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Abstract—I implement several DSP technique: FFT, Wiener 
Filter, convolution to preprocess the galaxy images and use some 
machine learning theories to learn and predict hand-made galaxy 
morphology classifications. My data and success metric are taken 
from a recent Kaggle competition “Galaxy Zoo - The Galaxy 
Challenge”. I focus on three sequential algorithm modules: image 
analysis, data compression, and machine learning. I find that my 
approach performs with moderate success, though not as 
accurately as the approaches used by top competitors. 

Keywords—galaxy, wiener filter, decision tree, linear 
regression, PCA 

I. INTRODUCTION  
The goal of my project is to predict the morphology 

classifications of galaxy image data, as outlined by the recent 
Kaggle competition Galaxy Zoo - The Galaxy Challenge. As 
stated on the competition website: 

“With each passing day telescopes around and above the 
Earth capture more and more images of distant galaxies. As 
better and bigger telescopes continue to collect these images, 
the datasets begin to explode in size. In order to better 
understand how the different shapes (or morphologies) of 
galaxies relate to the physics that create them, such images 
need to be sorted and classified. Galaxies in this [data] set have 
already been classified once through the help of hundreds of 
thousands of volunteers, who collectively classified the shapes 
of these images by eye in a successful citizen science 
crowdsourcing project. However, this approach becomes less 
feasible as data sets grow to contain of hundreds of millions (or 
even billions) of galaxies. This competition asks you to analyze 
the JPG images of galaxies to find automated metrics that 
reproduce the probability distributions derived from human 
classifications. For each galaxy, determine the probability that 
it belongs in a particular class.” 

In particular, I seek to learn from labeled galaxy images in 
order to predict the probability distribution over morphology 
classifications that best models the distributions derived from 
crowd sourced classifications.  I note that each crowd sourced 
classification is actually a path in a decision tree and, thus, the 
problem is equivalent to determining the probability 

distribution of expert decisions at each branch in the decision 
tree given the galaxy image data. 

The paper is organized as follows: Section 2 I present the 
background and previous literatures related. Section 3 
describes the different modules and classification method. The 
experimental results and analysis are present in Section 4. In 
section 5, some conclusions are drawn.    

II. BACKGROUND 
My research is a continuation of the results of the Galaxy 

Zoo project [1]. This project compiled the crowd sourced 
classifications of 1 million galaxy images drawn from the 
Sloan Digital Sky Survey. The goal of our project is to learn 
from these hand-made classifications and automate the 
classification of galaxy images using machine learning 
techniques.  

The literature contains numerous approaches to the galaxy 
classification problem. For example, Storrie-Lombardi et al. 
[2], were able to successfully separate galaxies into several 
classes using a feed-forward neural network. They reported 
64% classification accuracy.  Owens, Griffiths, and Ratnatunga 
[3] utilized oblique decision trees to perform classification on 
the same dataset.  They report an overall accuracy of 63% 
using 5-fold cross-validation. Bazell and Aha [4] achieved 
78.55% accuracy using ensembles of classifiers for 800 
galaxies. Naive-Bayes classifier, neural network, and decision 
tree induction algorithms were used to divide galaxies into 6 
classes. 14 features were considered for each galaxy.    

An alternative to morphological classification is to 
introduce the Gini coefficient, as demonstrated by Abraham et 
al. [5]. Madgwick [6] investigated two statistical techniques to 
determine how accurately morphology can be estimated from 
the optical spectrum of galaxy.  He reported 70% accuracy for 
‘early’ galaxies and 83% accuracy for ‘late’ galaxies.  Here, 
‘early’ and ‘late’ refer to broad classes of galaxy 
morphologies.   

In this paper, a method for performing automated 
morphological galaxy classification is present based on digital 
signal processing and computer vision techniques and machine 
learning algorithms. I first preprocess the image data by 

http://www.galaxyzoo.org/%23/classify


cropping out the background and filter images, then use 
principal component analysis to further reduce the 
dimensionality.  Then I apply linear regression on the 
projection coefficients of the principal components to predict 
the distribution of morphology classifications. 

III. PROPOSED APPROACH 
The method of classification I present consists of three 

modules: Preprocessing Module, Data Compression Module 
and Regression Module. The method works as follows. It takes 
as input the galaxy images that are cropped, centered and 
rotated in the Preprocessing module. Then in the Data 
Compression Module, I reduce the dimension of the data based 
on the principal component analysis. The projection of the 
images onto the principal components gives the data input 
parameters for the regression module. Lastly, I construct the 
decision tree with 11 benchmarks. For each benchmark, four 
different regression algorithms are implemented. The next 
three sections would describe the details of these three 
modules.  

