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Abstract—Subspace clustering has typically been approached
as an unsupervised machine learning problem. However in
several applications where the union of subspaces model is useful,
it is also reasonable to assume you have access to a small
number of labels. In this paper we investigate the benefit labeled
data brings to the subspace clustering problem. We focus on
incorporating labels into the k-subspaces algorithm, a simple and
computationally efficient alternating estimation algorithm. We
find that even a very small number of randomly selected labels
can greatly improve accuracy over the unsupervised approach.
We demonstrate that with enough labels, we get a significant
improvement by using actively selected labels chosen for points
that are nearly equidistant to more than one estimated subspace.
We show this improvement on simulated data and face images.

I. INTRODUCTION

The union of subspaces model is a generalization of the
subspace model wherein data vectors lie near one of several
subspaces. This model is used actively in computer vision
to model images of different faces or objects in a variety
of lighting conditions. If the face or object pose stays fairly
constant, each collection of images for a given object can
be represented by a subspace [1], [2]. The model also finds
applications in network topology identification [3] and gene
expression analysis [4].

Subspace clustering algorithms take a collection of data
vectors that lie near a union of subspaces and attempt to
simultaneously cluster the vectors and identify the underlying
subspaces. As with other clustering methods, it is usually
an unsupervised technique, working only with unlabeled data
and estimating the best clusters, subspace dimensions, and
subspace spans. However in all the applications mentioned
above, we do have access to label information – we could
ask a human to label two images as being the same face or
different, or we could ask domain experts for likely labels in
the network and genetics examples. This paper investigates the
benefit of using a small amount of labeled data in a classical
alternating minimization algorithm for subspace clustering, k-
subspaces [5].

In this paper, we study different techniques for selecting
which labels to query and compare to both unsupervised
clustering and random label selection. We find that the most
useful measure of informativeness in a label is given by
points that are nearly equidistant to more than one estimated
subspace; however, randomly selected labels outperform even
this measure when there are few labels. In all cases, even
a very small number of labels improves clustering accuracy
significantly over the unsupervised approach, making labeling

worthwhile. With enough labels, k-subspaces is competitive in
terms of accuracy with other algorithms on the extended Yale
Face Database B [6], even with random initializations.

II. PROBLEM FORMULATION

Suppose we have a D ×N data matrix X whose columns
are denoted xi ∈ RD, i = 1, . . . , N . These columns form K
disjoint clusters, and each cluster of points lies near a low-
dimensional subspace. We use Ck, Sk, and dk, k = 1, . . . ,K,
to represent the clusters, subspaces, and subspace dimensions.
Our goal is to recover the true clusters Ck by leveraging the
union of subspaces model. We use the distance of a point
to different subspaces when deciding which points to label.
Define PSk to be the Euclidean projection matrix onto the
subspace Sk. Then the distance from a point xi to a subspace
Sk is defined as

dist(xi,Sk) = ‖xi − PSkxi‖2 .

To incorporate actively labeled points into the k-subspaces
algorithm, at each iteration of the algorithm we select points
to be labeled based on criteria that can be computed from the
data and current subspace estimates. We will use the following
two criteria. Suppose at iteration t we have estimated clusters
C

(t)
k and subspaces S(t)k . Let xi be currently assigned to the

cluster k∗i . We choose either the min margin labels for points
that are most equidistant to their two closest subspaces:

xmm = arg max
i=1,...,N

max
j 6=k∗

i

dist(xi,S(t)k∗
i
)

dist(xi,S(t)j )
(1)

or the max residual labels for points that are furthest from
their assigned subspace:

xmr = arg max
i=1,...,N

dist(xi,S(t)k∗
i
) . (2)

A. Related Work

A comprehensive survey of subspace clustering algorithms
can be found in [7]. There is a wide variety of algorithms
that work well under different assumptions on the noise and
relationship among the subspaces; e.g., [8] requires that the
subspaces are linearly independent and is sensitive to noise,
while [3] gives results with respect to the probability that
neighboring points are in different subspaces; others have
various requirements on the collection of principal angles.
The algorithms also each provide different tradeoffs between



the clustering accuracy, computational speed, and theoretical
guarantees.

