Use of Multiple Real-time Sensors for Improved Process Understanding and Control: Cl₂ Etching of Polycrystalline Si

Fred L. Terry, Jr.

Dept of EECS University of Michigan +1-734-763-9764 +1- 734-763-9324 (fax) fredty@umich.edu http://www.eecs.umich.edu/~fredty

Acknowledgements

- Dr. Pete Klimecky (now with Intel)
- Dr. Craig Garvin (now with Inficon)
- Prof. Jessy Grizzle (UofM)
- Dr. Jay Jefferies (Stanford)

Most Major Aspects of this work published in:

- Pete I. Klimecky and Fred L. Terry, Jr., "A multi-sensor study of Cl₂ etching of polycrystalline Si," *Phys. Stat. Sol.* (c) 5, No. 5, 1341–1345 (2008)
- Pete I. Klimecky, J. W. Grizzle, and Fred L. Terry, Jr.
 "Compensation for transient chamber wall condition using real-time plasma density feedback control in an inductively coupled plasma etcher," *J. Vac. Sci. Technol.*, A 21, pp. 706-17 (2003).

Key Points

- Real-Time Process and Wafer Sensors, and Feedback Process Control Helped Identify and Quantitatively Prove the Mechanism for Process Disturbance/Run-to-Run Variation (Chamber Conditioning Effects on Etch Rate)
- Simultaneous Analysis of Multiple Process Measurements and A Wafer Measurement Improved the Quantitative Estimation of Process Chemistry Parameters (Cl⁺ and Cl₀ Concentrations)

Outline

- Multi-sensor Study of Cl₂ Etching of Poly-Si in Lam 9400 TCP / Variations with F-cleans
 - OES/Actinometry for CI
 - Broadband RF for Plasma Density
 - RTSE for Poly Si Etch Rate
- Wall Recombination Affects Both Neutral Species and lon Concentrations
- Ion Density Measurement Control of Cl₂ etch of Si
- Interpretation of Actinometry Results Requires Careful Consideration of Gas Dilution Effects on Actinometer Concentration
- HBr-Cl₂ Mixtures

Motivation

- Chamber wall state as source of transient variations
- Loss rates at walls dependent on wall buildup
- Wall condition dynamically alters chemical and plasma densities
- Solutions for process drift: PMs, additional clean steps, test wafers

Control of plasma density will improve process tolerance limits & OEE!

Previous Wall State Work

- <u>Sawin</u>: 1st reported Etch Rate changes in Cl₂ due to O₂ (↑) & CF₄ (↓) chamber exposure. (*JECS* 1992)
- <u>Donnelly</u>: Increasing CI neutral conc. with time in a quartz tube helical resonator. (*JVSTA* 1996)
- <u>Aydil</u>: Atomic CI drifts due to SiO₂ wall conditioning & SF₆ wall cleans. (*JVSTA* 2002)

This Work

- 1st experimental evidence of Cl₂ plasma density variation with F-cleans/wall prep.
- 1st direct correlation of real-time plasma density & real-time etch rate variations
- 1st direct real-time feedback control of plasma density to stabilize poly-Si etch rate in Cl₂
- Improved Understanding of Wall Effects and Actinometry Results

Time Stamped Sensor System

RTSE

- Real-Time Spectroscopic Ellipsometer (RTSE)
 - Can optically model film etch depth, CD, sidewall slope
 - Use for real-time etch rate monitoring & transients

BroadBand RF

Remarks

- High frequency (GHz), low power (mW) sweep of plasma
- Plasma impedance spectroscopy
- Must analyze broad spectrum of data (Broadband RF Probe)
- Yields plasma density metric

BB Peak Shifts & Density

- Two prominent resonance modes, ω_{n1} & ω_{n2}, for these chamber conditions
- Peak frequencies shift right for increasing density

BroadBand RF Circuit Analogy

- Loss paths give many resonance peaks in |Γ| for single ω_p
- Model peaks as RLC circuit resonances w/

