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Wireless Sensing Challenges

solar cell solar cell 

sensorsensor

processorprocessor
GPSGPS

radioradio

batterybattery

Networking, Communications, Resource Management, Signal Processing

BUT most work assumes the data are calibrated! These 
inexpensive sensors are prone to drifting calibration.

Our goal: look for ways to do in-situ calibration.
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Two Approaches to Calibration
• First Approach: Non-Linear Filters

– Description of Approach
– Calibration Results

• Second Approach: Signal Subspace 
Matching

– Description of Approach
– Calibration Results
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Outline
• First Approach: Non-Linear Filters

– Description of Approach
– Calibration Results

• Second Approach: Signal Subspace 
Matching

– Description of Approach
– Calibration Results
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Soil Applications
• Sampling soil is an 

important task
– CO2 in our atmosphere is 

being absorbed by the soil
– Ground water quality can be 

monitored as moisture, 
nutrients, toxics and 
pollutants percolate through 
the soil

• Sampling soil has many barriers that other 
sampling problems do not!
– The field is extremely heterogeneous; Oversampling is 

not only impossible, the disturbance caused is 
undesirable.

– The behavior of the moisture and chemistry of the 
field depends greatly on soil types, rainfall, 
topography, plant types, and various other factors.
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Dynamical Environment
• Fortunately, because of the importance of soil 

sampling, environmental engineers develop 
very complex but thoughtful models for soil 
dynamics.

• Toy example: We want to track the state of 
moisture at a point near the surface of the soil.

• We take measurements with an uncalibrated
ECHO-20 moisture sensor and precipitation 
measurements with a rain gauge.

ECHO-20



4

7

Model

• Variables to note:
– yk is the moisture
– δ is (time invariant) moisture decay parameter
– qk is model error

• Model is Non-Linear
• Model is “forced” by precipitation
• Parameter distributions are non-Gaussian 

(e.g., moisture is a non-negative quantity)

Dynamics Model
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Model

Measurement Model

• Variables to note:
– β1 is the calibration gain
– β0 is the calibration offset
– v is the measurement noise

• Our state vector thus has 5 states:
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Non-Linear Filtering
• Kalman Filter ?

– Our system is not linear nor are the inputs 
Gaussian.

• Extended Kalman Filter ?
– Introduces too much error in the 

linearization step.
• Ensemble Kalman Filter (our choice)

– A Monte Carlo method which requires less 
computation than the particle filter, as it 
assumes very loose Gaussianity in the 
update step.

• Particle Filter or other methods…
– Future work for comparison.
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Outline
• First Approach: Non-Linear Filters

– Description of Approach
– Calibration Results

• Second Approach: Signal Subspace 
Matching

– Description of Approach
– Calibration Results
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Increasing prior 
variance; 
prior mean = 0,
true offset = 5

Results: Calibrating Offset
Quantiles (1,25,50,75,99) of RMS error over 100 runs
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in true gain and prior 
mean; 
prior variance = 0.4

Results: Calibrating Gain
Quantiles (1,25,50,75,99) of RMS error over 100 runs
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true gain = 2

Results: Calibrating Gain
Quantiles (1,25,50,75,99) of RMS error over 100 runs
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Non-Linear Filters
• On this toy model, estimation of 

calibration parameters is sensitive…

• Next steps:
– Incorporate other sensor modalities and 

side information
– Particle filter: Importance resampling will 

improve robustness, but is the 
computational tradeoff worthwhile ?
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Outline
• First Approach: Non-Linear Filters

– Description of Approach
– Calibration Results

• Second Approach: Signal Subspace 
Matching

– Description of Approach
– Calibration Results
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A General Approach
“Uncalibrated” Sensor Measurements: (for n sensors)

Calibrated Measurements: (a linear calibration function)

gain correction 
for sensor j

offset correction 
for sensor j
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Blind Calibration Problem

So, given k uncalibrated “snapshots” (e.g., at different times):

Find α and β such that the equations hold for all i = 1,…,k

Without additional assumptions this is an impossible problem.

and with the notation…
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Calibration in the Field

Pseudocolor map of 
temperature distribution

Neighboring sensors in dense deployment make very similar readings

We can automatically calibrate sensor network by 
forcing readings to agree locally

