
EECS451 Project Final Report

Vehicle Detection and Classification

Shihong Huang
Department of Civil and Environmental Engineering

University of Michigan
Ann Arbor, Michigan
edhuang@umich.edu

I. PROJECT DESCRIPTION
My graduate research is mainly focused on transportation

engineering. So in this project I will use Digital Signal
Processing (DSP) tool to achieve a goal that is related to
transportation engineering.

 The objective of this project is to detect and track vehicles
in a video and to classify if these vehicles are long vehicles or
regular vehicles. The video will be recorded from a surveillance
camera at a fixed perspective. And the camera is aimed at the
central part of the intersection. Then the vehicles passing
through the intersection will be recorded. MATLAB will be
used as the main software in this project.

II. DATA DESCRIPTION
The video was recorded by Minnesota Transportation

Observatory with the help from Minnesota Department of
Transportation. The video was recorded on April 7, 2014. The
intersection of interest was Trunk Highway 13 at Diffley Road
in Minnesota.

The size of this one-hour-long video is about 633MB. Fig 1
is a frame taken from the video, showing a vehicle making the
left-turn. The actual resolution is 640*480 pixels.
Fig 1 Original data

However, this video is too big for MATLAB to load and

executive the DSP commands. To simplify this project, a
software called Format Factory is used to intercept the video.

Finally the sample video is 50 seconds long and 2.45MB big.
The sample video is recorded at the rate of 10 frames per second.
And the new video has a resolution of 296*448 pixels. Fig 2
shows a frame of the sample video.
Fig 2 Sample data

III. VEHICLE DETECTION

A. Step #1 Turn the frames into grayscale
The first step is to load the video in MATLAB. The video

frames are represented as 3-dimensional matrices. To make later
work easier, the sample RGB frames are converted into
grayscale. Then, the values in each frame matrix are converted
into double.

Now each frame in MATLAB is represented as a 2-
dimensional matrix and each value in the matrix means the gray
level of that particular pixel, with 1 being white and 0 being
black.

B. Step #2 Differentiate the background
To detect a vehicle from a frame, it is very necessary to

differentiate the background and the moving vehicle. A simple
idea is to use background subtraction. To do so, a background
frame is arbitrarily chosen from the video when there is no
vehicle present. Then each frame is subtracted by the
background frame. As shown in frame Sample1 in Fig 3, a
moving vehicle can been easily identified from the frame.

However, it turns out that this method does not work for
every frame. As shown in Fig 3, frame Sample2 has a lot of
noises, which are possibly caused by the vibration of the

surveillance camera. And this kind of noise could been seen
throughout the video. Using a filter does not help solve this
problem. A better way to identify the vehicles is indeed needed.
Fig 3 Samples after subtraction

To avoid this kind of noises, a method called Singular Value

Decomposition (SVD) is used to decompose the sample video
frames and to find out the background frame. SVD[1] states that
an 𝑚𝑚 ∗ 𝑛𝑛 matrix can be decomposed as

𝐴𝐴𝑚𝑚∗𝑛𝑛 = 𝑈𝑈𝑚𝑚∗𝑚𝑚Σ𝑚𝑚∗𝑛𝑛𝑉𝑉𝑛𝑛∗𝑛𝑛𝑇𝑇 (1)

Where

𝐴𝐴𝑚𝑚∗𝑛𝑛 is an 𝑚𝑚 ∗ 𝑛𝑛 matrix,

𝑈𝑈𝑚𝑚∗𝑚𝑚 is an 𝑚𝑚 ∗𝑚𝑚 unitary matrix,

Σ𝑚𝑚∗𝑛𝑛 is an 𝑚𝑚 ∗ 𝑛𝑛 diagonal matrix with non-negative real
numbers on the diagonal,

𝑉𝑉𝑛𝑛∗𝑛𝑛𝑇𝑇 is the transpose of the 𝑛𝑛 ∗ 𝑛𝑛 unitary matrix 𝑉𝑉𝑛𝑛∗𝑛𝑛.

Then matrix 𝐴𝐴𝑚𝑚∗𝑛𝑛 could be written as a sum of rank 1
matrices[2]

𝐴𝐴 = 𝜎𝜎1𝑢𝑢1𝑣𝑣1𝑇𝑇 + 𝜎𝜎2𝑢𝑢2𝑣𝑣2𝑇𝑇 + ⋯+ 𝜎𝜎𝑛𝑛𝑢𝑢𝑛𝑛𝑣𝑣𝑛𝑛𝑇𝑇 (2)

Where

𝜎𝜎𝑖𝑖 is the 𝑖𝑖th singular value,

𝑢𝑢𝑖𝑖 is the 𝑖𝑖th column of 𝑈𝑈𝑚𝑚∗𝑚𝑚,

𝑣𝑣𝑖𝑖 is the 𝑖𝑖th row of 𝑉𝑉𝑛𝑛∗𝑛𝑛𝑇𝑇 .

