
Online Subspace Estimation and Tracking 
from Missing or Corrupted Data 

Laura Balzano 
www.ece.wisc.edu/~sunbeam 

Work with Benjamin Recht  
and Robert Nowak 



Subspace Representations Capture Dependencies 



Subspace Representations Capture Dependencies 

ordered singular values (normalized) 

ordered singular values (normalized) Byte Count data from UW network 

Temperature data from UCLA Sensornet 



Subspace Representations Capture Dependencies 

ordered singular values (normalized) 

ordered singular values (normalized) Byte Count data from UW network 

Temperature data from UCLA Sensornet 

Each snapshot lies in a low-
dimensional subspace 

We can leverage these dependencies to do 
detection, estimation and prediction. 



Subspace Representations May be Time-Varying 

Slow changes in the subspace can indicate 
seasonal changes or calibration drift.  

Sudden deviations from the subspace can 
indicate environmental anomalies. 

Slow changes in the subspace can indicate 
changes in usage patterns.  

Sudden deviations from the subspace can 
indicate failures or attacks. 

Lakhina, Crovella, Diot: Diagnosing Network-
Wide Traffic Anomalies. Sigcomm 2004. 

Balzano and Nowak: Blind Calibration of 
Sensor Networks. Sigcomm 2004. 



Online Subspace Tracking from Incomplete Data 

•  Data are incomplete: 
–  In sensor networks, data go missing. In large complex systems, it is 

infeasible to collect all the data. 
–  In recommender systems, there is no large overlapping set of experiences 

(i.e. not everyone has seen the same movie). 
– Data could even be too large to fit in memory 

•  Incremental updates are needed: 
– You don’t want to update the model using the entire available dataset 

when a user adds one new movie rating. 



Subspace Clustering from Incomplete Data 

•  Object tracking in video: 
•  First identify features of objects and matching them up 

across frames. 
–  e.g. the SIFT algorithm-- scale invariant feature 

transform-- is used to stitch images on your camera 
•  Each tracked object’s columns in the pixel-frame 

matrix lie in a subspace. This leads to the problem of 
“Subspace Clustering”. 

•  Obstruction of objects means that some frames are 
missing information about some objects. 

Pixels/Features 
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Zelnik-Manor, Machline, Irani: Multibody Factorization with Uncertainty: 
Revisiting Motion Consistency. Int’l Journal on Computer Vision. 2006 
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Suppose we receive a sequence of length-n vectors that lie in a
d-dimensional subspace S:

v1, v2, . . . , vt, . . . ,∈ S ⊂ Rn

but we only observe each vector on a particular subset of the
n coordinates, Ωt ⊂ {1, . . . , n}.

vΩ1 , vΩ2 , . . . , vΩt , . . .

We are interested in identifying that subspace S.

At first we consider the subspace S to be static, but we wish to
develop an algorithm which operates incrementally one vector at a time,
and thus is amenable also to tracking a possibly changing subspace.

Theorem: If |Ω| = O(µd log d) and Ω is chosen uniformly with replacement,
then with high probability (and ignoring small constant factors)

|Ω|− dµ

|Ω| sin(φ)2 ≤ sin(φΩ)2 ≤ sin(φ)2

‖vΩ − PSΩvΩ‖
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At first we consider the subspace S to be static, but we wish to
develop an algorithm which operates incrementally one vector at a time,
and thus is amenable also to tracking a possibly changing subspace.
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Solutions to the Full-Data Subspace Tracking Problem 

Two techniques have been employed to solve 
this problem: 

•  Linear algebraic techniques. 
•  Gradient-based methods. 



Linear Algebraic: Incremental SVD Update 

Then do a further eigen decomposition of 
this matrix to get the new U, S and V. 



Subspace Tracking in the Signal Processing Community 
•  Canonical examples for subspace 

tracking exist in the sonar, radar, and 
communications systems literature.  
–   Maintain a low-rank approximation of a 

covariance matrix. 
–   Order of 10s of sensors. 
–   Dimension of subspace corresponds to 

number of signal sources. 
–   Pisarenko, MUSIC, ESPRIT 

•  LMS-style or Instantaneous gradient 
methods 
–  Some have an orthogonalization step 
–  Projection Approximation Subspace 

Tracking– does not need 
orthogonalization 

–  Have not been extended for missing data 
–  Can be sensitive to step size 

Figure from Stephen Kay, Fundamentals of Statistical 
Signal Processing Volume I: Estimation, p3. 



Incomplete Data, Batch Approach 
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Suppose we collect T incomplete vectors into a matrix, where all the
completed vectors lie in the same d-dimensional subspace S:




| | |

vΩ1 vΩ2 . . . vΩT

| | |





How do we use these data to estimate the underlying subspace S?

