
Closure Under Reversal of Languages
over Infinite Alphabets

Daniel Genkin1, Michael Kaminski2(B), and Liat Peterfreund2

1 Department of Computer and Information Science,
University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA 19104, USA

2 Department of Computer Science,
Technion – Israel Institute of Technology, 32000 Haifa, Israel

kaminski@cs.technion.ac.il

Abstract. It is shown that languages definable by weak pebble
automata are not closed under reversal. For the proof, we establish a
kind of periodicity of an automaton’s computation over a specific set of
words. The periodicity is partly due to the finiteness of the automaton
description and partly due to the word’s structure. Using such a period-
icity we can find a word such that during the automaton’s run on it there
are two different, yet indistinguishable, configurations. This enables us
to remove a part of that word without affecting acceptance. Choosing an
appropriate language leads us to the desired result.

Keywords: Infinite alphabets · Weak pebble automata
Closure properties · Reversal

1 Introduction

While automata for words over finite alphabets are well-understood, a broad
research activity began very recently on automata for words over infinite alpha-
bets. Note, that for infinite alphabets, states alone are not sufficient, because
an automaton should be able to check equality of input symbols. This can be
done by (dynamically) marking a set of symbols of a fixed finite cardinality and
allowing equality tests with these symbols.

Finite-Memory Automata (FMA) [2,3] keep marked symbols in a finite num-
ber of registers and Pebble Automata (PA) [5,6] keep marked symbols under a
finite number of pebbles. Both are very restrictive models intended for recogniz-
ing an analog of regular languages over finite alphabets. The class of languages
recognizable by FMA and PA enjoys many of the properties of regular languages.
Languages recognizable by FMA are closed under standard language opera-
tions: intersection, union, concatenation, and iteration (Kleene star), whereas
languages recognizable by PA are closed under all boolean operations (i.e., union,
intersection and complementation), but are not closed under iteration. However,
the emptiness problem for FMA is decidable, whereas it is decidable for weak
2-PA only.
c© Springer International Publishing AG, part of Springer Nature 2018
F. V. Fomin and V. V. Podolskii (Eds.): CSR 2018, LNCS 10846, pp. 145–156, 2018.
https://doi.org/10.1007/978-3-319-90530-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90530-3_13&domain=pdf

146 D. Genkin et al.

This paper deals with weak PA which, as mentioned above, are finite state
automata equipped with a finite number k of pebbles, numbered from 1 to k.
Each pebble can serve as the head of the automaton or point at a position in the
input word. The pebbles are placed on the input word in the stack discipline:
the first pebble placed is the last to be lifted. The first pebble placed is pebble 1.
One pebble can only point at one position and the most recently placed pebble
serves as the head of the automaton. The automaton moves from one state
to another depending on the symbol under the head pebble, the equality tests
among symbols under the pebbles, and the equality tests among the pebbles’
positions.

There are two main variants of PA, weak and strong and we focus on weak
PA (wPA). We show that, unlike languages accepted by strong PA, languages
accepted by wPA are not closed under reversal. In this paper we deal with
two languages - L⊆ and L⊇. Both languages consist of words of a special form
u$v, where $ is a special symbol (the separator) not occurring in u or v and
the symbols in each of these words are pairwise different. In L⊆, each symbol
occurring in u also occurs in v and, in L⊇, each symbol occurring in v also
occurs in u. Thus, L⊆ and L⊇ are the reversals of each other. We show that
the language L⊆ is accepted by wPA, whereas L⊇ is not. For this, for each
automaton accepting all words of L⊇, we construct a special word u$v �∈ L⊇,
yet still accepted by the automaton. In that word a prefix of u is “properly”
spread in v and its construction is based on a kind of periodicity of the sequence
of the states in the run of PA. In particular, the head pebble behaves periodically
when it sees symbols different from those under the other pebbles.

The paper is organized as follows. In Sect. 2 we present the definition of
wPA and state the separation theorem whose proof, for the case of 2-wPA, is
presented in Sect. 3.1 In Sect. 4 we show how to modify the languages L⊆ and
L⊇ to languages whose words do not contain a distinguished separator symbol.
We conclude the paper with a short remark that concerns the technique applied
for the proof of the separation theorem.

