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Key Points

« Real-Time Process and Wafer Sensors, and
Feedback Process Control Helped Identify
and Quantitatively Prove the Mechanism for
Process Disturbance/Run-to-Run Variation
(Chamber Conditioning Effects on Etch Rate)

Simultaneous Analysis of Multiple Process
Measurements and A Wafer Measurement
Improved the Quantitative Estimation of
Process Chemistry Parameters (CI* and Cl,
Concentrations)
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Outline

Multi-sensor Study of Cl, Etching of Poly-Si in Lam
9400 TCP / Variations with F-cleans

— OES/Actinometry for CI
— Broadband RF for Plasma Density
— RTSE for Poly Si Etch Rate

Wall Recombination Affects Both Neutral Species and
lon Concentrations

lon Density Measurement Control of Cl, etch of Si

Interpretation of Actinometry Results Requires Careful
Consideration of Gas Dilution Effects on Actinometer
Concentration

HBr-Cl, Mixtures
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Motivation

Chamber wall state as source of
transient variations

Loss rates at walls dependent on = _upper electrode _

Wa" bUlIdup Iosses losses
Wall condition dynamically alters
chemical and plasma densities

1 i wall

Solutions for process drift: PMs, e dun

additional clean steps, test ontranspon
wafers uuuuuuuuuuuumuuuuumuuuumuuuumu

lower electrode

S5 Control of plasma density will improve
process tolerance limits & OEE!
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Previous Wall State Work

« Sawin: 1streported Etch Rate changes in Cl,
due to O, (1) & CF, (]) chamber exposure.
(JECS 1992)

 Donnelly: Increasing Cl neutral conc. with
time in a quartz tube helical resonator.
(JVSTA 1996)

o Aydil: Atomic CI drifts due to SiO, wall
conditioning & SF; wall cleans. (JVSTA 2002)
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This Work

1st experimental evidence of Cl, plasma
density variation with F-cleans/wall prep.

1st direct correlation of real-time plasma
density & real-time etch rate variations

1st direct real-time feedback control of plasma
density to stabilize poly-Si etch rate in ClI,

Improved Understanding of Wall Effects and
Actinometry Results
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Time Stamped Sensor System

EMACS I/O Hardware

EMACS Real-Time System

Real-Time Monitors
a) RTSE — wafer state

1.79um diode laser
PRI b) BroadBand RF — plasma state

= C) FTIR — exhaust chem; SiCl,, SiF,
d) Diode Laser Absorption — chem state

LAM 9400SE TCP e) OES - [F], [CI] intensity in chamber
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RTSE

= Light Source Detector

. y' T 3
R A S Sample

. Real-Time Spectroscoplc Ellipsometer (RTSE)
— Can optically model film etch depth, CD, sidewall slope
— Use for real-time etch rate monitoring & transients
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BroadBand RF

Antenna

Process
.~ Chamber Wall

Remarks
 High frequency (GHz), low power (mW) sweep of plasma

 Plasma impedance spectroscopy
« Must analyze broad spectrum of data (Broadband RF Probe)

 Yields plasma density metric
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BB Peak Shifts & Density

Seasoning etch rate recovery:

1.5 2
frequency in GHz

 Two prominent resonance modes, o, & ®,,, for these
chamber conditions

 Peak frequencies shift right for increasing density
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BroadBand RF Circuit Analogy

Antenna

Process
.~ Chamber Wall

-+ Loss paths give many
resonance peaks in |I'| for
single o,

 Model peaks as RLC circuit
resonances w/
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Broadband Interpretation

 The frequencies of maximum RF absorption,
0, & ®,,, track similarly and are circuit/cavity
shifted indicators of the plasma frequency

The shape of the BBRF signals contain more
information, but this is not considered here
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FTIR Effluent Measurements

. :
] - K
ovin l
irror =

e Fourier Transform InfraRed (FTIR) spectroscopy
measures volatile etch products in foreline exhaust

* Yields dynamic chemical state changes in SiCl, & SiF,

e Used commercial INDUCT!™ FTIR from On-line Tech.
(now MKS)
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Etch Conditions