State-of-the-art clustering accuracy is achieved by the sparse
subspace clustering (SSC) [9] and spectral local best-fit flat
(SLBF) [10] algorithms. These algorithms work well for sev-
eral general cases but are known to fail in common situations.
For example, the SSC algorithm is known to fail when the
smallest principal angle between the subspaces is below a
certain data-dependent value [9], even when the data are noise-
free. The SLBF algorithm works well even in the case where
the principal angles are small, but on real data its performance
lags behind that of SSC, as seen in [10]. In this work, we show
how a semisupervised approach can be used to counteract
these issues.

The algorithms of both SSC [9] and SLBF [10], while
achieving great clustering accuracy, are highly computationally
burdensome. SSC solves a sparse coding problem for every
data vector to be clustered, and then it runs spectral clustering.
SLBF is faster, but it starts by initializing with locally best-fit
planes to every point in the dataset. In contrast, the k-subspaces
algorithm achieves nearly the fastest run time among all
commonly tested algorithms [10]. This makes k-subspaces
more tractable for the active learning setting, as users could
provide labels and interact with the algorithm in real time.

Active sample labeling has been used previously in standard
clustering algorithms [11] as well as spectral clustering [12]–
[14]. One widely known approach is that of hierarchical
sampling [15]. The idea behind this method is to first perform
an initial clustering, then iteratively refine the clusters by
requesting samples. Our approach is similar in that it alternates
between clustering and requesting labels. However, in [15],
while the clusters may be chosen actively, points within
clusters are still chosen at random. Spectral methods [12]–
[14] enforce hard or soft constraints on the similarity matrix,
increasing or decreasing the connections between nodes based
on the labeled data. In [12], the authors actively select points
along the inner and outer boundaries of two clusters. Labels
are then incorporated as must-link or cannot-link constraints in
the spectral clustering problem. In [13], the authors implement
both a constrained spectral clustering method as well as active
query selection based on maximum expected error reduction
and allow for both hard and soft constraints. The work of
[14] extends these ideas to allow for missing data in the
measurements. While these methods could be incorporated
directly into spectral subspace clustering algorithms such as
SSC and SLBF, our initial empirical results showed only
a mild performance improvement, and so we leave careful
investigation for future work.

In the context of classification, active learning has been
shown to provide significantly improved rates of convergence
under many settings [16]–[22]. In contrast to passive learning,
where labels are obtained at random, active learning algo-
rithms request labels for maximally informative points, based
on a variety of metrics. One important line of work [21],
[22], focuses on querying points likely to be misclassified in
a margin-based sense. In particular, labels are first obtained at

Fig. 1: Two one-dimensional subspaces with max residual
and min margin points. Dashed lines from points denote
dist(x,Sk), and the center dotted line denotes the decision
boundary for points between subspaces.

random, and a linear classifier is trained based on the data. In
subsequent rounds, the algorithms request the labels of points
lying near the decision boundary of the classifier, i.e., points
having minimum margin. The results of [22] show this type of
learner is optimal under a common boundary noise condition,
and this work serves as the motivation for our margin-based
subspace clustering presented here.

III. ACTIVE K-SUBSPACES

In this section, we modify the k-subspaces algorithm to
incorporate labels obtained by querying an oracle and show a
method of actively selecting which labels to query in order to
improve performance. As mentioned in the previous section,
many active learning algorithms choose queries based on
some metric of uncertainty, as these points are likely to be
misclassified. In the case of subspace clustering, a natural
metric is that of maximum residual, as defined in (2). However,
as we will see shortly, requesting labels for points according
to this metric does not provide a significant benefit over
randomly selecting queries. Instead, we turn to a closer analog
of the margin-based approach. Consider, for example, two one-
dimensional subspaces lying in R2, as in Fig. 1. The nearest
subspace labeling approach can be viewed as classification,
where the decision boundary is a function of dist(xi,Sk).
As seen in the figure, points of maximum residual (here
xmr) may lie far from the boundary, and hence not be in
danger of misclassification. In contrast, points whose distance
to multiple subspaces is roughly equal (xmm) tend to lie near
the decision boundary and correspond to points of minimum
margin in the classification sense. Further, it has been noted
in [9] that many subspace clustering methods fail when the
underlying subspaces are close in some sense. In fact, the
authors of [9] show that for two common benchmark datasets,
a significant number of points have neighbors lying in different
subspaces, indicating the points themselves lie near multiple
subspaces. This motivates our min margin approach to active
label selection.