V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak, “A collaborative 
approach to in-place sensor calibration,” Lecture Notes in Computer Science, 
2634:301–316, 2003.
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Calibration by Local Agreement

space

Calibration via local agreement is based on assumption:

Linear deployment of sensors:

Ideal (calibrated) sensor readings:

These conditions define a signal subspace (constant functions)
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Calibration by Local Agreement

space

Calibration via local agreement is based on assumption:

Linear deployment of sensors:

Ideal (calibrated) sensor readings:

These conditions define a signal subspace (constant functions)

Calibration assuming second derivatives are approx zero:

These conditions define a signal subspace (linear functions)    
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Signal Subspaces and Calibration

Calibration via signal subspace matching is based on assumption:

Ideal (calibrated) sensor readings:

where P is an orthogonal projection matrix, 
and (I-P) projects onto the signal subspace.

This turns out to be a very exciting and useful generalization!
We ask: When do solutions exist? How do we find them ?

Examples:  P could correspond to a projection onto a particular 
frequency band, a roughness subspace, or any other subspace where 
the signal should not be
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Clearly, we cannot identify the component of β
in the signal subspace.  This component is 
indistinguishable from true signal.

Identifiability

However, since yi “modulates” α, under certain 
conditions on P it is possible exactly recover α 
up to a global gain factor. We cannot distinguish 
between α and (scalar constant) x α.

Offsets:

Gains:

k “snapshots” give us the system of equations:
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Offset Solutions

where

Note:

• Every offset solution is a simple function of sensor 
measurements and gains
• If true signals are zero mean, then offsets can be estimated! 
• Otherwise, the offset component in signal subspace cannot be 
blindly recovered. (but we can recover them with a little bit more 
information)
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Gain Solutions

A unique solution exists iff the matrix

has rank n-1  (i.e., exactly n-1 columns are independent)
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Exact Recovery of Calibration Gains

Assumptions:

Oversampling: The ideal sensor network signals lie in 
a known r-dimensional signal subspace

Randomness: The signals are randomly distributed 
across snapshots according to an unknown density 
function with support on the signal subspace

Incoherence: The signal subspace is incoherent with 
the canonical spatial basis (i.e., δ basis)

When does                                 have a unique solution?

More info: Balzano and Nowak, “Blind Calibration 
of Sensor Networks,” IPSN 2007
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Exact Recovery of Calibration Gains
Theorem 1:  Under assumptions A1, A2 and A3, the 
gains can be perfectly recovered from any k ≥ r signal 
measurements by solving the linear system of 
equations

Theorem 2:  If the signal subspace is defined by a subset 
of the DFT vectors (i.e., a frequency-domain subspace), 
then incoherence condition is automatically satisfied, and 
the  gains can be perfectly recovered from any 
signal measurements
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Robust Recovery of Calibration Gains
Gain equations may hold only approximately due to 
noise/errors: 

Robust solutions:
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Outline
• First Approach: Non-Linear Filters

– Description of Approach
– Calibration Results

• Second Approach: Signal Subspace 
Matching

– Description of Approach
– Calibration Results
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Sensing in a Box
Ideally all sensors should 
read the same temperature

1-d signal subspace of 
constant functions

time

sensor

warm

cool
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Sensing in the Wild

temperature 
sensing at James 
Reserve

4-dimensional signal 
subspace determined from 
calibrated sensor data
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Conclusions
• This formulation is very promising and has provided 

some important insight into the problem of blind 
calibration.

• Key necessary condition is “incoherence” between 
signal subspace and canonical (spatial) basis; we are 
currently exploring this condition and its relationship 
to compressed sensing

• Our experience is that solutions are robust to noise 
and mismodeling in some cases, and sensitive in 
others; we do not have a good understanding of the 
robustness of the methodology at this time. Future 
work includes sensitivity analysis of the set of linear 
equations.
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Thank you!
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(extra slides)
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Simulation Experiment

simulated temperature field 8x8 sensor readings

• field is smoothed GWN process
• approximate signal subspace = span of lowpass DFT vectors
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Simulation Experiment

robust to 
noise

robust to 
mismodeling
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Results: Calibrating Offset

Increasing difference 
in true offset and 
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prior variance = 2

Quantiles (1,25,50,75,99) of RMS error over 100 runs