Fred L. Terry, Jr., Sematech AEC/APC Meeting, September 29, 2009

 ω_{ni}

Broadband Interpretation

- The frequencies of maximum RF absorption, ω_{n1} & ω_{n2}, track similarly and are circuit/cavity shifted indicators of the plasma frequency
- The shape of the BBRF signals contain more information, but this is not considered here

$$\omega_{pe} = \left(\frac{q^2 n_e}{\varepsilon_0 m}\right)$$
$$\omega_{n1} = A\omega_{pe}$$
$$\omega_{n2} = B\omega_{pe}$$
$$A < B < 1$$

$$n_{e} = \left(\frac{\varepsilon_{0}m}{q^{2}}\right)\omega_{pe}^{2} = \left(\frac{\varepsilon_{0}m}{Bq^{2}}\right)\omega_{n2}^{2}$$

FTIR Effluent Measurements

- <u>Fourier Transform InfraRed (FTIR) spectroscopy</u> measures volatile etch products in foreline exhaust
- Yields dynamic chemical state changes in SiCl₄ & SiF₄
- Used commercial INDUCTtm FTIR from On-line Tech. (now MKS)

Etch Conditions

- Lam 9400 TCP SE
- 10 mTorr
- 100 sccm Cl₂ flow
 - 100 sccm total etch gas flow for Cl₂/HBr experiments
- 5 sccm Ar flow
- 250 W TCP Power
 - Varied for Plasma Density Control (Closed Loop) Runs
- 100 W Bias Power
 - Bias Voltage Measurement Not Available
- Unpatterned 150 mm Poly-Si/30nm SiO₂/Si Test Wafers

Experimental Definition 1

- First project; 3 experiments
- Compensate for ion density losses due to Fcleaning of chamber walls
 - 1) <u>Nominal Etch</u>: Run plasma chamber at steady state chlorine condition to establish real-time etch rate, BB peak position, and SiCl₄ effluent level
 - Open loop recovery: Prep chamber walls using C₂F₆ clean to strip Silicon Oxychloride buildup, then run identical Cl₂ recipe.
 - 3) <u>Closed loop compensation</u>: Run identically as uncontrolled open loop etch, only now use TCP power to maintain BroadBand setpoint.

(OL) Open Loop Drift Recovery

- Nominal etch rate flat, OL rate increasing
- Nominal BroadBand ω_{n2} flat, OL ω_{n2} increasing
- OL signals do not recover in 60sec

(CL) Closed Loop Recovery

- Both nominal & CL etch rate flat
- Both nominal & CL BroadBand ω_{n2} flat
- CL signals recover in ~5sec

SiCl₄ Effluent from FTIR

- Nominal SiCl₄ is flat with no disturbance (black)
- OL SiCl₄ effluent is suppressed = lower ER (green)
- CL SiCl₄ is mostly compensated by controller (blue)

TCP Power OL vs. CL

 TCP power compensation in CL is very high at the start to make up for lost Cl⁺ ions to the walls

Experimental Definition 2

- Second project; 2 experiments, OL vs. CL
- 1st wafer effect elimination with plasma density compensation
 - Prep chamber walls using C₂F₆ clean
 - Follow with 3 open loop etches for 30s each in Cl₂ and measure etch depth
 - Prep chamber with C₂F₆ clean again
 - Follow with 3 closed loop etches for 30s each and compare etch depth variation with that in OL case

1st Wafer Effect Reduction Three 30s Cl₂ etches after single F-prep of chamber

- Open loop etch depth
- Etch rate increases, both in situ (RTSE) & ex situ (Reflectometer)
 - oth *in* with density correction Etch depth variation reduced to ~50Å

Closed loop etch depth

Etch depth variation ~150Å

TCP Compensation R2R

 Closed loop TCP power compensation reduces with each successive run as chamber begins to season

Summary

- 1st evidence of real-time Poly-Si etch rate variation in Cl₂ due to F-exposure.
- 1st demonstration of ion density control in Cl₂ to compensate for Poly-Si real-time etch rate transients.
- Effluent SiCl₄ chemistry verifies both real-time performance drifts and feedback correction.
- Significant 1st wafer effect reduction after chamber cleans with density feedback control.
- Question: How Do We Explain the Results of Earlier Researchers?
 - Actinometry Results & Interpretations
 - Key Point Is That Even For Qualitative Conclusions, Actinometry/OES Results Must Be Carefully Analyzed Considering All Gasses Present In Chamber

Intensity Ratio I_{CI}/I_{Ar}

After F-disturbance,
both controlled &
uncontrolled cases
show similar Clneutral suppression
and recovery.
Simple Conclusion is
that Ions (not
neutrals) control etch
rate for this process.