A.  Image Analysis 
In this step, I retrieve the raw images from the dataset and 

then transform in such a way that we discard a great deal of 
non-essential data. I reduce the dimensionality of the data by 
cropping out background pixels which are not a part of the 
subject galaxy (recall that the images provided in the dataset 
have been centered on the target galaxy so we may consider 
only the pixels near the center of the image to classify the 
images).  I also convert RGB values to grayscale. This reduced 
the input dimensions by a factor of 1/3. Afterwards, I remove 
the noise by adaptive filtering. I choose wiener filter to an 
image adaptively, tailoring itself to the local image variance. 
This approach often produces better results than linear filtering. 
The adaptive filter is more selective than a comparable linear 
filter, preserving edges and other high-frequency parts of an 
image. The wiener filter could also handle all preliminary 
computations and implements the filter for an input image. 
Through comparing to other filter, I figure out that wiener 
filter works best when the noise is constant-power ("white") 
additive noise, such as Gaussian noise. 

 

 
Figure 1: Image Denoising operation 

After removing the noise, we were able to further reduce 
the dimensionality of the data by cropping out background 
pixels that were not part of the subject galaxy. The subjects in 

each galaxy image had been centered prior to distribution for 
the competition and so we were then able to bypass the task of 
centering each subject. We found, through visual inspection of 
several dozen images, that the salient features of each galaxy 
were typically contained within the central 200_200 pixels (of 
424_424 pixels total). Thus, to ignore irrelevant data in the 
images, I cropped out those pixels which fell outside of the 
central 200_200 bound. I then scaled the cropped images down 
to 40_40 pixels. The choice here was mainly a technical one, as 
memory constraints prevented us from allowing the scaled 
images to be much larger while still holding many of these 
images in memory. 

In order to compute the desired rotation angles, we took the 
following approach. First, we scaled the 424×424 images down 
to 80×80. This step was taken to reduce the computational 
complexity of image rotation. Second, we generated an 6400 × 
2 matrix, X, of 2-dimensional offsets corresponding to the 
offset of each pixel from the center of the image. We then 
created a 6400×1 weight vector, W, where 

 
Note the resemblance of this weight to the normal 

distribution. Our choice of 200 for the denominator in the 
exponent implies that, all other factors equal, we expect about 
95% of the weight to lie within 40 pixels from the center. The 
choice to consider the central 40×40 pixels corresponds, 
roughly, to our choice to maintain the central 200×200 pixels 
in the non-normalized case (compare 80×80 with 424×424). 
The factor in the denominator simply corrects for vector 
length, such that distance from the center does not affect 
weight beyond the Gaussian factor in the numerator. We then 
generate the weighted vectors, , where 

 
We may then take the first eigenvector v, of  to determine 

the direction of greatest variance which, in turn, corresponds to 
the major axis of the galaxy. We may then rotate the image by 
-arctan(v1/v2) to align the major axis with the x-axis, as 
desired. We then crop out those pixels which fall outside of the 
central 40×40 bound. Again, this roughly corresponds to the 
bounds observed for the non-normalized case. Examples of 
color desaturation and image rotation and scaling can be seen 
in Figure 2. 

 

 
Figure 2: Image rotation normalization 



B. Data Compression 
Once the raw image data has been transformed, as outlined 

above, we vectorize the resulting training images and apply 
principal component analysis to further reduce the 
dimensionality of the data. In particular, we compute the mean 
over input vectors, compute the covariance matrix of the mean-
subtracted vectors, and then retrieve the eigenvectors of the 
covariance matrix which have the greatest eigenvalues. Figure 
3 below shows the drop-off for the first 50 eigenvalues on the 
training set. We see that maintaining the first 20 eigenvectors 
captures approximately 99% of the information and so we 
decided to maintain only the mean vector and the first 20 
eigenvectors. 

 

 
Figure 3.  Eigenvalues of principal components. 

 

C. Machine Learning 
Having transformed the original images into 40×40 images 

and then into 1600-dimensional vectors, we may subtract the 
mean computed in the data compression module and then 
project the centered vectors onto the 20 principal components. 
In this way, we transform each image into a vector of 20 
projection coefficient which we may use, along with the 
labeled solutions, to train and evaluate the machine learning 
technique. 

We apply this technique to each task separately. The tasks, 
including the number of responses for each, are listed in Table 
1. 