2 Weak Pebble Automata

As introduced in [5,6], Pebble Automata over infinite alphabets are finite state
machines equipped with a finite set of numbered pebbles. The computation of an
automaton on an input word starts when the lowest numbered pebble is located
at the leftmost position of the input and acts as the head of the automaton.
During the computation, an automaton can place (respectively, lift) a pebble on
(respectively, from) the input. It can also move the pebble that acts as the head
of the automaton. That pebble is the highest numbered pebble present on the
input, whereas the other pebbles serve as pointers at the input symbols. The use
of the pebbles is restricted by the stack discipline (pebble i can only be placed

1 The proof of the general case can be found in [7], and, hopefully, will also appear
elsewhere.

Closure Under Reversal of Languages over Infinite Alphabets 147

when pebble i − 1 is present on the input word and pebble i can only be lifted
when pebble i + 1 is not present on the input word).

A transition depends on the current state, equality type of the symbols
under the placed pebbles and equality among the pebbles’ positions. The tran-
sition relation specifies change of state, the movement of the head and, possibly,
whether the head pebble is lifted or a new pebble is placed.

Definition 1. A deterministic one-way2 k-wPA over an infinite alphabet Σ, is
a tuple A = 〈S, s0, F, T 〉 whose components are as follows.

– S is a finite set of states,
– s0 ∈ S is the initial state,
– F ⊆ S is a set of accepting states,
– T is a finite set of transitions of the form α → β, where

• α is of the form (i, σ, P, V, s) or (i, P, V, s), i ∈ {1, . . . , k}, σ ∈ Σ, P, V ⊆
{1, . . . , i − 1}, and s ∈ S, and

• β is of the form (p, action), where p ∈ S and action ∈ {move, place,
lift},

such that α → β and α → β′ imply β = β′.

For a word w ∈ Σ∗, a configuration of A on w is of the form γ = [i, s, θ],
where i ∈ {1, . . . , k}, s ∈ S, and θ : {1, . . . , i} → {1, . . . , |w|} indicates the
pebble’s positions on the input word w. That is, θ(j) is the position of pebble j.
In what follows, we identify θ with the i-tuple (θ(1), . . . , θ(i)). Thus, i can be
recovered from θ, but it is convenient to include it into a configuration explicitly.

The initial configuration is γ0 = [1, s0, (1)]. That is, the run starts in the
initial state s0 with pebble 1 placed at the beginning of the input word. An
accepting configuration is of the form [i, s, θ], where s ∈ F .

Let w = w1 · · · wn ∈ Σ+. A transition (i, σ, P, V, s) → β applies to a config-
uration γ = [j, s′, θ] if

(1) i = j and s′ = s,
(2) P = {h < i : θ(h) = θ(i)},
(3) V = {h < i : wθ(h) = wθ(i)}, and
(4) wθ(i) = σ.

In the above definition, P is the set of pebbles placed at the same position
as the head pebble, V is the set of pebbles placed above the same symbol as the
head pebble, and the current symbol under the head pebble is σ.

A transition (i, P, V, s) → β applies to a configuration γ = [j, s′, θ],
if the above conditions (1)–(3) are satisfied and no transition of the form
(i, σ, P, V, s) → β applies to γ.

The transition relation �w on the set of all configurations is defined as fol-
lows:3 [i, s, θ] � [i′, s′, θ′] if and only if there is a transition α → (p, action) that
applies to [i, s, θ] such that s′ = p and the following holds.
2 It has been shown in [8] that alternating non-deterministic and deterministic one-way

wPA have the same expressive power.
3 We omit the subscript w of �, if it is clear from the context.

148 D. Genkin et al.

– For all j < i, θ′(j) = θ(j),
– if action is move, then i′ = i and θ′(i) = θ(i) + 1,
– if action is place, then i′ = i + 1 and θ′(i + 1) = θ′(i) = θ(i),4 and
– if action is lift, then i′ = i−1 and θ′ is the restriction of θ on {1, . . . , i−1}.

The language L(A) of A consists of all words w such that γ0 �∗
w γ for an

accepting configuration γ.

Remark 1. Note that the accepted languages are quite symmetric: they contain
only finitely many “distinguished” symbols explicitly mentioned in the automa-
ton transitions and are invariant under any permutation of all other symbols of
the infinite alphabet Σ, cf. [3, Proposition 2].