 $λ_{Ar}$: 750.4nm λ_{Cl} : 822.2nm

CI Intensity

Cl Intensity is Flat in Nominal/Seasoned-wall case & varies in Open Loop and Closed Loop Cases

Fred L. Terry, Jr., Sematech AEC/APC Meeting, September 29, 2009

Ar Intensity

- Intensity of Ar Being Nearly Flat Was Previously Taken By Some Researchers To Show that the Plasma Density Was Constant
- This led to the conclusion that neutral CI loss was responsible for Si etch rate variations
- We have shown that neither of these conclusions can be correct

Fred L. Terry, Jr., Sematech AEC/APC Meeting, September 29, 2009

OES Setup Equations

d = Cl₂ dissociation fraction
 f_{Ar} = mole fraction of Ar in feed gas (5%)
 Mass balance: Cl₂ → 2dCl + (1-d)Cl₂

Raw optical intensity signals:

Detailed Look at Dissociation Diluation Effect on Ar

 $\underbrace{Cl_2}_{input \ gas \ mixture} \rightarrow \underbrace{2dCl + (1-d)Cl_2}_{gas \ composition \ in \ plasma}$ Chlorine Dissociation Now including the Ar actinometer concentration $\underbrace{\left(f_{Ar}\right)Ar + \left(1 - f_{Ar}\right)Cl_{2}}_{input \text{ gas mixture}} \rightarrow \underbrace{\left(f_{Ar}\right)Ar + 2d\left(1 - f_{Ar}\right)Cl + \left(1 - d\right)\left(1 - f_{Ar}\right)Cl_{2}}_{gas \text{ composition in plasma}}$ The concentration of Ar is diluted by Cl_2 dissociation So in the plasma, assuming all molecules, atoms, ions at the same temperature: $n_{Ar} = \left| \frac{f_{Ar}}{f_{Ar} + 2d(1 - f_{Ar}) + (1 - d)(1 - f_{Ar})} \right| n_{tot} = \left| \frac{f_{Ar}}{1 + d(1 - f_{Ar})} \right| n_{tot}$ $n_{Cl} = \left| \frac{2d(1 - f_{Ar})}{f_{L} + 2d(1 - f_{L}) + (1 - d)(1 - f_{L})} \right| n_{tot} = \left| \frac{2d(1 - f_{Ar})}{1 + d(1 - f_{L})} \right| n_{tot}$ Thus $\frac{n_{Cl}}{n_{+}} = \left| \frac{2d(1 - f_{Ar})}{f_{+}} \right| = 2d \left| \frac{(1 - f_{Ar})}{f_{Ar}} \right|$

OES Fits

- Clean Chamber / High Recombination Case Yields Actinometry Data with Enough Structure to Extract α_{Cl} ' & K_{Ar}' by Nonlinear Regression
- Dissociation Fractions for Other Runs Estimated by Assuming α_{CI} ' is the same as the Clean Chamber Result
 - Possible T_e variations Errors
 - Possible Window Variations

Fitting of OES Data

Fitting 2 constants (α_{Cl} ' & K_{Ar} ') possible if d (I_{Cl}/I_{Ar}) changes significantly enough in time

