

Predicting Galaxy Morphology Classifications

Kairui Jin
 Department of Electronic Engineering and Computer Science, University of Michigan

Ann Arbor, USA
krjin@umich.edu

Abstract—I implement several DSP technique: FFT, Wiener
Filter, convolution to preprocess the galaxy images and use some
machine learning theories to learn and predict hand-made galaxy
morphology classifications. My data and success metric are taken
from a recent Kaggle competition “Galaxy Zoo - The Galaxy
Challenge”. I focus on three sequential algorithm modules: image
analysis, data compression, and machine learning. I find that my
approach performs with moderate success, though not as
accurately as the approaches used by top competitors.

Keywords—galaxy, wiener filter, decision tree, linear
regression, PCA

I. INTRODUCTION
The goal of my project is to predict the morphology

classifications of galaxy image data, as outlined by the recent
Kaggle competition Galaxy Zoo - The Galaxy Challenge. As
stated on the competition website:

“With each passing day telescopes around and above the
Earth capture more and more images of distant galaxies. As
better and bigger telescopes continue to collect these images,
the datasets begin to explode in size. In order to better
understand how the different shapes (or morphologies) of
galaxies relate to the physics that create them, such images
need to be sorted and classified. Galaxies in this [data] set have
already been classified once through the help of hundreds of
thousands of volunteers, who collectively classified the shapes
of these images by eye in a successful citizen science
crowdsourcing project. However, this approach becomes less
feasible as data sets grow to contain of hundreds of millions (or
even billions) of galaxies. This competition asks you to analyze
the JPG images of galaxies to find automated metrics that
reproduce the probability distributions derived from human
classifications. For each galaxy, determine the probability that
it belongs in a particular class.”

In particular, I seek to learn from labeled galaxy images in
order to predict the probability distribution over morphology
classifications that best models the distributions derived from
crowd sourced classifications. I note that each crowd sourced
classification is actually a path in a decision tree and, thus, the
problem is equivalent to determining the probability

distribution of expert decisions at each branch in the decision
tree given the galaxy image data.

The paper is organized as follows: Section 2 I present the
background and previous literatures related. Section 3
describes the different modules and classification method. The
experimental results and analysis are present in Section 4. In
section 5, some conclusions are drawn.

II. BACKGROUND
My research is a continuation of the results of the Galaxy

Zoo project [1]. This project compiled the crowd sourced
classifications of 1 million galaxy images drawn from the
Sloan Digital Sky Survey. The goal of our project is to learn
from these hand-made classifications and automate the
classification of galaxy images using machine learning
techniques.

The literature contains numerous approaches to the galaxy
classification problem. For example, Storrie-Lombardi et al.
[2], were able to successfully separate galaxies into several
classes using a feed-forward neural network. They reported
64% classification accuracy. Owens, Griffiths, and Ratnatunga
[3] utilized oblique decision trees to perform classification on
the same dataset. They report an overall accuracy of 63%
using 5-fold cross-validation. Bazell and Aha [4] achieved
78.55% accuracy using ensembles of classifiers for 800
galaxies. Naive-Bayes classifier, neural network, and decision
tree induction algorithms were used to divide galaxies into 6
classes. 14 features were considered for each galaxy.

An alternative to morphological classification is to
introduce the Gini coefficient, as demonstrated by Abraham et
al. [5]. Madgwick [6] investigated two statistical techniques to
determine how accurately morphology can be estimated from
the optical spectrum of galaxy. He reported 70% accuracy for
‘early’ galaxies and 83% accuracy for ‘late’ galaxies. Here,
‘early’ and ‘late’ refer to broad classes of galaxy
morphologies.

In this paper, a method for performing automated
morphological galaxy classification is present based on digital
signal processing and computer vision techniques and machine
learning algorithms. I first preprocess the image data by

http://www.galaxyzoo.org/%23/classify

cropping out the background and filter images, then use
principal component analysis to further reduce the
dimensionality. Then I apply linear regression on the
projection coefficients of the principal components to predict
the distribution of morphology classifications.