Lam 9400 TCP SE
10 mTorr

100 sccm ClI, flow
— 100 sccm total etch gas flow for Cl,/HBr experiments

5 sccm Ar flow
250 W TCP Power

— Varied for Plasma Density Control (Closed Loop) Runs

100 W Bias Power

— Bias Voltage Measurement Not Available

Unpatterned 150 mm Poly-Si/30nm SiO,/Si
Test Wafers
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Experimental Definition 1

o First project; 3 experiments

« Compensate for ion density losses due to F-
cleaning of chamber walls

1) Nominal Etch: Run plasma chamber at steady state chlorine
condition to establish real-time etch rate, BB peak position,
and SiCl, effluent level

2) Open loop recovery: Prep chamber walls using C,F¢ clean to
strip Silicon Oxychloride buildup, then run identical Cl,
recipe.

3) Closed loop compensation: Run identically as uncontrolled
open loop etch, only now use TCP power to maintain
BroadBand setpoint.
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(OL) Open Loop Drift Recovery
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 Nominal etch rate flat, OL rate increasing
 Nominal BroadBand o,, flat, OL »,, increasing
 OL signals do not recover in 60sec
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(CL) Closed Loop Recovery
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« Both nominal & CL etch rate flat
 Both nominal & CL BroadBand o, flat
 CL signals recover in ~5sec
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Effluent from FTIR

SiCI4 etch product from FTIR
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 Nominal SiCl, is flat with no disturbance (black)
» OL SiCl, effluent is suppressed = lower ER (green)
» CL SiCl, is mostly compensated by controller (blue)
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TCP Power OL vs. CL

CI2 etch from F—prep chamber walls

=== Open loop
closed loop

« TCP power compensation in CL is very high at the
start to make up for lost CI* ions to the walls
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Experimental Definition 2

e Second project: 2 experiments, OL vs. CL

« 1st wafer effect elimination with plasma
density compensation
— Prep chamber walls using C,F; clean

— Follow with 3 open loop etches for 30s each in Cl, and
measure etch depth

— Prep chamber with C,F; clean again

— Follow with 3 closed loop etches for 30s each and
compare etch depth variation with that in OL case
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1st Wafer Effect Reduction
Three 30s Cl, etches after single F-prep of chamber

1st wafer effect, open loop 1st wafer effect reduced, closed loop
SP max-min: 156.2 A, RTSE max-min: 146.7 A SP max-min: 49.2 A RTSE max-min: 56.7 A
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Open loop etch depth Closed loop etch depth

Etch rate increases, both in jth density correction
situ (RTSE) & ex situ .

Etch depth variation ~150A reduced to ~50A
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TCP Compensation R2R

sequential closed loop control action

nominal

e Closed loop TCP power compensation reduces with
each successive run as chamber begins to season
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Summary

1st evidence of real-time Poly-Si etch rate variation in
Cl, due to F-exposure.

1st demonstration of ion density control in Cl, to
compensate for Poly-Si real-time etch rate transients.

Effluent SiCl, chemistry verifies both real-time
performance drifts and feedback correction.

Significant 1st wafer effect reduction after chamber
cleans with density feedback control.

Question: How Do We Explain the Results of Earlier
Researchers?

— Actinometry Results & Interpretations

— Key Point Is That Even For Qualitative Conclusions,
Actinometry/OES Results Must Be Carefully Analyzed Considering
All Gasses Present In Chamber
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Aar: 750.4nm

Intensity Ratio I/l,, [Aci8222nm

After F-disturbance,
both controlled &
uncontrolled cases
show similar Cl-
neutral suppression
| — and recovery.