$$\begin{split} I_{Ar} &= K_{Ar}(T_{e})\omega_{n}^{2}n_{Ar} = K_{1}\omega_{n}^{2} \left[\frac{f_{Ar}}{1+d\left(1-f_{Ar}\right)} \right] n_{tot} \\ I_{Cl} &= K_{Cl}(T_{e})\omega_{n}^{2}n_{Cl} = K_{2}\omega_{n}^{2} \left[\frac{2d\left(1-f_{Ar}\right)}{1+d\left(1-f_{Ar}\right)} \right] n_{tot} \\ \left[\frac{I_{Cl}}{I_{Ar}} \right] &= \left(\frac{K_{Cl}}{K_{Ar}} \right) 2d\left(\frac{1-f_{Ar}}{f_{Ar}} \right) \rightarrow d = \frac{1}{2} \left(\frac{K_{Ar}}{K_{Cl}} \right) \left(\frac{f_{Ar}}{1-f_{Ar}} \right) \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas} \\ I_{Ar} &= K_{Ar}n_{tot}\omega_{n}^{2} \left[\frac{f_{Ar}}{1+\frac{1}{2}\alpha_{cl}\left(\frac{f_{Ar}}{1-f_{Ar}}\right)} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas} \left(1-f_{Ar} \right) \right] = K_{Ar}n_{tot}\omega_{n}^{2} \left[\frac{f_{Ar}}{1+\frac{1}{2}\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}} \right] = K_{Ar}'\omega_{n}^{2} \left[\frac{f_{Ar}}{1+\frac{1}{2}\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}} \right] \\ I_{Cl} &= K_{2}(T_{e})\omega_{n}^{2}n_{Cl} = K_{Cl}n_{tot}\omega_{n}^{2} \left[\frac{\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}}{1+\frac{1}{2}\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}} \right] = K_{Cl}'\omega_{n}^{2} \left[\frac{\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}}{1+\frac{1}{2}\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}} \right] = K_{Ar}'\omega_{n}^{2} \left[\frac{f_{Ar}}{1+\frac{1}{2}\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}}}{1+\frac{1}{2}\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}} \right] = K_{Cl}'\omega_{n}^{2} \left[\frac{\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}}}{1+\frac{1}{2}\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}}} \right] = K_{Ar}'\omega_{n}^{2} \left[\frac{\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}}}{1+\frac{1}{2}\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}}} \right] = K_{Ar}'\omega_{n}^{2} \left[\frac{\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}}}{1+\frac{1}{2}\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}}} \right] = K_{Ar}'\omega_{n}^{2} \left[\frac{\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}}}{1+\frac{1}{2}\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}}} \right] = K_{Ar}'\omega_{n}^{2} \left[\frac{\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}}}{1+\frac{1}{2}\alpha_{cl}f_{Ar} \left[\frac{I_{Cl}}{I_{Ar}} \right]_{meas}}} \right]$$

Fitting of OES Data

Fitting 2 constants (α_{Cl} ' & K_{Ar} ') possible if d (I_{Cl}/I_{Ar}) changes significantly enough in time

Ar OES Signal & Fit: SiCl₄ Ignored

CI OES Signal & Fit: SiCl₄ Ignored

Cl₂ Net Dissociation: SiCl₄ Ignored

Fred L. Terry, Jr., Sematech AEC/APC Meeting, September 29, 2009

Ar Fraction: SiCl₄ Ignored

 $I_{Ar}(t)$ ~const. due to opposing effects of dilution (\downarrow) & n_e (\uparrow)

Dissociation Fractions: SiCl₄ Ignored

Fred L. Terry, Jr., Sematech AEC/APC Meeting, September 29, 2009

Intensity Ratio I_{CI}/I_{Ar}

 λ_{Ar} : 750.4nm λ_{Cl} : 822.2nm

Why is feedback controlled I_{Cl}/I_{Ar} still low? : GENERATION of Cl Is Increased but COMSUMPTION by Si Etching & Dilution by SiCl₄ Offset Generation

Key Reactions

 $\begin{array}{ll} Cl_2 \rightarrow 2Cl & \text{Dissociation} \\ 2Cl \rightarrow Cl_2 & \text{Recombination (wall & bulk gas phase)} \\ Cl + e^- \rightleftharpoons Cl^+ + 2e^- & \text{Ionization & Bulk Deionization} \\ Si + 4Cl \rightarrow SiCl_4 & \text{Etch} \\ SiCl_4 + SiO_2 \rightarrow SiO_xCl_y + Cl + Cl_2 \\ SiCl_4 + Al_2O_3 \rightarrow Al_ySi_2O_xCl_y + Cl + Cl_2 \\ \end{array} \right\} \text{Deposition Reactions (unbalanced)}$