Remark 2. It follows from the definition that wPA languages do not contain the
empty word ε, but the languages we deal with in this paper do not contain ε
either.

Next, we observe the following. To each configuration γ = [i, s, θ] of a deter-
ministic one-way wPA corresponds the vector ϕγ = (P1, . . . , Pi), where

Pj = {h < j : θ(h) = θ(j)}.

That is, Pj is the set of pebbles placed before pebble j which are at the same
position as pebble j in configuration γ.5

If γ � γ′, then ϕγ′
can be computed from ϕγ , according to the automaton

transitions. Namely, if ϕγ = (P1, . . . , Pi) and the transition applied to γ is α →
(p, action), then

– if action is move, then ϕγ′
= (P1, . . . , Pi−1, ∅),

– if action is lift, then ϕγ′
= (P1, . . . , Pi−1), and

– if action is place, then ϕγ′
= (P1, . . . , Pi, Pi ∪ {i}).

We can extend the set of states from S to

S ×
k⋃

i=1

{(P1, . . . , Pi) : Pj ⊆ {1, . . . , j − 1}, j = 1, . . . , i}

capturing in such a way the pebbles’ positions by the state. This allows us to
remove the P component from the left hand side of transitions. That is, we may
assume that the left hand side of a transition is of the form (i, σ, V, s) or (i, V, s).

Finally, by adding some extra states and modifying the transitions appropri-
ately, we can normalize the k-wPA behavior such that for each i ∈ {2, . . . , k} it
acts as follows, cf. [6].

4 That is, pebble i + 1 is placed at the position of pebble i, whereas in the strong PA
model this pebble is placed at the beginning of the input word, i.e., at the leftmost
position.

5 By definition, P1 = ∅ and, therefore, is redundant.

Closure Under Reversal of Languages over Infinite Alphabets 149

– A pebble is never lifted, but falls down when moving from the right end of
the input. Thus, action lift is redundant.

– Only pebble 1 can enter a final state and only after it falls down from the
right end of the input. In such a case, the accepting configuration consists of
the corresponding accepting state only.

– Immediately after pebble i moves without falling down, pebble i+1 is placed.
– Immediately after pebble i falls down, pebble i − 1 moves.

In what follows, we denote the set of letters occurring in a word u by [u].
That is, if u = u1 · · · un, then [u] = {u1, . . . , un}.

Example 1 (Cf. [4, Example 3.1]). This example deals with the language Ldiff

consisting of all words in which every symbol from Σ occurs at most one time:

Ldiff = {σ1 · · · σn : n ≥ 1, σi �= $, for each i = 1, . . . , n, and
σi �= σj , whenever i �= j}.

This language is accepted by a 2-wPA that acts as follows. Pebble 1 advances
through the input from left to right. At each step it verifies that the symbol under
it is not $, and then pebble 2 scans the suffix to the right of the position of pebble
1 to verify that the input symbol under pebble 1 differs from all symbols in that
suffix.

Example 2. The language

Ldiff$diff = {u$v : u,v ∈ Ldiff}
is accepted by a 2-wPA that first, using the automaton from Example 1 scans u
and then, using the same automaton, scans v.

Example 3. The language

L⊆ = {u$v : u,v ∈ Ldiff and [u] ⊆ [v]}
is accepted by a 2-wPA that acts as follows. Pebble 1 advances through the input
to the separator $. After each move of pebble 1 on u, pebble 2 moves to $ and
then scans the suffix v of the input to find the symbol under pebble 1. Verifying
that both u and v are in Ldiff can be done by the automaton from Example 2.

Theorem 1. The language

L⊇ = {u$v : u,v ∈ Ldiff and [v] ⊆ [u]}
is not accepted by wPA.

The proof of Theorem1 for the case of 2-wPA (see footnote 1) is presented
in the next section.

Since L⊇ is the reversal of L⊆, by Example 3 and Theorem 1, the languages
accepted by wPA are not closed under reversal.