Suppose we receive a sequence of incomplete vectors that lie in a
d-dimensional subspace S:

vΩ1 , vΩ2 , . . . , vΩt , . . .

How do we generate a sequence of estimates St?

Given St and vΩt , how do we generate St+1?

Suppose we receive a sequence of length-n vectors that lie in a
d-dimensional subspace S:
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A Solution to Missing Data Subspace Estimation: 
Matrix Completion 

• Matrix Completion can be formulated as 
static subspace estimation. 
–  Estimate the column space and then project to 

complete the columns. 

–  Many algorithms have been proposed (Nuclear 
Norm minimization, OPT-Space, SVT, SET, 
FPCA) and the Nuclear Norm optimization is a 
tight relaxation to the rank minimization problem. 



Problem Definition: Incomplete and Incremental 
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Suppose we collect T incomplete vectors into a matrix, where all the
completed vectors lie in the same d-dimensional subspace S:




| | |

vΩ1 vΩ2 . . . vΩT

| | |





How do we use these data to estimate the underlying subspace S?

Suppose we receive a sequence of incomplete vectors that lie in a
d-dimensional subspace S:

vΩ1 , vΩ2 , . . . , vΩt , . . .

Given St and vΩt , how do we generate St+1?

Suppose we receive a sequence of length-n vectors that lie in a
d-dimensional subspace S:

v1, v2, . . . , vt, . . . ,∈ S ⊂ Rn

1



The Incomplete Data Projection Residual 

Full-data Residual 

Incomplete-data Residual 



Norm of the Incomplete Data Residual 
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Coherence 
A fundamental problem with subsampling is that 
we may miss the important information. 

How aligned are the subspace S and the vector v 
to the canonical basis? 

0 
0 

0 

0 

0 

0 

0 

1 

Examples of bases 
that form an 
Incoherent 
Subspace: 

•   Orthonormalize 
Gaussian random 
vectors. 

•   Fourier basis. 

Examples of bases 
that form a 
Coherent 
Subspace: 

•   Identity basis. 

•   Any basis where 
the vectors are very 
sparse. 



Norm of the Incomplete Data Residual 

coherence (ideally close to 1) 

Does random subsampling suffice? 
How aligned is S to the canonical basis? 

Random subsample of 8 
sensors captures the residual 
norm from a 6-dimensional 
subspace of R23 
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Theorem: If |Ω| = O(µd log d) and Ω is chosen uniformly with replacement,
then with high probability (and ignoring small constant factors)

|Ω|− dµ

|Ω| sin(φ)2 ≤ sin(φΩ)2 ≤ sin(φ)2

‖vΩ − PSΩvΩ‖

Theorem: If |Ω| = O(µd log d) and Ω is chosen uniformly with replacement,
then with high probability (and ignoring small constant factors)

|Ω|− dµ

n
‖v − PSv‖22 ≤ ‖vΩ − PSΩvΩ‖22 ≤

|Ω|
n
‖v − PSv‖22

Ut+1 = Ũt −
v‖
‖v‖‖

[1 0 . . . 0] +
(

sin(σηt)
v⊥
‖v⊥‖

+ cos(σηt)
v‖
‖v‖‖

)
[1 0 . . . 0]
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‖v‖‖

)
[1 0 . . . 0]
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Angle of the Incomplete Data Residual 

Random subsample of 8 
sensors captures the angle to a 
6-dimensional subspace of R23 
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then with high probability (and ignoring small constant factors)
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‖vΩ − PSΩvΩ‖

Theorem: If |Ω| = O(µd log d) and Ω is chosen uniformly with replacement,
then with high probability (and ignoring small constant factors)
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n
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|Ω|
n
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sin(σηt)
v⊥
‖v⊥‖
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v‖
‖v‖‖

)
[1 0 . . . 0]
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Problem Definition (yet again) 
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Suppose we receive a sequence of incomplete vectors that lie in a
d-dimensional subspace S:

vΩ1 , vΩ2 , . . . , vΩt , . . .

How do we generate a sequence of estimates St?

Given St and vΩt , how do we generate St+1?

Suppose we receive a sequence of length-n vectors that lie in a
d-dimensional subspace S:

v1, v2, . . . , vt, . . . ,∈ S ⊂ Rn

How do we generate a sequence of estimates St?

Given St and vt, how do we generate St+1?

Suppose we receive a sequence of length-n vectors that lie in a
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Subspace Tracking Problem 

Then do a further eigen decomposition 
of this matrix to get the new U, S and V. 

LMS-style or Instantaneous 
gradient methods,  

some have an orthogonalization 
step, have not been adapted for 
missing data 



Descent on the Grassmannian: Space of d-dim Subspaces 

•  Idea: Instead of projecting back to orthogonal columns and a 
d-dimensional subspace, follow the geodesic on the 
Grassman manifold. 