— 11, 0L Simple Conclusion is
e that lons (not
| | neutrals) control etch

rate for this process.
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Cl Intensity

e CllIntensity is Flat in
Nominal/Seasoned-wall
case & varies in Open
Loop and Closed Loop
Cases
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time(s)
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Ar Intensity

| Nominal °
Ar

|Ar Open Loop

| Closed Loop
Ar
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Intensity of Ar Being
Nearly Flat Was
Previously Taken By
Some Researchers To
Show that the Plasma
Density Was Constant

This led to the
conclusion that neutral
Cl loss was responsible
for Si etch rate variations

We have shown that
neither of these
conclusions can be
correct




OES Setup Equations

d = Cl, dissociation fraction

f,,= mole fraction of Ar in feed gas (5%)
 Mass balance: CIl, =2 2dCl + (1-d)Cl,

 Raw optical intensity signals:

_ coupled
IAr o KAr (Te)nenAr simply by

(neOCa)nZ) ICI = KCI (Te)nenCI

* Intensity ratio:
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Detailed Look at Dissociation
Diluation Effect on Ar

Ek — 2dCl+(1-d)CI, Chlorine Dissociation
input gas mixture gascompositionin plasma
Now including the Ar actinometer concentration
(o) Ar+(1-f, )Cl, > (f, )Ar+2d(1-f, )Cl+(1-d)(1-

v Vo
input gas mixture gascompositionin plasma

The concentration of Ar is diluted by Cl, dissociation
So in the plasma, assuming all molecules, atoms, ions at the same temperature:

Ny = fAr Nt = fAr Nigt
fo +2d(1-f, )+(1-d)(1-f, ) 1+d(1-f,, )
2d (1- f, 2d (1- f,
nCIZ{ ( A) :|ntot:|: ( A):|ntot

fo +2d(1-f, )+(1-d)(1-f,) 1+d(1-f,)

Thus

(1- fAr)}

fA

r
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OES Fits

 Clean Chamber / High Recombination Case
Yields Actinometry Data with Enough
Structure to Extract o’ & K,,’ by Nonlinear
Regression

 Dissociation Fractions for Other Runs
Estimated by Assuming o, is the same as
the Clean Chamber Result
— Possible T, variations Errors
— Possible Window Variations
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Fitting of OES Data

Fitting 2 constants (o..,” & K,,’) possible if d (15/1,,) changes
significantly enough in time

f
l, =K o’n, =Ko’ Ar n
Ar Ar (Te) n"Ar 1%*n |:1+d (1_ fAr):| tot

2d(1-f,,
I =K (Te)a)rfn(:l = Kza)f {1+d((1 ,?Ar)):|ntot

h — & 29 1_fAr —)dzl KAr 1:Ar
IAr KAr fAr 2 KCI 1- fAr

Al

fAr — fAr fAr

_ 2
I = Kar N @,

r' 'tot““n
1+1acl fAr g (1_ fAr) 7ac| fAr ﬁ 1+1acl fAr ﬁ
2 1- fAr IAr meas IA" meas 2 IAr meas

Ar
| =K (T )a)Zn —K.n 602 Ar Imeas Ar _Imeas _ IAV meas
cl — "x2\le n''Cl —

Cl" 'tot*“n
1 I
| | 2 [
L Ar _meas _| B Ar _meas _| Ar _meas _|
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Fitting of OES Data

Fitting 2 constants (o..,” & K,,’) possible if d (15/1,,) changes
significantly enough in time
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Ar OES Signal & Fit: SiCl,
I

WNpolyllc_oltxt Fitted Ar Signal K', = 3.8284 +/- 0.114 o', = 15.8952 +/- 1.4055 (95.4% confidence limits)
3.5;
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Cl OES Signal & Fit: SiCl,
Ignored

WNpolyllc_oltxt Fitted Cl Signal K', =3.8284 +/-0.114 o', = 15.8952 +/- 1.4055 (95.4% confidence limits)

— Measured | al
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Cl Clfit
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Cl, Net Dissociation: SiCl,
Ignored

WNpolyllc_ol.txt Dissociation Fractiond and nCI/ngl K', =3.8284 +/-0.114 o', =15.8952 +/- 1.4055 (95.4% confidence limit

—— dissociation fraction (d)
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Ar Fraction: SiCl, Ignored

—_—n Ar/ng

— Scaled m;B (ny)

= Minimum Possible Ar Precentage
|

L | | | | | ]
0 ‘ 50 60

| ,(t) ~const. due to opposing effects of dilution ({) & n, (1)
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Dissociation Fractions: SiCl,
Ignored