150 D. Genkin et al.

3 Proof of Theorem1

As we have already mentioned above, the proof is restricted to the case of 2-wPA
only. For the proof of the general case, see [7, Sects. 6 and 7].6

For the rest of this paper, A = 〈S, s0, F, T 〉 is a 2-wPA and the positions of
pebble 1 in runs of A will be denoted by p1, possibly primed.

We construct a word w ∈ L⊇ such that the run of A on its prefix is periodic.
That is, the sequence of states in the run on the prefix is periodic. Using the
periodicity we can shrink this prefix without affecting acceptance. It should be
emphasized that periodicity alone is not sufficient for deleting a pattern from
the input. This is because each move of pebble 1 depends not only on the prefix
up to its position, but on the whole input word, see also the note in the end of
this section.

We start with examining the run of pebble 2.

Proposition 1. There exists a positive integer
2 such that for all w ∈ Σ+,
w = w1 · · · wn, the following holds. If

[2, sj1 , (p1, j1)] � [2, sj1+1, (p1, j1 + 1)] � · · · � [2, sj2 , (p1, j2)], (1)

where wj �= wp1 for all j1 ≤ j ≤ j2, then the sequence of states sj1+�2 , . . . , sj2 ,
is periodic with period
2.7

Proof. Let j1 and j2 satisfy the prerequisites of the proposition. The transitions
applied to the configurations in (1) are of the form (2, ∅, s) → (move, s′) for some
s, s′ ∈ S, because the moves of pebble 2 do not depend on wp1 .

Since A is deterministic, for some positive integers msj1
,
sj1

≤ |S|, after
msj1

steps from wj1, pebble 2 becomes periodic with a period
sj1
. Thus, the

proposition holds for
2 = |S|!, because msj1
≤ |S| ≤ |S|! and
sj1

≤ |S| implies
that
sj1

divides |S|!.
Corollary 1. Let z′ = xy′ and z′′ = xy′′, x = x1 · · · xn, where

[x] ∩ ([y′] ∪ [y′′]) = ∅,

|y′|, |y′′| ≥
2,

and

|y′′| ≡�2 |y′|.8
If

[2, s, (p, |x|)] �z ′ [2, t, (p, |xy′|)], (2)

then
[2, s, (p, |x|)] �z ′′ [2, t, (p, |xy′′|)]. (3)

6 Note that in [7] the pebbles are placed in the reversed order, i.e., the computation
start with pebble k and pebble i is placed after pebble i + 1, i = 1, . . . , k − 1.

7 Recall that we identify θ with the tuple of its values and, by the observation in the
previous section, we omit the P -component of transitions.

8 As usual, ≡�2 is the congruence modulo l2.

Closure Under Reversal of Languages over Infinite Alphabets 151

Proof. Let y′ = y′
1y

′
2 and y′′ = y′′

1y
′′
2 , where

y′
1 = y′′

1 =
2. (4)

It follows from (2) that for some state s1

[2, s, (p, |x|)] �z ′ [2, s1, (p, |xy′
1|)] (5)

and
[2, s1, (p, |xy′

1|)] �z ′ [2, t, (p, |xy′
1y

′
2|)] = [2, t, (p, |xy′|)]. (6)

It follows from (5) that

[2, s, (p, |x|)] �z ′′ [2, s1, (p, |xy′′
1 |)], (7)

because the moves of the automaton do not depend on xp – the symbol under
pebble 1, and it follows from (6) that

[2, s1, (p, |xy′′
1 |)] �z ′′ [2, t, (p, |xy′′

1y
′′
2 |)] = [2, t, (p, |xy′′|)], (8)

because, by Proposition 1, (4) implies that the automaton is periodic with period

2 from state s1 and

|y′
2| = |y′| − |y′

1| ≡�2 |y′′| − |y′′
1 | = |y′′

2 |.

Combining (7) and (8), we obtain (3).

Corollary 2. Let w,w′ ∈ Ldiff$diff, w = u′v$x and w′ = u′u′′v$x be such
that |u′′| ≡�2 0 and |v| ≥
2. If

[1, s0, (1)] �∗
w [1, t, (|u′|)],

then
[1, s0, (1)] �∗

w ′ [1, t, (|u′|)].
Proof. It suffices to show that for any i < |u′|

[1, s, (i)] �∗
w [1, t, (i + 1)] (9)

implies
[1, s, (i)] �∗

w ′ [1, t, (i + 1)] (10)

from which the corollary follows by a straightforward induction on the length
of u′.

