

WISE 2000, International Workshop on Spectroscopic Ellipsometry, 8 – 9 May 2000

DUV (150 – 350nm) Characterization of Materials: A new instrument, the Purged UV Spectroscopic Ellipsometer,

Pierre BOHER,,

SOPRA S.A., 26 rue Pierre Joigneaux, 92270 Bois-Colombes, France,

1

Outline of the talk:

•Introduction.

Presentation of the purged UV spectroscopic ellipsometer.Experimental results:

•CaF₂ substrate
•LaF₃ film on CaF₂ substrate
•Photoresists and antireflective coatings
•Cr and CrOx layers on glass
•Transmittance of SiOF substrate
•Extended PUV range
•Conclusion

introduction:

- 157nm lithography successor of 193nm generation.
- Need to characterize accurately new materials (resists, ARC) and optics at this new wavelength.
- Strong correlation between thickness and indices due to low thickness values.

⇒ Good candidate --> spectroscopic ellipsometry • Need of additional photometric measurements (transmittance of the optics for example).

 \Rightarrow New instrument: <u>Purged UV ellipsometer</u>

SE Basic theory

Ellipsometry determines and analyzes the change of the polarization state of light after reflection on a sample

Advantages of ellipsometry

- Ellipsometry is an absolute technique (no need of reference spectrum or reference sample)
- + Ellipsometry gives twice more informations than reflectometry (ψ and Δ instead of R)
- The phase Δ is very sensitive to surface layers
- As ellipsometry measures the polarization state and not the intensity, it is less sensitive to light intensity fluctuations.

Ellipsometry allows to characterize directly the optical indices (n,k) of bulk materials :

$$N^{2} = \left(n - jk\right)^{2} = \sin^{2}\theta_{0} \left[1 + \left(\frac{1 - \rho}{1 + \rho}\right)^{2} \tan^{2}\theta_{0}\right]$$

Ellipsometer setup

- \Rightarrow Minimized beam path.
- ⇒Deuterium lamp as source.
- ⇒Double monochromator included in the polariser arm (avoid photobleaching)
- \Rightarrow MgF₂ Rochon polarizers on stepper motors. \Rightarrow Detection by a photomultiplier in photon counting mode.

Ellipsometer characteristics

 \Rightarrow Rotating analyser instrument. \Rightarrow Spectral range 145-350nm extendable in the visible range.

⇒3 measurement modes possible: >variable angle spectroscopic ellipsometry >Photometry (reflectance or transmittance) >Scatterometry

Schematic view of the purged UV spectroscopic ellipsometer

Purged glove box

 $\Rightarrow SE system is installed inside a glove box with continuous H₂O and O₂ purification.$ $\Rightarrow Dry nitrogen is injected continuously with automatic pressure adjustment.$ $\Rightarrow Filters can be regenerated automatically every 3-month.$

Purged glove box

 \Rightarrow One working face with three gloves to adjust sample and replace deuterium lamp.

 \Rightarrow Samples up to 200mm diameter introduced with load lock

 \Rightarrow Residual H₂O and O₂ measured continuously (in the ppm range during normal working conditions).

- * Reduction of the notching effect
- ---> lower line width fluctations

* Reduction of the « swing » effect

---> periodic behaviour of the reflectivity

- * Spectroscopic Ellipsometry provides :
 - Thickness : T
 - Refractive index : $n(\lambda)$
 - Extinction coefficient : $k(\lambda)$
- * The index profile : quality of the material

* The knowledge of N and K allows to simulate the REFLECTIVITY of the material for any thicknesses, any angles of incidence and at any photolithographic wavelengths.

 \rightarrow The best conditions for the deposition process can be predicted

REFLECTIVITY SIMULATIONS

Normal incidence

Wavelength: 157.6 nm

Ambient : Photoresist

Measured Refractive Indices of Cr oxide and Cr versus Wavelength.

Optical indices of SiO₂ compared to litterature using extended PUV range $^{\rm 34}$

Conclusion:

•A new purged UV spectroscopic ellipsometer has been presented.

•Experimental results on:

- -CaF₂ substrate.
- -LaF₃ layer on CaF₂ substrate
- -CrOx/Cr/glass structures.
- -Photoresists and antireflective coatings
- -SiOF transmittance

-Now the range is extended to 145-630nm