
DIGITAL SIGNAL PROCESSING, EECS 451, NO. 1, FALL 2014 1

Notation Processing 451
Olivia Palmer

University of Michigan, Department of Biomedical Engineering

Abstract—A process for converting a .mp3 file of a violin
melody to notated sheet music using digital signal processing is
described in this work. With frequency domain analysis, the input
signal was filtered with a Butterworth low pass filter to minimize
background noise and higher frequencies. A rectangular window
was implemented to determine the maximum frequency at each
time point in the short time Fourier Transform. The frequencies
were then notated using a classification algorithm which matched
each frequency to a specific location on the music staff. The
program has limitations in detecting note duration, fundamental
frequency, and an issue of dominance of open string resonance.

Keywords—STFT, DFT, FFT, filtering, music, mp3.

I. INTRODUCTION

MUSIC analysis presents complex problems in signal
processing. While identification of a single note is

relatively simple, analyzing a string of notes with various
pitches and rhythms becomes a difficult technical feat. Most
song books of popular songs or old favorites are the result
of musicians carefully listening to a recording many times
over and transcribing everything by ear. As a musician who
attended a performing arts high school, I often grappled
with the painstakingly time-consuming task of transcribing a
song for a group of musicians. The prospect of automated
musical notation presents great opportunity for saving time
and improving sharing methods between musicians.

The Notation Processing software attempts to reach this goal
within certain limitations. For the purposes of this project, I
will focus on interpreting signals from a single violin melody
played within the middle range of the instrument, or approx-
imately within the D4 octave. Recordings were made with a
Sony Digital Recorder, with recordings under 20 seconds long.
The program can handle longer clips, but the entire clip is
notated to a single line which can become overcrowded with
longer recordings.

II. METHODS

A. Initial Filtering

Upon initial recording of the audio signal there is inevitably
some background noise that should be minimized prior to
frequency classification. This is best done through visualization
of the frequency spectrum of a signal. The fast Fourier
transform, or FFT, rapidly computes the factorized discrete
Fourier transform. The discrete Fourier transform of signal xn
is given by Eq. 1. Figure 1 shows the signal from a sound

O. Palmer is with the Department of Biomedical Engineering, University
of Michigan, Ann Arbor, MI, 48109 USA e-mail: opalmer@umich.edu.

Received Deceber 9, 2014.

clip of a violin playing an arpeggio and its associated Fourier
transform in the frequency domain.

Xk =

N−1∑
n=0

xne
−i2πkn/N (1)

Fig. 1. Signal of arpeggio (top and FFT of signal (bottom).

When we zoom in and look at the absolute value of the
frequency spectrum for the region of interest (low frequencies),
the background noise becomes visible in the signal (Fig. 2,
top). Since we are only interested in the frequencies played
for the middle range of a violin, the signal must be filtered
to elinimate higher frequencies associated with background
noise. This was done using a Butterworth low pass filter. The
Butterworth filter has a maximally flat frequency response in
the passband, at the expense of a wide transition band. Its
frequency response, H(ω) is given by Eq. 2, where ε is the
maximum passband gain and n is the filter order.

H(jω) =
1√

1 + ε2(ωωp
)2n

(2)

As shown in Fig. 2, the Butterworth low pass filter has
eliminated higher frequencies due to background noise. This
will minimize errors when detecting the frequencies of the
notes that were played in the recording.

B. Identification Filtering
Once the signal has been filtered to minimize background

noise, the actual notes played must be identified. This was

DIGITAL SIGNAL PROCESSING, EECS 451, NO. 1, FALL 2014 2

Fig. 2. Zoomed-in frequency spectrum of original signal (top) and filtered
signal (bottom).

done by dividing the recording into smaller time clips of 0.2
seconds in length. This length was chosen because it is short
enough to not skip over any notes played within an eighth note
range, and long enough to avoid moments of total silence or
space between notes. Next, a rectangular window is defined
for each of the frequencies of interest (in this case, the notes
in the middle range of a violin). The rect window is given a
width of 6 Hz. This width was chosen to be small enough to
avoid overlapping with the frequency of adjacent notes while
remaining wide enough to detect notes that are not perfectly
in tune. The filtered frequency spectrum of each time clip is
multiplied by the rect filter at each note. The amplitude of
the rectangular filtered spectrum is maximum when the rect
window is centered at the frequency of the note being played
(as shown in Fig. 3) and has a smaller amplitude when the
note is not played during the time clip (see Fig. 4).