Simplified Reaction Set

Assuming Cl ionization and Si-species deposition

Reactions have small effects on gas species concentrations,

the other remaining reactions yield:

 $\underbrace{F_{Cl_2}Cl_2 + F_{Ar}Ar + F_{Si}Si}_{\text{molecules in}} \rightarrow \underbrace{xCl + yCl_2 + F_{Si}SiCl_4 + f_{Ar}Ar}_{\text{chamber gas phase molecules}}$ $\frac{1}{2}x + y + 2F_{Si} = F_{Cl_2} \text{ for } Cl_2 \text{ mass balance}$ $y = (1-d)F_{Cl_2} \text{ where } d = \text{Net Dissociation Fraction of } Cl_2$ $F_{Si} = \{Si \text{ atoms/s consumed by etching}\} \text{ known from measured etch rate & flows}$

So

 $x = \left[2dF_{Cl_2} - 4F_{Si}\right]$

 $F_{Si}(t)$ Estimated From Real-Time Etch Rate (Spectroscopic Ellipsometry) and Si Area

Result of Simplified Reaction Set

$$n_{g} \propto x + y + F_{Si} + F_{Ar}$$

$$n_{g} \propto 2dF_{Cl_{2}} - 4F_{Si} + (1 - d)F_{Cl_{2}} + F_{Si} + F_{Ar}$$

$$n_{g} \propto (1 + d)F_{Cl_{2}} + F_{Ar} - 3F_{Si}$$

$$n_{Cl} = \left[\frac{x}{x + y + F_{Si} + F_{Ar}}\right]n_{g} = \left[\frac{2dF_{Cl_{2}} - 4F_{Si}}{(1 + d)F_{Cl_{2}} + F_{Ar} - 3F_{Si}}\right]n_{g}$$

$$n_{Ar} = \left[\frac{F_{Ar}}{x + y + F_{Si} + F_{Ar}}\right]n_{g} = \left[\frac{F_{Ar}}{(1 + d)F_{Cl_{2}} + F_{Ar} - 3F_{Si}}\right]n_{g}$$

$$I_{Cl} = K_{Cl}n_{Cl}n_{e} \qquad I_{Ar} = K_{Ar}n_{Ar}n_{e}$$
Measured Actinometry Ratio:
$$\left[\frac{I_{Cl}}{I_{Ar}}\right]_{m} \equiv A_{m} = \frac{K_{Cl}S_{Cl}n_{Cl}n_{e}}{K_{Ar}S_{Ar}n_{Ar}n_{e}} = \frac{1}{\alpha_{Cl}'}\left[\frac{2dF_{Cl_{2}} - 4F_{Si}}{F_{Ar}}\right]$$

Cl Actinometry Signal Suppressed by Etch/Loading

$$PV = n_g RT_g \to n_g = \frac{PV}{RT_g}$$

Assume T_g is constant & $n_e = C \omega_{BB}^2$ where C is a portionality constant fixed during the etch run.

$$I_{Cl} = P\omega_{BB}^{2} \left[\frac{K_{Cl}^{'}\alpha_{Cl}^{'}A_{m}F_{Ar}}{F_{Cl_{2}} + \left(1 + \frac{1}{2}\alpha_{Cl}^{'}A_{m}\right)F_{Ar} - F_{Si}} \right]$$
$$= P\omega_{BB}^{2} \left[\frac{K_{Ar}^{'}A_{m}F_{Ar}}{F_{Cl_{2}} + \left(1 + \frac{1}{2}\alpha_{Cl}^{'}A_{m}\right)F_{Ar} - F_{Si}} \right]$$
$$I_{Ar} = P\omega_{BB}^{2} \left[\frac{K_{Ar}^{'}F_{Ar}}{F_{Cl_{2}} + \left(1 + \frac{1}{2}\alpha_{Cl}^{'}A_{m}\right)F_{Ar} - F_{Si}} \right]$$

 $K_{Ar} \& \alpha_{Cl}$ are the only unknowns They can be extracted if there is sufficient variation in $I_{Cl}(t) \& I_{Ar}(t)$