 

 

 
Table 1.  The decision tree, comprising 11 tasks and 37 

responses.[8] 

 
Figure 4.  Flowchart of the classification tasks, beginning at 

the top center. [8] 

 



IV. EXPERIMENTS, RESULTS AND ANALYSIS 

A. Data 
Our data is obtained from Kaggle’s website [8]. It contains 

a collection of 61578 galaxy images along with a file 
containing solution vectors for each image. We have artificially 
split this data set into a training set, validation set, and test set, 
with a 50/25/25 share, respectively. We note that the images 
within the data set have been centered on the subject galaxies 
and so detecting galaxies within these images in not part of the 
problem scope. The solution vectors for each image have been 
taken as the sample average of manual galaxy classifications. 
Each sample is the result of a specific path down a decision 
tree, described in Table 1 and shown in Figure 1 below, taken 
directly from the Kaggle competition web page[9]. Each 
galaxy has been classified by multiple individuals, resulting in 
multiple paths along the decision tree. These paths generate 
probabilities for reaching each node. For example, if 25% of 
respondents chose response 1 of task 1, then those respondents 
would follow the tree to task 7. If 50% of respondents then 
chose response 1 of task 7, then the entry in the solution vector 
for task 7.1 would be 25% * 50% = 12.5%. The marginal 
distribution at each branch can easily be computed by 
normalizing over all responses for that branch. This method of 
cumulatively multiplying probabilities applies for every task 
branch, as mapped by the figure 1. The exception to this 
process is task 6, where responses 6.1 and 6.2 have been 
normalized to sum to 1. Since task 1 is at the top of the 
decision tree, the sum of probabilities over responses will sum 
to 1. For the remaining tasks, the sum of probabilities over 
responses will typically sum to less than 1. 

B. Experiments and Results 
The performance of each algorithm is based on the root 

mean squared error (RMSE) of the difference between the 
solution matrix and the predicted solutions. That is, for N 
observations and L target vector dimensions, we compute 

 
 

This matches the evaluation criteria of the Kaggle 
competition. For linear regression, we trained the weights once 
with non-rotated pre-processed training images and once with 
rotated pre-processed training images. In the non-rotated case, 
we achieved an RMSE of 0.1541 over the validation set. In the 
rotated case, we achieved an RMSE of 0.1437.  

C. Analysis 
We found that wiener filter and rotation normalization 

during the image analysis module greatly improved 
performance. The mean and first 8 eigenvector images for the 
non-normalized and normalized settings are shown in Figure 4 
and Figure 5, respectively. Looking at the qualitative properties 
of these images, we may infer two things. First, it appears that 
our initial choice to focus on the central 200×200 pixels was a 
good one, since the salient regions of the images seem to end at 
or near the boundary of the image. Second, we can see why 

linear regression might perform poorly in the non-rotated case. 
Consider “PC2” and “PC3” in Figure 5. We might expect the 
projections of an elliptical galaxy image onto these 
eigenvectors to be sinusoidal as a function of rotation angle of 
the image. Thus, a pure linear model might not be able to 
capture such a relationship. 

I believe that, overall, my methods were moderately 
successful. I compare to a simple benchmark and the winning 
solution from the competition. The so-called ‘central pixel’ 
benchmark simply trains a linear model on the RGB values of 
the center pixel of the training image set. This simple approach 
manages to achieve an RMSE of 0.16235. The winning 
solution [12], using convolutional neural networks and a 
number of other techniques was able to achieve an RMSE of 
0.07567. It is notable that the best-known solution and the 
simple central pixel benchmark differ in RMSE by less than 
0.1 (corresponding to 10%). If our best benchmark solution of 
0.1289 is accurate for the full test set, then our solution ranks in 
the 55th percentile, hence our appraisal of moderate success. 

V. CONCLUSION 
Between our own results and the results of the Kaggle 

competition, we found that neural network techniques 
performed best for this problem. Given more time and better 
understanding of how to implement the algorithms in such a 
way as to avoid excessive memory requirements, we would 
like to explore more neural network architectures and train/test 
on the complete data set. Competition winners also avoided the 
loss compression techniques of our image analysis module. It 
would be worthwhile to explore the performance gains by 
retaining image color and resolution. Given the information 
content of the 20 principal components, we might be able to 
approach optimal accuracy while simultaneously reducing 
computational cost. The initial motivation for the Kaggle 
competition was to automate the process of galaxy 
classification. It would be interesting to research a confidence-
based model, as opposed to attempting to match crowd-sourced 
distribution. Such a system might employ one of our 
comparatively fast techniques to generate an initial assignment 
and confidence level. Low confidence levels may trigger the 
algorithm to delegate the galaxy image to a more sophisticated 
and computationally-intensive algorithm to increase precision. 
Such a design would certainly be practical for processing data 
sets with billions of galaxy images. 

 
Figure 5. Non-rotated mean and eigenvalues 



 
Figure 6: Rotated mean and eigenvalues 
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