Each rank 1 matrix 𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖𝑇𝑇 is the size of the original matrix and
the singular values are ordered 𝜎𝜎1 ≥ 𝜎𝜎2 ≥ ⋯ ≥ 𝜎𝜎𝑛𝑛 ≥ 0. Each
one of these matrices is a mode. The original image could then
be reconstructed from just a subset of modes (this is also the
technique of image compression).

In this project, in order to implement the SVD tool in
MATLAB, all the frames are first converted into one matrix
using “reshape” command. Then SVD tool is used to decompose
the matrix. Only the first mode, i.e. 𝜎𝜎1𝑢𝑢1𝑣𝑣1𝑇𝑇 , is used as the
background matrix. And the moving object, i.e. the vehicle,
could be detected using background subtraction. The
background matrix and moving object matrix are then converted
back to frames, again using “reshape” command.

 Fig 4 shows the result by using the SVD tool in MATLAB.
The left frame is the original grayscale frame. The middle one is
the background, i.e. the first mode. And the right frame is the
detected vehicle by subtracting the background. Apparently this
method works very well. The moving object has been clearly
extracted from the original frame. And the vibration of the
camera does not affect the results.
Fig 4 SVD decomposed frame

C. Step #3 2-D fft

To see what happens in the frequency domain, let’s take the
fft of the grayscale frame. The 2-D fft is given by

𝑋𝑋[𝑘𝑘, 𝑙𝑙] = ∑ ∑ 𝑥𝑥[𝑚𝑚, 𝑛𝑛]𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑘𝑘𝑁𝑁−1

𝑛𝑛=0 𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁 𝑙𝑙𝑙𝑙𝑁𝑁−1

𝑚𝑚=0 (3)

Where

𝑥𝑥[𝑚𝑚, 𝑛𝑛]is the pixel of the frame.

In MATLAB, command fft2 is used to do the calculation.
Besides that, we take the logarithm of the magnitude for
perceptual scaling. Fig 5 shows the 2-D fft of a frame when there
is no vehicle present and Fig 6 shows when there is a vehicle
present. Apparently when there is a vehicle, the magnitude plot
shows more “snows”.
Fig 5 2-D FFT of a frame when there is no vehicle

Fig 6 2-D FFT of a frame when there is a vehicle

D. Step #4 Filter

It is better to filter the noises before doing anything. A 2-D
Gaussian filter is used in this case.

𝑔𝑔(𝑚𝑚, 𝑛𝑛) = 1
2𝜋𝜋
𝑒𝑒−𝑚𝑚2−𝑛𝑛2 (4)

Then the filter matrix is defined as

⎣
⎢
⎢
⎢
⎢
⎡
𝑔𝑔(−2,−2) 𝑔𝑔(−2,−1)
𝑔𝑔(−1,−2) 𝑔𝑔(−1,−1)

𝑔𝑔(−2,0)
𝑔𝑔(−1,0)

𝑔𝑔(−2,1) 𝑔𝑔(−2,2)
𝑔𝑔(−1,1) 𝑔𝑔(−1,2)

𝑔𝑔(0, −2) 𝑔𝑔(0, −1) 𝑔𝑔(0,0) 𝑔𝑔(0,1) 𝑔𝑔(0,2)
𝑔𝑔(1, −2) 𝑔𝑔(1, −1)
𝑔𝑔(2, −2) 𝑔𝑔(2, −1)

𝑔𝑔(1,0)
𝑔𝑔(2,0)

𝑔𝑔(1,1) 𝑔𝑔(1,2)
𝑔𝑔(2,1) 𝑔𝑔(2,2) ⎦

⎥
⎥
⎥
⎥
⎤

This is a lowpass filter.

To take 2-D convolution, we use

𝑦𝑦[𝑚𝑚, 𝑛𝑛] = ℎ[𝑚𝑚, 𝑛𝑛] ∗ 𝑥𝑥[𝑚𝑚, 𝑛𝑛] (5)

= � � ℎ[𝑚𝑚 − 𝑘𝑘, 𝑛𝑛 − 𝑙𝑙]𝑥𝑥[𝑘𝑘, 𝑙𝑙]
∞

𝑙𝑙=−∞

∞

𝑘𝑘=−∞

In MATLAB, the easy way is to use the command conv2.
Fig 7 shows the filtered frame (on the right) comparing to the
original frame (on the left). However, we cannot see any obvious
difference. Actually the filter is not that helpful in this particular
project. A reasonable guess would be that the SVD tool has
already filtered some noises.
Fig 7 Filtered frame

E. Step #5 Object detection and classification

To really show that our object of interest has been found, a
rectangle is put into the frame to show that a vehicle is indeed
being identified. To do so, we first need to turn the right frame
in Fig 4 into a binary matrix. A threshold is set so that the each
pixel is compared to the median value of the matrix plus or
minus the threshold and the pixel is set either black (as the
background) or white (as the object).

pixel[𝑚𝑚, 𝑛𝑛] = �0, 𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑡𝑡 ≤ frame[𝑚𝑚, 𝑛𝑛] ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑡𝑡
1, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (6)

Where

𝑚𝑚𝑚𝑚𝑚𝑚 is the median value of the matrix,

𝑡𝑡 is the threshold.