III. PROPOSED APPROACH
The method of classification I present consists of three

modules: Preprocessing Module, Data Compression Module
and Regression Module. The method works as follows. It takes
as input the galaxy images that are cropped, centered and
rotated in the Preprocessing module. Then in the Data
Compression Module, I reduce the dimension of the data based
on the principal component analysis. The projection of the
images onto the principal components gives the data input
parameters for the regression module. Lastly, I construct the
decision tree with 11 benchmarks. For each benchmark, four
different regression algorithms are implemented. The next
three sections would describe the details of these three
modules.

A. Image Analysis
In this step, I retrieve the raw images from the dataset and

then transform in such a way that we discard a great deal of
non-essential data. I reduce the dimensionality of the data by
cropping out background pixels which are not a part of the
subject galaxy (recall that the images provided in the dataset
have been centered on the target galaxy so we may consider
only the pixels near the center of the image to classify the
images). I also convert RGB values to grayscale. This reduced
the input dimensions by a factor of 1/3. Afterwards, I remove
the noise by adaptive filtering. I choose wiener filter to an
image adaptively, tailoring itself to the local image variance.
This approach often produces better results than linear filtering.
The adaptive filter is more selective than a comparable linear
filter, preserving edges and other high-frequency parts of an
image. The wiener filter could also handle all preliminary
computations and implements the filter for an input image.
Through comparing to other filter, I figure out that wiener
filter works best when the noise is constant-power ("white")
additive noise, such as Gaussian noise.

Figure 1: Image Denoising operation

After removing the noise, we were able to further reduce
the dimensionality of the data by cropping out background
pixels that were not part of the subject galaxy. The subjects in

each galaxy image had been centered prior to distribution for
the competition and so we were then able to bypass the task of
centering each subject. We found, through visual inspection of
several dozen images, that the salient features of each galaxy
were typically contained within the central 200_200 pixels (of
424_424 pixels total). Thus, to ignore irrelevant data in the
images, I cropped out those pixels which fell outside of the
central 200_200 bound. I then scaled the cropped images down
to 40_40 pixels. The choice here was mainly a technical one, as
memory constraints prevented us from allowing the scaled
images to be much larger while still holding many of these
images in memory.

In order to compute the desired rotation angles, we took the
following approach. First, we scaled the 424×424 images down
to 80×80. This step was taken to reduce the computational
complexity of image rotation. Second, we generated an 6400 ×
2 matrix, X, of 2-dimensional offsets corresponding to the
offset of each pixel from the center of the image. We then
created a 6400×1 weight vector, W, where

Note the resemblance of this weight to the normal

distribution. Our choice of 200 for the denominator in the
exponent implies that, all other factors equal, we expect about
95% of the weight to lie within 40 pixels from the center. The
choice to consider the central 40×40 pixels corresponds,
roughly, to our choice to maintain the central 200×200 pixels
in the non-normalized case (compare 80×80 with 424×424).
The factor in the denominator simply corrects for vector
length, such that distance from the center does not affect
weight beyond the Gaussian factor in the numerator. We then
generate the weighted vectors, , where

We may then take the first eigenvector v, of to determine

the direction of greatest variance which, in turn, corresponds to
the major axis of the galaxy. We may then rotate the image by
-arctan(v1/v2) to align the major axis with the x-axis, as
desired. We then crop out those pixels which fall outside of the
central 40×40 bound. Again, this roughly corresponds to the
bounds observed for the non-normalized case. Examples of
color desaturation and image rotation and scaling can be seen
in Figure 2.

Figure 2: Image rotation normalization

B. Data Compression
Once the raw image data has been transformed, as outlined

above, we vectorize the resulting training images and apply
principal component analysis to further reduce the
dimensionality of the data. In particular, we compute the mean
over input vectors, compute the covariance matrix of the mean-
subtracted vectors, and then retrieve the eigenvectors of the
covariance matrix which have the greatest eigenvalues. Figure
3 below shows the drop-off for the first 50 eigenvalues on the
training set. We see that maintaining the first 20 eigenvectors
captures approximately 99% of the information and so we
decided to maintain only the mean vector and the first 20
eigenvectors.