Ar OES Intensity & Fit: SiCl₄ Included from RTSE

CI OES Intensity & Fit: SiCl₄ Included from RTSE

Ar Fraction : SiCl₄ Included from RTSE

Dissociation Fraction : SiCl₄ Included from RTSE

Dissociation Fractions: SiCl₄ Included from RTSE

- Net Dissociation Fraction (d) Is
 Increased by
 Higher TCP
 Power in Closed
 Loop Run
- Net d is higher than estimated from procedure ignoring SiCl₄
- Wall Recombination Still Suppresses Cl, d

Fred L. Terry, Jr., Sematech AEC/APC Meeting, September 29, 2009

T_e (EEDF) Issue

With some assumptions which we believe are justified:

$$\left[\frac{\omega_n^4}{I_a}\right] = f(T_e \text{ only})$$

T_e for open loop case appears ~constant

 T_e is increased initially for closed loop case (constant α_{Cl} ' assumption may not be accurate)

Wall-State Effects Model

- n_{cl} reduced due to recombination on F-cleaned walls.
- n_{Cl+} reduced due to lower availability of n_{Cl} precursor. ER decreases due to lower ion bombardment.
- Real-time feedback control corrects for n_e≈n_{CI+} losses by increasing T_e, but does not fully recover n_{CI}.
- Model supports ion dominated etch of Si w/ Cl₂;
 n_{Cl+}⇔ER ≠ n_{Cl}. High n_{Cl} keeps surface Cl-saturated.
 ∴ ion bombardment is rate limiting step.
- Extracted d varies significantly, causing constant I_{Ar}.

HBr/Cl₂ Etches

- HCI Is Formed In Mixing Manifold By HBr/Cl₂ Reaction
- Collaboration With Stanford Group Shows Similar Plasma/Gas Chemistry Trends To Cl₂-Only Cases
 - HCI absolute concentration was measured by laser diode absorption
 - HCI Dissociation follows BB-RF/plasma density trends
 - Chamber cleaning suppresses dissociation of HCI & increases plasma density variation
- Open Loop Etch Rates Become More Constant With Increasing HBr & Show Less Sensitivity to Chamber Wall Condition
- Closed Loop Plasma Density Control Causes More Time Variation In Etch Rate for High HBr Concentration Cases
- HBr/Cl₂ Etch Rates Are Not Directly Ion Density Limited & Future Work is Needed

HBr/Cl₂ Etch (80/20)

Open Loop

Closed Loop

Future Work

Modeling of BB Signals to extract more from the shape of the data

- collision parameters
- Possible T_e/EEDF Information
- Improved antenna designs for BB System
- Lower-cost electronics for BB reflectometry
- Apply density control to topography & profile variations.
- Expand to other ion-dominated etches besides Cl₂ etching of Poly-Si.
- Larger scale, multi-wafer tests to verify control improvements.
- Ion density control most effective when etch is ion dominated. Chemically dominated etches do not show same effects.
- Combine ion density control with ion energy control.

Supporting Materials

For Possible Q&A

Dissociations Fractions Including SiCl₄ from Open Loop Runs

Dissociations Fractions Including SiCl₄ from Closed Loop Runs

Te Estimator Slides

For Possible Q&A

Bulk Ionization/Recombination

Generation/Ionization of Neutral Cl by e's

$$Cl_0 + e^- \rightarrow Cl^+ + 2e^-$$

Bulk Plasma Recombination of Ions with e's

$$Cl^+ + e^- \rightarrow Cl_0$$

 $\frac{\partial n_{Cl^{+}}}{\partial t} = n_{e} n_{Cl^{0}} \left[\int_{E_{i}}^{\infty} \sigma_{i}(\varepsilon) \varepsilon e^{-\varepsilon/k_{B}T_{e}} d\varepsilon \right] - \prod_{l=1}^{[Bulk_Re\ combination_Rate]} \left[\frac{\partial n_{cl^{+}}}{\partial t} - \frac{\partial n_{cl^{+}}}{\partial t} \right] \\
= n_{e} n_{Cl^{0}} X_{i}(T_{e}) - \prod_{l=1}^{n_{e}} n_{cl^{+}}}{\left[Bulk_Re\ combination_Rate]} \right]$ Steady-State
Solution $\frac{\partial n_{cl^{+}}}{\partial t} = 0 \rightarrow n_{cl^{+}} = \left[\frac{X_{i}(T_{e})}{\Gamma} \right] n_{cl^{0}} \rightarrow n_{cl^{0}} = \left[\frac{\Gamma}{X_{i}(T_{e})} \right] n_{cl^{+}}$