We break the automaton run (9) into three parts:

[1, s, (i)] �w [2, s1, (i, i)] �∗
w [2, s2, (i, |u′|)], (11)

[2, s2, (i, |u′|)] �∗
w [2, s3, (i, |u′v$|)], (12)

152 D. Genkin et al.

and

[2, s3, (i, |u′v$|)] �∗
w [2, s4, (i, |w|)] �w [1, s5, (i)] �w [1, t, (i + 1)], (13)

where the automaton enters configuration [1, s5, (i)] after pebble 2 falls down
from the right end of the input entering state s5.

From (11), by the same moves of the automaton,

[1, s, (i)] �w ′ [2, s1, (i, i)] �∗
w ′ [2, s2, (i, |u′|)] (14)

and from (12), by Corollary 1 with p, x, y′, and y′′ being i, u′, v, and u′′v,
respectively,

[2, s2, (i, |u′|)] �∗
w ′ [2, s3, (i, |u′u′′v$|)]. (15)

Finally, from (13), by the same moves of the automaton,

[2, s3, (i, |u′u′′v$|)] �∗
w ′ [2, s4, (i, |w|)] �w ′ [1, s5, (i)] �w ′ [1, t, (i + 1)], (16)

because both w and w′ have the same suffix x and in both runs pebble 1 is
placed above the same symbol.

Combining (14)–(16), we obtain (10).

Definition 2. Let
 be a positive integer and let u,v ∈ Ldiff, u = u1 · · · um and
v = v1 · · · vn, be such that [u] ⊆ [v]: ui = vji , i = 1, . . . ,m. We say that u is

-spread in v, if for all i = 1, . . . ,m, ji > ji−1 and ji ≡� ji−1, where j0 = 0.

Proposition 2. Let w = uv$x ∈ Ldiff$diff, where u is
2-spread in x, and let
1 < p′

1 < p′′
1 ≤ |u|. If

[2, s, (p′
1, |uv$|)] �∗ [1, t, (p′

1)], (17)

then

[2, s, (p′′
1 , |uv$|)] �∗ [1, t, (p′′

1)].9 (18)

Proof. Let

– u = u1 · · · um and x = x1 · · · xn, and
– up′

1
= xj′ and up′′

1
= xj′′ .

Then j′ < j′′ and it follows from (17) that for some states t′ and t′′,

[2, s, (p′
1, |uv$|)] �∗ [2, t′, (p′

1, |uv$| + j′)] � [2, t′′, (p′
1, |uv$| + j′ + 1)] (19)

and
[2, t′′, (p′

1, |uv$| + j′ + 1)] �∗ [1, t, (p′
1)]. (20)

9 The automaton enters configurations [1, t, (p′
1)] and [1, t, (p′′

1)] after pebble 2 falls
down from the right end of the input entering state t.

Closure Under Reversal of Languages over Infinite Alphabets 153

Since u is
2-spread in x, both j′ and j′′ are divisible by
2. Thus, it follows
from (19), by Proposition 1, that

[2, s, (p′′
1 , |uv$|)] �∗ [2, t′, (p′′

1 , |uv$| + j′′)] � [2, t′′, (p′′
1 , |uv$| + j′′ + 1)], (21)

because xj′ = up′
1

and xj′′ = up′′
1
.

Finally, since

(|w| − (|uv$| + j′ + 1)) − (|w| − (|uv$| + j′′ + 1)) = j′′ − j′ ≡�2 0,

it follows from (20), by Proposition 1, that

[2, t′′, (p′′
1 , |uv$| + j′′ + 1)] �∗ [1, t, (p′′

1)]. (22)

Combining (21) and (22), we obtain (18).

Corollary 3. Let w = uv$x ∈ Ldiff$diff be such that u is
2-spread in x and
|v| ≥
2, and let p′

1 < p′′
1 ≤ |u| be equivalent modulo
2. If

[2, s, (p′
1, p

′
1)] �∗ [2, t, (p′

1 + 1, p′
1 + 1)],

then
[2, s, (p′′

1 , p′′
1)] �∗ [2, t, (p′′

1 + 1, p′′
1 + 1)].