The set of rectangular windows could be expanded beyond
the middle range of the violin for a broader range of note
detection. Each note has several associated harmonics, how-
ever, that in some cases have a higher power density than the
fundamental frequency. When expanding to a broader range,
it would be beneficial to find the maximum amplitudes within
each octave set. If the note detected was D5, for example, and
there was a relative maximum in the D4 octave as well, it is
more likely that the note being played is a D4 and the D5 that
was detected was a harmonic with higher power.

C. Classification
The process of writing the sheet music for the audio record-

ing requires a method of note classification. For this project, I
defined a music staff with lines spaced 1 unit apart on a plot
and used a series of lines to draw a treble cleff. This could be
expanded to a grand staff for the use of reading piano or choir
music, or bass cleff for lower register instruments. To classify
each note played, the maximum amplitude of the rect-filtered
frequency clip is found for each time clip. The frequency that

Fig. 3. Frequency spectrum of a time clip (top), and the same frequency
spectrum with a rect window applied (bottom).

Fig. 4. When the rect window is centered at a frequency that is not being
played in the current time clip, the amplitude will be low (bottom).

the rect window defines at the maximum amplitude is taken
to be the frequency of the note played over that 0.2 second
interval. Each note is matched to a specific location on the
treble cleff, and plotted across x as a function of the clip
number, spaced at equal distances apart.

As shown in Fig. 5, each note was played over an average of
3 or 4 time clips. For a cleaner representation of which notes
were played, only the changing notes are plotted in Fig. 6.
Plotting the changing notes prevents any visualization of note
duration, but makes for a cleaner and more understandable
score. Additionally, the number of times a single note is
repeated on the plot (Fig. 5) is not accurately representative
of note duration due to the arbitrary selection of time clip
durations and resonance dominance of open strings.

DIGITAL SIGNAL PROCESSING, EECS 451, NO. 1, FALL 2014 3

Fig. 5. Frequency plotted for every time point of arpeggio recording.

Fig. 6. Notation output of an arpeggio recording.

D. Spectrogram
The spectrogram proves to be a useful tool in finding

sources of errors in the notation classification. The spectrogram
provides a visual representation of the short time Fourier
transform, given by Eq. 3 where w is the window. Each time
window is plotted on the x-axis, with frequency plotted on the
y-axis. The amplitude of each frequency at each timepoint is
represented by the intensity of the color of each window.

X(m,ω) =

∞∑
n=−∞

x[n]w[n−m]ejωn (3)

Looking at the spectrogram shown in Fig. 7, it is clear
that the fundamental frequency does not always have the
highest power. Before multiplying each time clip by a series
of rect windows, I had tried to extract the frequency played
by analyzing spectrogram data. This becomes difficult because
of the dominance of harmonics and the unpredictable nature
of the power density function. Some notes have their highest
power in the 1st or 2nd harmonic, while for other notes it
occurs in the 3rd or 4th. I initially attempted to find the
maximum power at each time window and set a threshold to
be 70 percent of that maximum power, as shown in Fig. 8,
but that method was not reliable with the large variance in
harmonics.

Fig. 7. Spectrogram of brief scale sound clip.

Fig. 8. Threshold values from spectrogram.

Another issue made apparent by the spectrogram is the
dominance of open string resonance on the violin. The violin’s
open strings are G, D, A, and E. For the middle range, I saw
this most with the open D and A strings. Figure 9 shows the
spectrogram of a short melody. The circled note, a B natural, is
misread as a D since the open string D was played immediately
before this note and is still resonating at a higher power than
the note played during that time interval. The notation output
from this recording, shown in Fig. 10, shows the comparison
between the actual notes played (bottom) and the output of the
program, with the location of the missing B natural circled.