Electron Temperature and Broadband I

 Assuming Cl⁺ loss rate dominated by bulk Cl⁺ e⁻ recombination yields steady state solution where n_{cl}⁺ depends on T_e but not n_e

$$n_{Cl^+} \approx \left[\frac{X_i(T_e)}{\Gamma}\right] n_{Cl^0}$$

- Assuming a Quasi-Neutral Plasma dominated by Cl⁺ & e⁻ $n_{Cl^+} \approx n_e$
- CI Neutral Glow Intensity Coupled to n_e&n_{cl}⁰

$$I_{Cl} = n_e n_{Cl^0} X_0(T_e) S(\lambda_{cl}) = n_e^2 X_0(T_e) \left[\frac{\Gamma}{X_i(T_e)}\right] S(\lambda_{cl})$$

Electron Temperature and Broadband II

- Assuming Broadband peak frequency is a circuit/path-scaled electron plasma frequency
- Combing last 4 equations yields

$$\omega_p^2 = \left(\frac{q^2 n_e}{m_e \varepsilon_0}\right) = D\omega_{BB}^2$$
$$\rightarrow n_e = A\omega_{BB}^2$$

- Ratio measures relative ratio of ionization rate to metastable glow state excitation
- Sensitive to T_e due to significant difference between excitation thresholds for ionization and glow

Electron Temperature/CI Glow Equations

Ionization/recombination

Neutral Glow

$$\frac{\partial n_{Cl^{+}}}{\partial t} = n_e n_{Cl^{0}} \left[\int_{E_i}^{\infty} \sigma_i(\varepsilon) \varepsilon e^{-\varepsilon/k_B T_e} d\varepsilon \right] - \Gamma n_e n_{Cl^{+}} \qquad I_{Cl} = S(\lambda_{cl}) n_e n_{Cl^{0}} \left[\int_{E_{cl^{0}}}^{\infty} \sigma_0(\varepsilon) \varepsilon e^{-\varepsilon/k_B T_e} d\varepsilon \right] \\ = n_e n_{Cl^{0}} X_i(T_e) - \Gamma n_e n_{Cl^{+}} \qquad I_{Cl^{+}} \qquad I_{Cl} = S(\lambda_{cl}) n_e n_{Cl^{0}} \left[\int_{E_{cl^{0}}}^{\infty} \sigma_0(\varepsilon) \varepsilon e^{-\varepsilon/k_B T_e} d\varepsilon \right] \\ = n_e n_{Cl^{0}} X_0(T_e) S(\lambda_{cl})$$

$$\frac{\partial n_{Cl^+}}{\partial t} = 0$$

$$\rightarrow n_{Cl^+} = \left[\frac{X_i(T_e)}{\Gamma}\right] n_{Cl^0}$$

$$\rightarrow n_{Cl^0} = \left[\frac{\Gamma}{X_i(T_e)}\right] n_{Cl^+}$$

 $n_{Cl^+} \approx n_e$

Steady

State

Quasi-Neutrality

Combining for ratio

$$= n_e \left[\frac{\Gamma}{X_i(T_e)} \right] n_{Cl^+} X_0(T_e) S(\lambda_{cl})$$
$$= \left[\frac{X_0(T_e)}{X_i(T_e)} \right] \Gamma S(\lambda_{cl}) n_e^2$$
$$= \left[\frac{X_0(T_e)}{X_i(T_e)} \right] \Gamma S(\lambda_{cl}) A \omega_{BB}^4$$
$$\frac{\omega_{BB}^4}{I_{Cl}} = \left[\frac{X_i(T_e)}{X_0(T_e)} \right] \left[\frac{1}{\Gamma S(\lambda_{cl}) A} \right]$$

CI OES Signal & BB Signal: Open Loop/Clean Chamber