We now describe our approach to active subspace clustering.
To incorporate the obtained labels, we make two changes



Algorithm 1 Active k-subspaces

1: Input: X = {x1, x2, . . . , xN}: data, K: number of
subspaces, d: dimension of subspaces, maxIter: maxi-
mum number of iterations, maxLabels: maximum number
of labels, method: method of label selection (random,
maxResid, or minMargin)

2: Initialize Subspaces and Clustering: Initialize subspace
estimates S(0)1 , . . . ,S(0)K at random. Assign labels to points
by nearest subspace estimate.

3: nLabels ← 0
4: for t = 1,. . . ,maxIter do
5: Update Subspaces Using Labeled and Unlabeled

Data: Estimate subspace S(t)k by performing SVD on
points in C(t−1)

k and obtaining best rank-d estimate.
6: Update Labels: Assign labels to points by nearest

subspace estimate, k∗i = arg mink dist(xi,S
(t)
k ).

7: if C(t)
k = C

(t−1)
k and nLabels < maxLabels then

8: m← min (blog(maxLabels)c,maxLabels− nLabels)
Request m labels according to method specified and
update C(t)

k for the queried points.
9: nLabels ← nLabels + m

10: end if
11: end for

to the k-subspaces algorithm from [5]. First, for all queried
points, we set the estimated cluster to the true cluster. While
this step alone improves the algorithm’s performance, a more
significant improvement is obtained by making one further
change. In the subspace estimation step, when the number
of labeled points for a given subspace Sk is greater than
dk, those points alone are used to estimate the subspace.
This guarantees our subspace estimate stems only from points
lying in or near the true subspace. However, we will see
shortly that this step can have a negative effect when just
more than dk labels are obtained from a subspace, making
the subspace estimate noisy. An outline of the algorithm is
given in Algorithm 1. The algorithm first performs clustering
using k-subspaces until the cluster assignments are stable. At
this point, blog(maxLabels)c labels are requested according
to the desired metric (random selection, max residual, or min
margin). The algorithm then follows standard k-subspaces
again and the process is repeated until maxLabels labels have
been obtained and the algorithm runs a terminal number of
iterations. Note that the choice of blog(maxLabels)c is based
on empirical results. However, the algorithm is not sensitive
to this number in practice. Determining an optimal number of
labels per algorithm iteration is a topic for our future study.

IV. SIMULATIONS

In this section, we compare the performance of the proposed
min margin label selection with unsupervised k-subspaces,
random label selection, and max residual label selection on
both real and simulated data. We set maxIter to 128, which
is sufficient to request maxLabels labels in all cases. For all
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Fig. 2: Misclassification results for simulated data. (a) Misclas-
sification rate as a function of number of supervised labels for
all label selection methods. Unsupervised error is 39.74%. (b)
Misclassification rate as a function of number of labels and
subspace angle for min-margin label selection.

methods, ten restarts are performed and the misclassification
rate of the one with smallest `2 error is recorded. Further, we
seed the random number generator so that the subspace ini-
tializations, random data generated, and random face choices
are consistent across trials.