Figure 3. Eigenvalues of principal components.

C. Machine Learning
Having transformed the original images into 40×40 images

and then into 1600-dimensional vectors, we may subtract the
mean computed in the data compression module and then
project the centered vectors onto the 20 principal components.
In this way, we transform each image into a vector of 20
projection coefficient which we may use, along with the
labeled solutions, to train and evaluate the machine learning
technique.

We apply this technique to each task separately. The tasks,
including the number of responses for each, are listed in Table
1.

Table 1. The decision tree, comprising 11 tasks and 37

responses.[8]

Figure 4. Flowchart of the classification tasks, beginning at

the top center. [8]

IV. EXPERIMENTS, RESULTS AND ANALYSIS

A. Data
Our data is obtained from Kaggle’s website [8]. It contains

a collection of 61578 galaxy images along with a file
containing solution vectors for each image. We have artificially
split this data set into a training set, validation set, and test set,
with a 50/25/25 share, respectively. We note that the images
within the data set have been centered on the subject galaxies
and so detecting galaxies within these images in not part of the
problem scope. The solution vectors for each image have been
taken as the sample average of manual galaxy classifications.
Each sample is the result of a specific path down a decision
tree, described in Table 1 and shown in Figure 1 below, taken
directly from the Kaggle competition web page[9]. Each
galaxy has been classified by multiple individuals, resulting in
multiple paths along the decision tree. These paths generate
probabilities for reaching each node. For example, if 25% of
respondents chose response 1 of task 1, then those respondents
would follow the tree to task 7. If 50% of respondents then
chose response 1 of task 7, then the entry in the solution vector
for task 7.1 would be 25% * 50% = 12.5%. The marginal
distribution at each branch can easily be computed by
normalizing over all responses for that branch. This method of
cumulatively multiplying probabilities applies for every task
branch, as mapped by the figure 1. The exception to this
process is task 6, where responses 6.1 and 6.2 have been
normalized to sum to 1. Since task 1 is at the top of the
decision tree, the sum of probabilities over responses will sum
to 1. For the remaining tasks, the sum of probabilities over
responses will typically sum to less than 1.

B. Experiments and Results
The performance of each algorithm is based on the root

mean squared error (RMSE) of the difference between the
solution matrix and the predicted solutions. That is, for N
observations and L target vector dimensions, we compute

This matches the evaluation criteria of the Kaggle
competition. For linear regression, we trained the weights once
with non-rotated pre-processed training images and once with
rotated pre-processed training images. In the non-rotated case,
we achieved an RMSE of 0.1541 over the validation set. In the
rotated case, we achieved an RMSE of 0.1437.

C. Analysis
We found that wiener filter and rotation normalization

during the image analysis module greatly improved
performance. The mean and first 8 eigenvector images for the
non-normalized and normalized settings are shown in Figure 4
and Figure 5, respectively. Looking at the qualitative properties
of these images, we may infer two things. First, it appears that
our initial choice to focus on the central 200×200 pixels was a
good one, since the salient regions of the images seem to end at
or near the boundary of the image. Second, we can see why

linear regression might perform poorly in the non-rotated case.
Consider “PC2” and “PC3” in Figure 5. We might expect the
projections of an elliptical galaxy image onto these
eigenvectors to be sinusoidal as a function of rotation angle of
the image. Thus, a pure linear model might not be able to
capture such a relationship.

I believe that, overall, my methods were moderately
successful. I compare to a simple benchmark and the winning
solution from the competition. The so-called ‘central pixel’
benchmark simply trains a linear model on the RGB values of
the center pixel of the training image set. This simple approach
manages to achieve an RMSE of 0.16235. The winning
solution [12], using convolutional neural networks and a
number of other techniques was able to achieve an RMSE of
0.07567. It is notable that the best-known solution and the
simple central pixel benchmark differ in RMSE by less than
0.1 (corresponding to 10%). If our best benchmark solution of
0.1289 is accurate for the full test set, then our solution ranks in
the 55th percentile, hence our appraisal of moderate success.