•  Basis of batch incomplete-data algorithms by Keshavan et al 
(2008) and Dai et al (2009). 

•  There are explicit formulas for a gradient descent step that 
follows the Grassmannian geodesic. 



Incremental Cost Function 



GROUSE: Grassman Rank-One Update Subspace Estimation 

•  One iteration involves a projection and an 
outer product.  

•  The algorithm is simple and fast. 



Performance of our Online Gradient Descent Algorithm 

Let’s see what it can do! 
–  Subspace Tracking 
–  Matrix Completion 
–  Subspace Clustering 
–  Robust Tracking 

sunbeam.ece.wisc.edu/grouse 



Performance of our On-line Gradient Descent Algorithm 

•  For tracking a changing subspace, we first looked at sudden 
changes to new subspaces.  

•  The tracking was excellent again for a broad range of step sizes. 

•  We also noted that the vector residual (v perp) is an excellent proxy 
for error, which comes directly from the result in the first part of the 
talk. 



Comparison Performance for Matrix Completion 

•  As we said before, Matrix 
completion is a type of static 
subspace estimation problem. 

•  To use GROUSE, we pass over 
the columns of the matrix in 
random order, doing an update 
for every column. 

•  We compared against other 
state of the art MC algorithms 
on reconstruction error and 
computation time. 



Comparison Performance for Matrix Completion 

•  We compared against Accelerated Proximal Gradient algorithm for 
NNLS (Toh and Yun 2009) on very large problems. GROUSE is 
about 2-5 times faster. 



Performance for Subspace Clustering 
with Arthur Szlam 

•  We have several vectors that can be grouped into 
k subspaces. We want to group them and 
estimate the subspaces simultaneously.  

•  Batch Algorithm:  
–  Estimate an initial clustering using a nearest-neighbor 

type approach. 
–  Estimate best d-dimensional subspace for each cluster. 
–  Re-cluster the data by finding the nearest subspace. 

Repeat. 

•  Incremental Algorithm: 
–  Estimate an initial clustering using nn-type approach. 
–  Estimate best d-dimensional subspace for each cluster. 
–  Repeatedly choose a vector at random, find its nearest 

subspace, and do one GROUSE update of that 
subspace. 

Pixels 

Fr
am

es
 



Performance for Subspace Clustering 
with Arthur Szlam Pixels 
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GROUSE for Robust Tracking 
with Arthur Szlam 

•  What if data aren’t missing but instead corrupted? 

•  If we can identify the corruptions, we can throw them out and 
use GROUSE for tracking. 

•  So far we have only looked at the situation where we 
initialize with a good estimate of the subspace. 

•  We examined several methods of identifying the corruptions: 
–  Throw out worst residual entries of the Min L1 norm of the residual 
–  Randomizing the Min L1 norm index set. 
–  Approximations to Min L1 norm. 
–  Throw out worst residual entries of the L2 norm. 



GROUSE for Robust Tracking 
with Arthur Szlam 

–  Throw out worst residual entries of the Min L1 norm of the residual 
–  Randomizing the Min L1 norm index set. 
–  Approximations to Min L1 norm (Split Bregman). 
–  Throw out worst residual entries of the L2 norm. 
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Next Steps 

Generalize the results to other models of correlation 
between the measurements– Updating nonlinear 
models, graphical models with incomplete data. 

Study convergence of the Subspace Clustering 
algorithm and properties of the Robust Tracking 
algorithm. 

Finish proof of GROUSE convergence for incomplete 
data: Will every subspace along the algorithm’s path 
be incoherent with the canonical basis? 



Thank you! 
Questions? 



GROUSE Update Step: 
Intuition Slides 



GROUSE: Intuition. Look at Full-data algorithm. 



GROUSE: Rewrite Ut 



GROUSE: Rewrite Ut 



GROUSE: Rewrite Ut 

This algorithm is equivalent to the 
given full-data algorithm, because 
Ut was arbitrarily chosen to span 

the subspace. 



GROUSE: Replacing the component in the subspace with a 
component closer to v. 
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Theorem: If |Ω| = O(µd log d), then with high probability
(and ignoring small constant factors)

|Ω|− dµ

n
‖v − PSv‖22 ≤ ‖vΩ − PSΩvΩ‖22 ≤

|Ω|
n
‖v − PSv‖22

Ut+1 = Ũt −
v‖
‖v‖‖

[1 0 . . . 0] +
(

sin(σηt)
v⊥
‖v⊥‖

+ cos(σηt)
v‖
‖v‖‖

)
[1 0 . . . 0]

µ :=
n

d
max

j
‖PSej‖22 (1)

‖vΩ − PSΩvΩ‖22

1

- + 



GROUSE: Replacing the component in the subspace with a 
component closer to v. 
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GROUSE: Replacing the component in the subspace with a 
component closer to v. 
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