Dissociation Fractions
I

= Clean Chamber, OL
= Clean Chamber, CL
= Seasoned Chamer, OL
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Intensity Ratio I/l,,

| =—1_/1 Nominal
Cl Ar

| — oL

. Cl Ar

|1 cL

Cl Ar
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Aar: 750.4nm
Acp: 822.2nm

Why is feedback
controlled I-/1 4,
still low? :
GENERATION of
Cl Is Increased but
COMSUMPTION
by Si Etching &
Dilution by SiCl,
Offset Generation




Key Reactions

Cl, — 2ClI Dissociation
2ClI - Cl, Recombination (wall & bulk gas phase)

Cl+e 2 CI" +2e” lonization & Bulk Deionization
Si+4Cl — SiCl, Etch

SiCl, + Si0, — SiO,Cl, +Cl +Cl,
SiCl, + ALO, — Al,Si,0,CI, +Cl +Cl,

}Deposition Reactions (unbalanced)
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Simplified Reaction Set

Assuming Cl ionization and Si-species deposition

Reactions have small effects on gas species concentrations,
the other remaining reactions yield:

Fe Cl, + Fo Ar + Fg St = XCl + yCl, + F¢;SICI, + 1, Ar

Vo '
molecules in chamber gas phase molecules

%x+ y+2F; = Fer for Cl, mass balance

y=(1-d)F, where d = Net Dissociation Fraction of Cl,

Fs; ={Si atoms/s consumed by etching} known from measured etch rate & flows
S0

X =| 2dF,, —4Fy |

F.; (t) Estimated From Real-Time Etch Rate (Spectroscopic
Ellipsometry) and Si Area
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Result of Simplified Reaction Set
n, cX+y+Fk;+F,
n, o 2dF,, —4F; +(1-d)F, +Fg+F,
n, oc(1+d)F, +F, —3F

X ZdFCI2 -4k,
N = n, = N,
X+y+F+F, (1+d)FC|2 +F, —3F,

|:Ar

I:Ar
Ny = ng = ng
X+ Y+ Fs+Fy (1+d)FCI2 +Fu —3F Cl
ICI — KCInCI ne IAr — KArnArne ACtInometry
Measured Actinometry Ratio: Signal

_ —— by
. KnSalale Qg Far Etch/Loading

Suppressed
{h} _ Kedgingne 1 {Zdlzcl2 _4FSi:| PP
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PV =ngRT@J —> N, =%

g
Assume T, Is constant & n,=Cw;,Where C is a portionality constant fixed during the etch run.

K, &a, are the only unknowns
Kc:|0‘c:| A\n FAr They can be extracted if there is sufficient

Fcl2 T (1"‘%05& A\’nj Far = Fs

variation in I, (t) & 1, (t)

K:Ar A’n |:Ar

Fcl2 + (14‘%0@ A\’nj Far — Fs

K
1+%05(':|An

|:A

r
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Ar OES Intensity & Fit: SiCl,
Included from RTSE

WNpolyllc_oltxt Fitted Ar Signal K', = 3.7347 +/- 0.10994 o', = 17.1368 +/- 1.3555 (95.4% confidence limits)
3.5;
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Cl OES Intensity & Fit: SiCl,
Included from RTSE

WNpolyllc_oltxt Fitted ClSignal K', =3.7347 +/-0.10994 o', = 17.1368 +/- 1.3555 (95.4% confidence limits)
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Ar Fraction : SiCl, Included
from RTSE
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Dissociation Fraction : SiCl,
Included from RTSE

WNpolyllc_oltxt Fitted ClSignal K', =3.7347 +/-0.10994 o', =17.1368 +/- 1.3555 (95.4% confidence limits)

— Measured ICI
— Fitted ICI
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Dissociation Fractions: SiCl,
Included from RTSE

pissociation Fractions » Net Dissociation
| Fraction (d) Is
Increased by

‘ Higher TCP

— Glean hamber, oL | Power in Closed

== Clean Chamber, CL

_— Sea?oned Chamber || LOOp R U n

Net d is higher
than estimated
from procedure
ignoring SICl,

Dissociation Fraction

| | | Wall
e 9 Recombination
Still Suppresses
Cl,d
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With some
Te (EEDF) Issue assumptions which

we believe are
justified:

2
=
D
2
<

Intensity Cl WNpoly 10c Closed Loop Te for open IOOp case
m4BB/1.57 WNpoly10c Closed Loop | appears ~constant

Intensity Cl WNpolyllc
"7 o' /1.3882 WNpolyllc Open Loop

T, Is Increased
Initially for closed
loop case (constant
O assumption may
not be accurate)

10 20 30 40 50

Time
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Wall-State Effects Model

ng reduced due to recombination on F-cleaned walls.

ng.. reduced due to lower availability of n,
precursor. ER decreases due to lower ion
bombardment.

Real-time feedback control corrects for n,~ng,,

losses by increasing T, but does not fully recover
nCI-

Model supports ion dominated etch of Si w/ Cl,;
n.. < ER # ng,. High ng, keeps surface Cl-saturated.
-.ion bombardment is rate limiting step.

« Extracted d varies significantly, causing constant |,,.
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HBr/Cl, Etches

HCI Is Formed In Mixing Manifold By HBr/Cl, Reaction

Collaboration With Stanford Group Shows Similar Plasma/Gas
Chemistry Trends To Cl,-Only Cases

— HCI absolute concentration was measured by laser diode
absorption

— HCI Dissociation follows BB-RF/plasma density trends
— Chamber cleaning suppresses dissociation of HCI &

increases plasma density variation

Open Loop Etch Rates Become More Constant With Increasing
HBr & Show Less Sensitivity to Chamber Wall Condition

Closed Loop Plasma Density Control Causes More Time
Variation In Etch Rate for High HBr Concentration Cases

HBr/Cl, Etch Rates Are Not Directly lon Density Limited &
Future Work is Needed
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HBr/CI, Etch (80/20)

Open Loop Closed Loop

ER (nm/s) ER (nm/s)
wnpolyic wnpoly19c
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Future Work

Modeling of BB Signals to extract more from the
shape of the data

— collision parameters
— Possible TglEEDF Information

Improved antenna designs for BB System
Lower-cost electronics for BB reflectometry

Apply density control to topography & profile variations.

Expand to other ion-dominated etches besides CI, etching of
Poly-Si.

Larger scale, multi-wafer tests to verify control improvements.

lon density control most effective when etch is ion dominated.
Chemically dominated etches do not show same effects.

Combine ion density control with ion energy control.
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Supporting Materials

For Possible Q&A
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Dissociations Fractions Including
SiCl, from Open Loop Runs

= poly24_ol.txt
=—poly22_ol.txt - __
—poly13 ol.txt

|
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Dissociations Fractions Including
SiCl, from Closed Loop Runs

—poly21_cl.txt
—WNpolyl7c_cl.txt
—poly23_cl.txt

|
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Te Estimator Slides

For Possible Q&A
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Bulk lonization/Recombination

Generation/lonization Bulk Pla_smq
Recombination
of Neutral Cl by e’s o e it @

Steady-State

Solution
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Electron Temperature and Broadband |

« Assuming CI* loss rate dominated by bulk CI* -
e" recombination yields steady state solution
where ng," depends on T, but not n,

« Assuming a Quasi-Neutral Plasma dominated
by CI* & e-

« CI Neutral Glow Intensity Coupled to n &n,°
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Electron Temperature and Broadband li

« Assuming Broadband peak frequency is a circuit/path-scaled
electron plasma frequency

« Combing last 4 equations yields

Ratio measures relative ratio of ionization rate to metastable glow
state excitation

Sensitive to T, due to significant difference between excitation
thresholds for ionization and glow
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Electron Temperature/Cl Glow Equations

lonization/recombination Neutral Glow

Combining for ratio

Quasi-

Neutrality
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Cl OES Signal & BB Signal:
Open Loop/Clean Chamber

4
WNpolyllc_oltxt oy, & I

Arb Units
w
o

w

Cl
4
— mBB/1.3882

Time (s)
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