Spectral Transmission Measurements of Thin Films

Leonard Kamlet, Ph.D.

WISE 2000 - May 9, 2000

Outline

Description of Transmission Measurement
 System Design Considerations
 Applications

 Ultra-thin Metal Films
 Multi-layer Optical Coatings and Films

 Summary

May 9, 2000

Spectral Transmission Measurements of Thin Films

Transmission Measurement System

- CCD-based spectral measurement

 Visible light (380-780 nm) typical
 Can extend into near IR (~1000-1100 nm) or into UV (down to 200 nm)

 QTH or alternate broad spectrum lamp
 Software and hardware system
 - enhancements for increased dynamic range of instrument

May 9, 2000

Spectral Transmission Measurements of Thin Films

Transmission Measurement Method

- Measure known reference for calibration
- Measure sample
- Adjust signals
 - subtraction of CCD dark current effects
 - parameters to increase dynamic range
- Calculate percent transmission
- Apply result to current application

May 9, 2000

Spectral Transmission Measurements of Thin Films

In situ Transmission Measurement System Considerations

- Sensor alignment
 - Repeatable normal incident alignment using fixtures common across multiple chamber configurations
 - Fixtures that retain alignment inside the vacuum, during pumpdown and opening of chamber (externally-mounted)
 - Fiber feed-throughs and vacuum compatible fiber optics for in-chamber fixtures

May 9, 2000

Spectral Transmission Measurements of Thin Films

In situ Transmission Measurement System Considerations

- Hardware repeatability
 - CCD/Spectrometer stability
 - Lamp Stability
 - Alignment repeatability/stability
- Integration Issues
 - Interaction with process control software
 - Ability to re-calibrate as necessary

May 9, 2000

Spectral Transmission Measurements of Thin Films

Metal Film Thickness Measurements

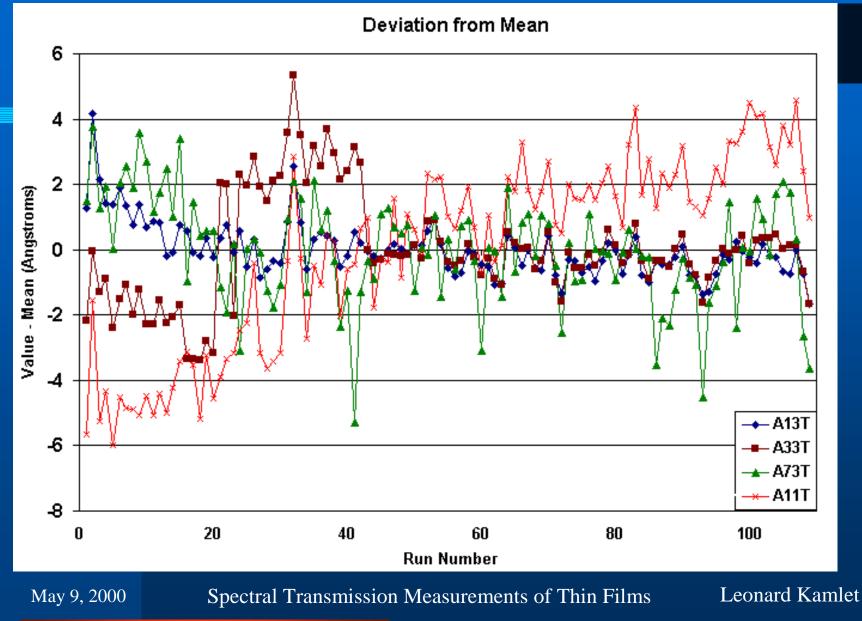
- Goal: Measure ultra-thin metal films for process control (SPC & in situ feedback)
- Requirements:
 - Measure variety of metals
 - Demonstrate repeatability of measurement (sample-to-sample and unit-to-unit)
 - Measure optically thin and thick metals on same instrument (large dynamic range)

May 9, 2000

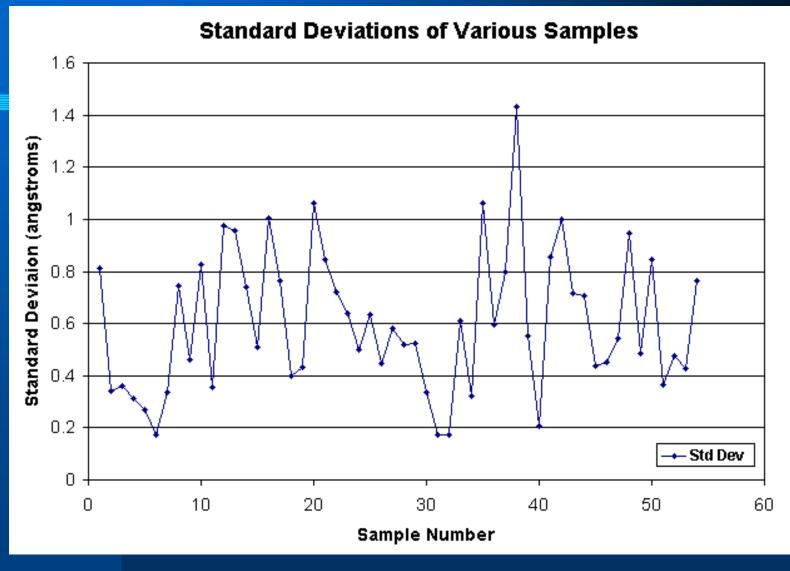
Spectral Transmission Measurements of Thin Films

Metal Film Thickness Measurements

• Instrument Configuration Procedure:


- Measure Transmission / Optical Density (O.D. = log [100/%T]) of set of Metal samples of varying thickness
- Measure sample thicknesses using alternate technique (XRR and XRF used here)
- Create correlation equation(s) between O.D.
 data and thickness from alternate method

May 9, 2000


Spectral Transmission Measurements of Thin Films

Results

May 9, 2000

Spectral Transmission Measurements of Thin Films

Summary of Metal Thickness Monitor

Typical measurement repeatability 3σ < 6Å

 Elemental metal lattice constants ~ 3 - 4 Å
 Actual thickness variation not accounted for (absolutely uniform sample thickness assumed)

 Over 3.5 orders of magnitude dynamic range

 Measure metals from nominally 0 O.D. (100%T) to over 5 O.D. (0.001%) with manual instrument adjustment (may be automated)

May 9, 2000

Spectral Transmission Measurements of Thin Films

Limitations of Metal Thickness Monitor

- Single layer metal only
 - Method could be extended to extract thicknesses of multi-layer stack with additional modeling
- Accuracy dependent on quality of:
 - Independent thickness measurement (XRR/XRF/...)
 - Correlation Model
 - Process control (quality/repeatability)

May 9, 2000

Spectral Transmission Measurements of Thin Films

Multi-Layer Thin Film Monitor

- Goal: Monitor and control multi-layer thin films during deposition.
- Requirements:
 - Target application: optical coatings (SiO2, TiO2)
 - Separately control each of 30-40+ layers
 - Control overall final optical properties of stack

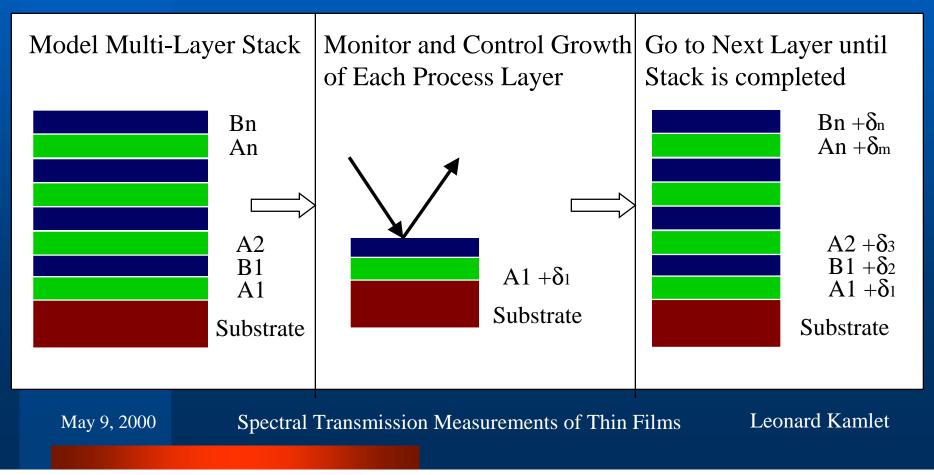
May 9, 2000

Spectral Transmission Measurements of Thin Films

Multi-Layer Optical Coating Monitor -System Considerations

• Systemic deviation from model

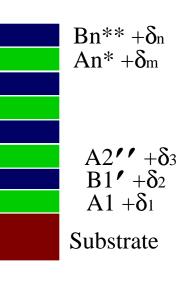
• Difficulties in monitoring new layers as more layers are added to the stack


May 9, 2000

Spectral Transmission Measurements of Thin Films

Systemic Variation From Model

Traditional Process Model:



Systemic Variation from Model:

Proposed Approach: Model Multi-Monitor and **Revise Model** Repeat until Stack is Layer Stack Control Each completed and Process Target Layer Bn An Bn ′ An ′ A2 **B**1 A2′ A1 + δ_1 A1 B1′

Substrate

Concept: Vidal and Pelletier, Applied Optics 18 (22), 15 Nov 1979, 3857

May 9, 2000

Substrate

Spectral Transmission Measurements of Thin Films

A1 + δ_1

Substrate

May 9, 2000

Techniques for Distinguishing Between Layers

- Do complete modeling of sub-layers and current layer
- Use changes in signal (Virtual Interface)
- Compare signal to model or prior measurements (e.g. Neural Net)
- Measure separate substrate/sample
 Optical coaters often have built in chip-

changers for this purpose

Spectral Transmission Measurements of Thin Films

Optical Coating Monitor

- Reflection on bare glass substrate for each layer (use chip-changer to introduce new substrate)
 - Use signals from this for endpoint of each layer
- Transmission through product for revising model at end of each layer
 Modify remaining layer thicknesses

May 9, 2000

Spectral Transmission Measurements of Thin Films

Optical Coating Monitor -Limitations

- Need to be able to revise model based on previous layer(s)
 - Optical, electrical, thermal, mechanical (stresses) effects must be taken into account
 - Must be fast enough to be useful in real time
 - Process tool may be able to suspend process through target shutters or gas flow valves
 - Previous layer measurements must be accurate to avoid introduction of error

May 9, 2000

Spectral Transmission Measurements of Thin Films

Optical Coating Monitor -Limitations

- Need method of monitoring growth of current layer with complex underlayers
 - Modeling becomes difficult or impossible to independently determine parameters of current layer
 - Optical coating chambers typically design around this through use of chip-changers

May 9, 2000

Spectral Transmission Measurements of Thin Films

Summary and Conclusions

- Spectral transmission measurements can be used in situ to monitor and control processes
- Ultra-thin metal films can be measured with repeatability of 1-2 monolayers
- Multi-layer thin film growth can be monitored, and growth targets revised during process

May 9, 2000

Spectral Transmission Measurements of Thin Films