Proof. Let s1, s2, and s3 be the states such that

[2, s, (p′
1, p

′
1)] �∗ [2, s1, (p′

1, |uv$|)] �∗ [1, s2, (p′
1)]

� [1, s3, (p′
1 + 1)] � [2, t, (p′

1 + 1, p′
1 + 1)].

Then, by Propositions 1 and 2,

[2, s, (p′′
1 , p′′

1)] �∗ [2, s1, (p′′
1 , |uv$|)] �∗ [1, s2, (p′′

1)]
� [1, s3, (p′′

1 + 1)] � [2, t, (p′′
1 + 1, p′′

1 + 1)].

Proposition 3 below shows that the behavior of pebble 1 on words uv$x ∈
Ldiff$diff such that u is
2-spread in x is also periodic.

Proposition 3. For each w = uv$x ∈ Ldiff$diff such that u is
2-spread in
x and |v| ≥
2, there exist positive integers mw and
w for which the following
holds. If

[2, sj1 , (p1, p1)] �∗ [2, sj2 , (p1 + 1, p1 + 1)] �∗ · · · �∗ [2, sj|u |−p1
, (|u|, |u|)],

then the sequence of states sp1+mw
, . . . , s|u |−p1 is periodic with period
w .

Proof. Let ti, i = 1, . . . , |u| − p1, be such that

[2, sji , (p1 + i, p1 + i)] �∗ [2, ti, (p1 + i, |uv$|)].
That is, ti is the state in which pebble 2 arrives at $, when pebble 1 is placed
above the (p1 + i)th symbol of u.

154 D. Genkin et al.

Let mw =
2|S| + 1. Since there are
2 equivalence classes modulo
2 and
the number of different states in the sequence is bounded by |S|, there are two
indices j1 and j2,

p1 ≤ j1 < j2 ≤ p1 + mw

such that j1 ≡�2 j2 and tj1 = tj2 .
We put
w = j2 − j1. It follows from Corollary 3 by a straightforward induc-

tion on i = 0, 1, . . . (with s = tj1+i, t = tj1+i+1, p′
1 = j1 + i and p′′

1 = j2 + i)
that

[2, tj1+i, (j1 + i, j1 + i)] �∗ [2, tj1+i+1, (j1 + i + 1, j1 + i + 1)]

implies

[2, tj2+i, (j2 + i, j2 + i)] �∗ [2, tj2+i+1, (j2 + i + 1, j2 + i + 1)].

Thus, the proposition follows from the equality tj1 = tj2 .

Corollary 4. There exist a positive integer
1 such that the following holds. Let
w = uv$x ∈ Ldiff$diff, where u is
2-spread in x and |v| ≥
2. If

[2, sj1 , (p1, p1)] �∗ [2, sj2 , (p1 + 1, p1 + 1)] �∗ · · · �∗ [2, sj|u |−p1
, (|u|, |u|)],

then the sequence of states sp1+�1 , . . . , s|u |−p1 is periodic with period
1.

Proof. It follows from the proof of Proposition 3 that for each w = uv$x ∈
Ldiff$diff such that u is
2-spread in x, mw ,
w ≤
2|S| + 1. Thus, we can put

1 = (
2|S| + 1)!, because the latter is divisible by both mw and
w for all
above w.

At last, we have arrived at the proof of Theorem1.

Proof (of Theorem 1). Assume to the contrary that L(A) = L⊇. Let

w′ = u′u′′v$x ∈ L⊇ ∩ L⊆,10

where u′ is
2-spread in x, |v| ≥
2, and |u′| = |u′′| =
1; and let w = u′v$x.
Since
1 ≡�2 0, by Corollary 2,

[1, s0, (1)] �∗
w [1, t, (|u′|)]

implies
[1, s0, (1)] �∗

w ′ [1, t, (|u′|)]
and, since |u′| = |u′′| =
1, by Corollary 4 with p1 = 1,

[1, s0, (1)] �∗
w ′ [1, t, (|u′u′′|)].

In addition, the runs of A from state t on the (same) suffix v$x of w and
w′ are the same. In particular, they terminate in the same state. However, w′

belongs to L⊇, whereas w does not.

