cutoff 

Frequency 

Cutoff Frequency 

[Hz] 

10 <0.1180 <1180 

5 <0.2382 <1191 

2 0.0162-0.0472 32-94 

 

range of cutoff frequencies corresponding to estimated mass 

from 38.5kg to 39.5kg for different sampling frequencies. 

 The mass of the table is also estimated using filters of 

different orders (2 to 5). Fig. 14 shows the magnitude response 

of Butterworth filter for different orders. All the filters are 

maximally flat in passband but the roll-off (slope in stopband) 

depends on order of the filter. The roll-off increases with 

increase in order of the filter. Fig. 15 demonstrates effect of 

order on estimation process. The variation of estimated mass 

with normalized cutoff frequency is identical for orders 2 to 5. 

The normalized cutoff frequency (for estimated mass between 

38.5kg and 39.5kg) for all orders is less than 0.118 (1180 Hz) 

which is close to that for 5 kHz as sampling frequency 

(1191Hz). The same value for sampling frequency 2 kHz is 

between 32 and 94 Hz (from Table 1).        

 Fig. 16, 17 and 18 show the Fast Fourier Transform (FFT) 

representation of acceleration signal for sampling frequencies 

10 kHz, 5 kHz and 2 kHz respectively. For each FFT, the first 

half is considered as the two halves are mirror images.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12: Filtered Acceleration (Cutoff frequency 1 kHz for 

sampling frequency 10 kHz) 

 

 

 
Figure 13: Variation of estimated mass with normalized cutoff 

frequency for different sampling frequencies 

 

 
Figure 14: Magnitude response of Butterworth for Orders 2 to 5 for 

sampling frequency 10 kHz and cutoff frequency 1 kHz 

 

 
Figure 15: Variation of estimated mass with normalized cutoff 

frequency for different filter orders 

 

 
Figure 16: FFT of acceleration for sampling frequency 10 kHz 

 

 
Figure 17: FFT of acceleration for sampling frequency 5 kHz 

 



 

 

 

 

 

 

 

 

 

 

 

 

For analysis, the minimum of the three (i.e. minimum of 

5000, 2500 and 1000) is selected as range. Fig. 19 and 20 

show FFT for 10 kHz and 5 kHz sampling frequencies for first 

1 kHz only.   

 From Fig. 18 to 20 it is evident that the frequency domain 

representation for sampling frequency 2 kHz is different from 

that for 5 kHz and 10 kHz. Sampling frequencies 5 kHz and 

10 kHz have similar frequency representations and hence, give 

accurate estimates below the same cutoff frequency. From Fig. 

16 and 17 it is evident that the two sampling frequencies result 

in similar frequency domain representation up to 1190 Hz 

which is same as the common value in Table 1. Half of 2 kHz 

(1 kHz) is less than this frequency value. Hence, information 

is lost due to aliasing. Aliasing results in a different cutoff 

frequency for 2 kHz as compared to 5 kHz and 10 kHz.       

IV. CONCLUSION 

 This work describes and analyzes the different DSP tools 

used for friction and mass identification process. Tools learnt 

in-class and out-of-class are used.  

 This work uses in-class signal processing concepts such as 

sampling, discrete time differentiation, low pass filter, FFT 

and aliasing. Out-of-class techniques such as least squares 

(linear and non-linear) are used to estimate parameters. 

 A possible future work can be avoiding use of low pass 

filter by using methods to reduce noise content of 

differentiated signal as discussed in [3].  
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Figure 18: FFT of acceleration for sampling frequency 2 kHz 

 

 
Figure 19: FFT of acceleration for sampling frequency 10 kHz for 

first 1 kHz 

 

 
Figure 20: FFT of acceleration for sampling frequency 5 kHz for first 

1 kHz 

 