V. CONCLUSION
Between our own results and the results of the Kaggle

competition, we found that neural network techniques
performed best for this problem. Given more time and better
understanding of how to implement the algorithms in such a
way as to avoid excessive memory requirements, we would
like to explore more neural network architectures and train/test
on the complete data set. Competition winners also avoided the
loss compression techniques of our image analysis module. It
would be worthwhile to explore the performance gains by
retaining image color and resolution. Given the information
content of the 20 principal components, we might be able to
approach optimal accuracy while simultaneously reducing
computational cost. The initial motivation for the Kaggle
competition was to automate the process of galaxy
classification. It would be interesting to research a confidence-
based model, as opposed to attempting to match crowd-sourced
distribution. Such a system might employ one of our
comparatively fast techniques to generate an initial assignment
and confidence level. Low confidence levels may trigger the
algorithm to delegate the galaxy image to a more sophisticated
and computationally-intensive algorithm to increase precision.
Such a design would certainly be practical for processing data
sets with billions of galaxy images.

Figure 5. Non-rotated mean and eigenvalues

Figure 6: Rotated mean and eigenvalues

REFERENCES

[1] Buta R. J., 2013, Galaxy Morphology, Oswalt T. D., Keel W. C., eds.,
Springer

[2] Storrie-Lombardi, M.C., Lahav, O., Sodre, L., Storrie-Lombardi, L.J.
Morphological Classification of Galaxies by Arti_cial Neural Networks.
Monthly Notices of the Royal Astronomical Society, 259(8), 1992

[3] Owens, E.A., Gri_ths, R.E., Ratnatunga K.U. Using Oblique Decision
Trees for the Morphological Classi_cation of Galaxies. Monthly Notices
of the Royal Astronomical Society, 281(153), 1996

[4] Bazell, D., Aha, D.W. Ensembles of Classi_ers for Morphological
Galaxy Classi_cation. The Astrophysical Journal, 548:219-233, 2001

[5] Abraham R. G., van den Bergh S., Nair P. A new approach to Galaxy
Morphology, 2003, ApJ, 588, 218

[6] Madgwick, D.S. Correlating galaxy morphologies and spectra in the 2dF
Galaxy Redshift Survey. Monthly Notices of the Royal Astronomical
Society, 338:197-207, 2003

[7] de la Calleja, J., Fuentes, O., Machine learning and image analysis for
morphological galaxy classi_cation. Monthly Notices of the Royal
Astronomical Society, 349(87), 2004

[8] Kyle W. Willett, Galaxy Zoo 2: detailed morphological classifications
for 304,122 galaxies from the Sloan Digital Sky Survey, August 2013.

[9] Kaggle.com, http://www.kaggle.com/c/galaxy-zoo-the-galaxy-
challenge/data, April 7, 2014

[10] Kaggle.com, http://www.kaggle.com/c/galaxy-zoo-the-galaxy-
challenge/details/the-galaxy- zoo-decision-tree, April 29, 2014

[11] Stanford Unsupervised Feature Learning and Deep Learning Wiki,
http://udl.stanford.edu/wiki/index.php/Softmax Regression, April 29,
2014

[12] Multinomial Logistic Regression,
http://en.wikipedia.org/wiki/Multinomial logistic regression, April 29,
2014

[13] Sedielem's Competition Solution,
http://benanne.github.io/2014/04/05/galaxy-zoo.html, April 29, 2014

	I. Introduction
	II. BackGround
	III. Proposed approach
	A. Image Analysis
	B. Data Compression
	C. Machine Learning

	IV. experiments, results and analysis
	A. Data
	B. Experiments and Results
	C. Analysis

	V. Conclusion
	References