Note that periodicity of pebble 1 alone (Corollary 4) without periodicity of
pebble 2 (Corollary 2) is not sufficient for deleting the pattern u′′ from w′. This
is because pebble 1 has to arrive at position |u′| in the same state in the runs
of A on w and w′ and these runs depend on the whole inputs.
10 Thus, both u′u′′v and x are in Ldiff and [u′u′′v] = [x].

Closure Under Reversal of Languages over Infinite Alphabets 155

4 Removing the Distinguished Separator Symbol $

In this section we show how to modify the languages L⊆ and L⊇ to languages
whose words do not contain a distinguished separator symbol.

Let
L′

⊆ = {σuσv : σu, σv ∈ Ldiff and [u] ⊆ [v]}
and

L′
⊇ = {σuσv : σu, σv ∈ Ldiff and [v] ⊆ [u]}.

Then L′
⊇ is the reversal of L′

⊆.
The language L′

⊆ is accepted by a 3-wPA that acts as follows. Pebble 1 at the
leftmost position is used to distinguish the second σ of the input word. Pebble
2 advances through the input to the second σ. After each move of pebble 2 on
u, pebble 3 moves to the second σ and then scans the suffix v of the input to
find the symbol under pebble 2. At the end of the computation, pebble 1 moves
to the end of the input to accept. Verifying that both u and v are in Ldiff can
be done by the automaton from Example 2, cf. Example 3.

It can be readily seen that each automaton accepting L′
⊇ modifies to an

automaton accepting L⊇. Thus, it follows from Theorem 1 that L′
⊇ is not

accepted by wPA.
Alternatively, similarly to the proof of Theorem1, one can show that L′

⊇ is
not accepted by wPA that is normalized as follows.

– A pebble is never lifted, but falls down when moving from the right end of
the input.

– Pebble 1 never leaves the leftmost position.
– Only pebble 2 can enter a final state and only after it falls down from the

right end of the input.
– Immediately after pebble i moves without falling down, pebble i + 1 is placed.
– Immediately after pebble i falls down, pebble i − 1 moves.

In such a way, transitions of the form

(i, $, V, s) → β

in the proof of Theorem1 are replaced with transitions of the form

(i + 1, {1} ∪ {j + 1 : j ∈ V }, s) → β.

5 Concluding Remark

It seems that the “shrinking” technique applied for the proof of Theorem1 is
quite appropriate for dealing with computations over infinite alphabets. For
example, shrinking the input (by totally different tools) was used in [1] for prov-
ing decidability of languages accepted by certain variants of FMA.

156 D. Genkin et al.

References

1. Genkin, D., Kaminski, M., Peterfreund, L.: A note on the emptiness problem for
alternating finite-memory automata. Theoret. Comput. Sci. 526, 97–107 (2014)

2. Kaminski, M., Francez, N.: Finite-memory automata. In: Proceedings of the 31st
Annual IEEE Symposium on Foundations of Computer Science, Los Alamitos, CA,
pp. 683–688. IEEE Computer Society Press (1990)

3. Kaminski, M., Francez, N.: Finite-memory automata. Theoret. Comput. Sci. 134,
329–363 (1994)

4. Kaminski, M., Tan, T.: A note on two-pebble automata over infinite alphabets.
Fundam. Inform. 98, 1–12 (2010)

5. Neven, F., Schwentick, T., Vianu, V.: Towards regular languages over infinite alpha-
bets. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp.
560–572. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44683-4 49

6. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log. 5, 403–435 (2004)

7. Peterfreund, L.: Closure under reversal of languages over infinite alphabets: a case
study. Master’s thesis, Department of Computer Science, Technion - Israel Insti-
tute of Technology (2015). http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-
get.cgi/2015/MSC/MSC-2015-20

8. Tan, T.: On pebble automata for data languages with decidable emptiness problem.
J. Comput. Syst. Sci. 76, 778–791 (2010)

https://doi.org/10.1007/3-540-44683-4_49
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2015/MSC/MSC-2015-20
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2015/MSC/MSC-2015-20

	Closure Under Reversal of Languages over Infinite Alphabets
	1 Introduction
	2 Weak Pebble Automata
	3 Proof of Theorem1
	4 Removing the Distinguished Separator Symbol $
	5 Concluding Remark
	References