This process is done for every frame in the video (the median
value may be different for each frame, but the threshold is the
same). Fig 8 shows the frame when it is converted to binary.
Fig 8 Binary frame

Then, a MATLAB tool called blobAnalysis is used to help

detect the object. Basically, Blob Analysis block calculates
statistics for labeled regions in a binary image and the block
returns quantities such as the centroid, bounding box, label
matrix, and blob count[3].

In this project, the attribute BoundingBoxOutputPort is set
to be true (it returns the coordinates of blob centroids), the
attribute AreaOutputPort is set to be false (we do not need the
area of the object), the attribute CentroidOutputPort is set to be
false (we do not need the coordinates of blob centroids of the
object) and the attribute MinimumBlobArea is set to be 100
(only the object that has an area of over 100 pixels will be
considered as the object of interest).

Now that the blobAnalysis has been defined, it could be used
to find the object in the binary frame. The information of the
identified object is restored in a matrix called bbox in
MATLAB. Information includes centroid, length and width of
each bounding box. Then black rectangles are inserted into the
frames according to bbox of each frame.

This whole process is done for each frame by using a loop
function.
Fig 9 Detecting the object

Fig 9 shows the result. The left frame is the original frame

and the right frame shows the vehicle being detected.

At the up left corner there are two numbers. The first number
means the number of vehicles detected in this frame and the
second number means the number of long vehicle. Since we
have identified the moving vehicle, the bounding box could
somehow reflect the length of that vehicle. By checking the
length of the bounding box, a long vehicle could be identified.
In this project, a vehicle with its bounding box longer than 150
pixels is defined as a long vehicle. This definition is pretty
simple and arbitrary but it works well. To differentiate a long

vehicle from a regular vehicle in the frames, a white box instead
of a black box is used to identify the vehicle, as shown in Fig 10.
Fig 10 Detecting long vehicle

IV. SUMMARY
This project detects and tracks vehicles in a video that is

recorded by a surveillance camera with a fixed perspective. The
objective is achieved successfully by using MATLAB. Vehicles
that passing through the intersection are all captured and
rectangular boxes are inserted into the video frames in order to
highlight these vehicles. What’s more, long vehicles are
identified from regular vehicles by using white boxes. We also
count the number of vehicles in each frame.

The in-class tools used in this project are background
subtraction, 2-D fft, 2-D convolution and filter. The out-class
tools used in this project are SVD and blobAnalysis. Detailed
information about the tools and their functions could be found
in Table 1.

TABLE 1 TOOLS USED IN THIS PROJECT
 Tool name Function

In-class
tool

Background
subtraction

Differeniate background and moving
object

2-D fft See the spectrum of the frame
2-D convolution Filter noises in the frame
Gauss Filter Lowpass filter

Out-class
tool

SVD Decompose the video frame, differeniate
background and moving object

blobAnalysis Identify the moving object, achieve its
coordinates and size in the frame

The SVD is really powerful and awesome. It helps on
finding the background of each frame. In a lot of movies, the
hackers hack into the closed-circuit television system and cover
their friends by removing the images of their friends out of the
surveillance camera. I believe that’s exactly what the SVD tool
does!

BlobAnalysis is also powerful. It could identify an object
from a binary picture. Long vehicle is also identified by
checking the length of the bounding box.

However, my algorithm is not perfect. One thing need to be
mentioned here is that the SVD tool is computational expensive.
For this short sample of video (50 seconds, 501 frames, 296*448
pixels), it takes several minutes to execute the SVD command
on my laptop (my laptop is very old, though). As long as we find
the background image, we could implement this algorithm to
identify vehicles.

Besides that, the blobAnalysis tool sometimes fails to
distinguish two objects when they are too close to each other.
Fig 11 is an example where two vehicles are identified as one

single vehicle. By checking the binary frame shown in Fig 12,
we can see the limitation of blobAnalysis.
Fig 11 False identification

Fig 12 Binary frame

But overall, I have found a lot of new functions in MATLAB

and MATLAB is indeed a powerful tool to engineering students.
To apply what I learnt from class into practice is of great fun!

REFERENCES
[1] http://en.wikipedia.org/wiki/Singular_value_decomposition
[2] M. Spiegelman, “Applications of the SVD,” unpublished.

http://www.columbia.edu/itc/applied/e3101/SVD_applications.pdf
[3] http://www.mathworks.com

http://en.wikipedia.org/wiki/Singular_value_decomposition
http://www.mathworks.com/

	I. Project description
	II. data description
	III. Vehicle detection
	A. Step #1 Turn the frames into grayscale
	B. Step #2 Differentiate the background
	C. Step #3 2-D fft
	D. Step #4 Filter
	E. Step #5 Object detection and classification

	IV. Summary
	References

