Phase Profilometry

1

WISE 2000

Junwei Bao, Costas Spanos EECS, University of California, Berkeley Xinhui Niu, Nickhil Jakatdar Timbre Technology, Inc.

Outline

2

- Motivation of Phase Profilometry
- Electromagnetic simulation of ellipsometric response of periodical structures
- A library-based profile extraction method
- Sensitivity study and comparison with 2-θ scatterometry
- Recent experimental results
- Conclusion

BCAM —

Illustration of Spectroscopic Ellipsometry Thin Film Characterization

3

$$\rho = \frac{r_{p}}{r_{s}} = \operatorname{Tan}(\Psi).e^{j(\Delta)}$$

Measured Parameters $Tan\Psi and Cos\Delta$

Concept of Optical Profile Metrology

- Scattering (diffraction) of light from features produces strong spectral structure in reflected optical field
- Analyze structure to obtain topography information
- Periodic structures (gratings) can be numerically modeled "exactly"

Electromagnetic Simulator

6

- Fourier expansion of the grating profile
- Eigensystem formulation
- Linear system solution of E&M field
- In theory, this approach is "rigorous"

CD-AFM Profile Segmentation

7

BCAM

Simulator Convergence (TE)

8

Simulator Convergence (TM)

Comparison of Measured and Simulated Signal

GTK online Interface at the SFR Website

11

Save Open Run Analysis Help About Refresh	Period, nm: 660.0 Order retained: 2
BUILDER Layer Select Layer #: 21 Add Delete Insert TopWidth, nm: 130.4	Example layer → top width ← ↓ theta n-slicegeight ↓ → bottom width ← → period width ↑ ←
Height, nm: 32.9 (Enter -1 for substrate) Slices Titanium oxide 1 UV5 Ytrium oxide Zirconium oxide	layer: 21 layer: 20 layer: 19 layer: 18 layer: 17 layer: 16
Database URL http://radon.eecs.berkeley.edu/~tduncan/cgi-	layer: 14 layer: 13
ANALYSISMethod:FTEIndependentConstantMinMaxStepTheta, deg00381Theta, deg0000Phi, deg✓000Psi, deg✓9000Lambda, nm632.8000E-mail AddressIduncan@ecs.berkeley.eduUCurrent Filegrating	layer: 12 layer: 11 layer: 10 layer: 9 layer: 8 layer: 7 layer: 6 layer: 6 layer: 5 layer: 3 layer: 3
Status	layer: 1 Tayer: 0

BCAM

http://radon.eecs.berkeley.edu/~tduncan/gtk2.html

FEM Experiment for 1D Grating

13

Matching on Tan Ψ and Cos Δ

15

BCAM

Example of Profile Extraction

BCAM -

Profile Extraction over the Entire FEM

5/30/00

The Effect of Material Index Variation (UV5)

780

780

5/30/00

Sensitivity Analysis – Phase Profilometry

19

1.5nm Sensitivity

1nm Sensitivity

BCAM

Sensitivity Analysis -- 20 Scatterometry

20

1.5 nm Sensitivity

1 nm Sensitivity

Comparison between Phase Profilometry and 20 Scatterometry

Phase Profilometry

- Multi wavelength, fixed angle ightarrow
- Uses existing Spectroscopic ightarrowEllipsometer
- Both magnitude and phase info Magnitude reflectivity only ightarrow
- More sensitive to profile ightarrowvariation
- Utilizes full spectrum material Uses material property at ightarrowproperty, less prone to uniqueness problem

2θ Scatterometry

- Multi angle, single wavelength
- Requires specialized hardware •
- Less sensitive to profile • variation
- single wavelength, unable to distinguish films with similar optical properties at measurement wavelength

BCAM

120/120 Line/Space Focus-Exposure Matrix Measurement Area: 120 μm * 80 μm

Proposed Application for Damascene Process In-line Metrology

- Damascene Processes bring a new, difficult challenge to critical dimension measurement.
- Metal line metrology and endpoint detection is important for process control.
- Both film thickness and metal line profile can be measured and used for process control.

5/30/00

BCA

27

Advantages of Phase Profilometry

- Accurate and full profile information
- Uses software plus cheaper hardware (compare to CD SEM) already existing in fabs
- Throughput comparable to CD-SEM
- Scalable for future technologies
- Non-destructive
- Inline/in-situ capable
- Does not require "golden" wafer to calibrate
- Capable to measure both profile and film stacks

Conclusion

- Phase profilometry shows high sensitivity to profiles of gratings.
- Profiles of FEMs have been extracted for resist, poly and metal features.
- Good correlation with CD-SEM and AFM was achieved.
- Phase profilometry is a promising in-line CD and profile metrology for the sub 180nm pattern transfer process.

BCAM

• The rich information obtained from phase profilometry can be further used for process optimization and control.