Attempting to correct this issue, I set the program to look
for the next largest amplitude in the output of rectangular
windowed time clips after an open D or A string were detected.
This had more luck in detecting other notes including the
missing one, but was unreliable in correct notation output
because it detected notes that were really just noise in the
signal. Looking at Fig. 3, the next highest amplitude would
put the frequency at around 294 Hz, when the frequency being
played is 392 Hz.

DIGITAL SIGNAL PROCESSING, EECS 451, NO. 1, FALL 2014 4

Fig. 9. Spectrogram of the ”Let It Go” melody from Frozen. The open D
string has a dominant resonance, causing some notes to be misread as D such
as the B (circled).

Fig. 10. Comparison of program output (top) to the actual notes played with
approximate rhythms (bottom, not made with this program).

III. OTHER POSSIBLE METHODS

Another method that could be implemented is cross corre-
lation. Cross correlation measures the similarity between two
waveforms. The cross correlation of two signals x and y is
given by Eq. 4. I did not implement cross correlation for this
project because the rectangular window proved to be more
reliable. For notes that were not completely in tune, the cross
correlation for a specific frequency did not equal 1 at any point.
In instances where more than one frequency are apparent in
a time clip, cross correlation is not as useful for determining
which note is actually sounding. This could be improved by
analyzing what notes are played in previous time clips and
future time clips to see which note is more likely being played
at that time point. Another possibility would be to throw out
clips that have more than one frequency sounding at once, but
this runs the risk of missing notes and losing data. This method
could be improved by adding beat detection and segmenting
the song based on fractions of a beat rather than arbitrary time
clips.

x[n] ∗ y[n] =
∞∑

m=−∞
x∗[m]y[m+ n] (4)

The notation software could be improved by incorporating
note duration. Duration detection becomes complicated when
the same note is sounded more than once. In this instance there
would have to be brief moment of silence between repeated
notes to distinguish that the same note had been played more
than once. The previous note played, however, will still be
resonating somewhat during the brief clip between notes.
Repeated notes may be more distinguishable on a piano or
when played with exaggerated staccato bowing. As is, the notes
do not have distinguishable edges visible in the spectrogram.

Duration could also be accomplished using beat detection.
Most humans are easily able to tap their foot to the beat of a
song, but making the process automated is much more difficult,
especially in instances of accelerando, ritardando, or a grand
pause. One solution could be to have the user input a temp,
and begin dividing the song into segments determined by temp
starting at the detection of the first note. This method would
not account for changes in tempo, however. Beat detection may
be more accessible in songs with a drum set tracking the beat,
which would be apparent across the frequency spectrum in the
spectrogram.

Without beat detection, duration could be assumed by look-
ing at the number of time clips over which a specific frequency
is played. This would be a rough estimate because, as seen
in Fig. 5, although every note but the final note was played
for about the same amount of time, the number of timeclips
representing each frequency varied from 3 to 4, with the open
strings tending to be represented over more time clips due to
resonance dominance. Duration would also be dependent on
the tempo of the song and the duration of each time clip.

IV. DISCUSSION AND CONCLUSIONS

The complexity of audio recording analysis shows how
intricate and accurate the human ability to interpret audio truly
is. This program is able to identify the notes played for a
monophonic recording of a stringed instrument. It would be
interesting to test the differences if a recording of a wind
instrument was used, in which sound is produced through
vibrating air columns rather than strings. Music signal analysis
with digital signal processing is a rapidly growing field of
research, and there is a lot of room for improvement especially
in polyphonic analysis. The complexity of music explains
why this research has lagged behind developments in speech
recognition software. Overall, this project was able to build
a notation software using frequency domain analysis, various
filters, spectrogram analysis, and a classification algorithm.

REFERENCES

[1] Oppenheim and Schafer, Discrete Time Signal Processing, 3rd ed. Upper
Saddle River, NJ: Pearson, 2010.

[2] M. Muller, D. Ellis, A. Klapuri, and G. Richard, Signal Processing
for Music Analysis. J. Selected Topics in Signal Processing:2011.

[3] Z. Settel and C. Lippe, Real-time Frequency-Domain Digital Signal
Processing on the Desktop. Buffalo, NY, USA:Hiller.