For the simulated data, we use an ambient dimension
D = 50 and then generate data in a manner similar to [9].
We use K = 3 subspaces of dimension d = 4, and then
generate the subspaces such that all angles between subspaces
S1 and S2 and subspaces S2 and S3 are equal to θ. From
each subspace, 250 points are drawn randomly and corrupted
with zero-mean additive Gaussian noise with variance 0.01.
We then record the average misclassification rate over 100
trials as a function of θ and the number of labels requested.
Fig. 2 shows the resulting error as a function of the number
of labels for θ = 0.05, as well as a heat map displaying the
misclassification rate as a function of θ and the number of
labels requested. Although not shown, with fewer than 50
labels, random selection outperforms the min-margin method,
and for fewer than 20 labels, unsupervised learning yields the
best performance. This is due to the fact that the subspace
estimates are performed using only labeled data, which is
noisy enough to provide a poor estimate when very few points
are used. However, as the number of labels increases, we see
that incorporating labels significantly improves the clustering
performance. Further, as the number of labels increases, the
min margin approach dominates other label selection methods.

Next, we test our algorithm on the extended Yale Face
Database B in a manner following [10]. This dataset consists
of face images for K = 38 individuals under a variety of
lighting conditions, where each individual corresponds to a
subspace to be identified. For each person, there are Nk = 64
images of size 192×168 pixels. Since the intrinsic dimension
of each subspace is known to be close to 5, we first project the
data onto its first 5K principal components, and then perform
clustering on the dimension-reduced data for 100 randomly
selected subsets of size K = 2, 3, . . . , 8 persons, following
the methodology of [10]. Due to the distribution of the data
in this set (analyzed in [9]), algorithms relying on a nearest
neighbor approach tend to suffer in performance, as seen in



K 2 3 4 5 6 7 8
unsupervised 8.63 24.64 39.01 45.04 49.91 50.88 54.79
random labels 2.88 4.51 5.86 6.78 7.31 7.39 8.51
max residual 2.52 4.59 6.75 8.61 9.86 10.02 14.37
min margin 1.27 2.20 2.25 2.40 2.88 2.45 3.06

state of the art (unsupervised) 3.46 6.08 10.04 10.32 11.02 11.85 12.47

TABLE I: Misclassification rates for extended Yale Face Database B with 3Kd = 15K labels. The final row denotes the
minimum unsupervised error as reported in [10], which includes the results of algorithms in [9], [10], [23].
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Fig. 3: Misclassification rates vs. number of supervised labels
for extended Yale B dataset for (a) K = 2 and (b) K = 5.

the simulations performed in [10]. In particular, as the number
of subspaces increases, the LBF-based algorithms struggle
significantly, achieving classification errors of 27-36% (for the
various forms) in the case of 8 subspaces. In the absence
of significant preprocessing (i.e., applying robust principal
component analysis as in [9]), this data set presents challenges
to all existing algorithms. Fig. 3 shows the misclassification
rate as a function of the number of labels requested for
K = 2 and K = 5 faces. In this case, all semisupervised
methods significantly outperform unsupervised clustering as
expected. Further, for sufficiently many labels, we see that the
min-margin approach again dominates both random and max
residual queries. Note that for very few labels, random label
selection achieves the best performance, since the requested
labels are spread evenly through all subspaces. Our simulations
suggest that approximately 2Kd = 10K labels are sufficient
for active methods to match random labeling. Table I shows
the classification errors for K = 2, 3, . . . , 8 individuals with
3Kd labels queried. Here we see that the min-margin approach
yields a strong improvement over other methods. Further, our
algorithm achieves a much lower classification error than the
best performers from [10].

V. CONCLUSION AND FUTURE WORK

We have shown that an active approach to label selection can
provide significant performance improvements to the efficient
k-subspaces algorithm. The presented algorithm is a natural
extension of optimal algorithms from active classification.
With few labels, the k-subspaces algorithm is competitive with
state of the art algorithms such as SSC and SLBF. Several
open problems remain. First, we wish to incorporate active
labeling into other subspace clustering algorithms to give a
fair comparison for clustering accuracy, labels needed, and
computational speed. Labels could be directly incorporated
into SLBF and spectral methods, and we could introduce

them as constraints in the `1 minimization problem of SSC.
Further, we have seen that for very few labels, random queries
outperform active selection. In this regime, a mixture of active
and random labels would likely improve performance.
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