Two-channel spectroscopic reflectometry for \textit{in situ} monitoring of blanket and patterned structures during reactive ion etching

Brooke S. Stutzman
Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109

Hsu-Ting Huang
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109

Fred L. Terry, Jr.a)
Applied Physics Program and Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109

(Received 21 January 2000; accepted 2 October 2000)

In this article we present a low-cost, high-speed, high-accuracy \textit{in situ} thin film measurement system for real-time process monitoring and industrial process control. This sensor, the two-channel spectroscopic reflectometer (2CSR), is a hybrid of spectroscopic ellipsometry and spectroscopic reflectometry. In 2CSR a polarized beam of white light is directed at the sample. The reflected light is resolved into its two orthogonal components, \(s \) and \(p \), using a Wollaston prism. These data, \(|R_{p}|^2 \) and \(|R_{s}|^2 \), are recorded simultaneously as a function of wavelength using a two-channel spectrometer with linear array detectors. The fact that 2CSR has no moving parts, coupled with the use of the two-channel linear array detectors, enables high-accuracy data acquisition across the sensor’s spectral range in 6 ms. This makes the 2CSR ideal for real-time high-speed process monitoring and control in an industrial setting. We have used the 2CSR to make accurate \textit{in situ}, high speed film thickness measurements during the plasma etching of both silicon dioxide and polycrystalline silicon samples. We show that, in addition to our ability to measure blanket film thicknesses and etch rates, the accuracy of the 2CSR makes this a viable technique for patterned wafer analysis. © 2000 American Vacuum Society. [S0734-211X(00)19006-7]

I. INTRODUCTION

Plasma processes are critical in device fabrication. Many of these processes continue to be timed etches and depositions. However, as film thicknesses and linewidths are reduced to nanometer scales, process control is needed in order to ensure device quality. Before process control can be implemented, however, sensors capable of providing useful information in real time are necessary.1–5 These sensors must also be robust to vibration and other such factors found in industrial manufacturing settings. Additionally, they must be affordable so as to make it cost effective to implement process control on a wide-scale basis.

Optical sensors are ideal for \textit{in situ} metrology in plasma-based systems.6 Two such sensors for monitoring the wafer state during plasma processing are spectroscopic ellipsometry (SE)7–13 and normal incidence spectroscopic reflectometry (SR).1,4,5 Both of these measurement systems are based on thin film interference. In SR, the intensity of the reflected light beam is measured as a function of wavelength. These intensity data are then converted to absolute reflectances as a function of wavelength by normalizing with respect to a known calibration standard. This reflectance data vary in an approximately periodic manner with the film thickness due to the interference effects. In some cases where the reflectance data have sufficiently unique structure, parametric models for the optical dielectric function of the thin film can be fitted as well as the thickness.

Previous work in our group demonstrated SR film thickness measurements on millisecond time scales.1 This high-speed data acquisition capability and the facts that SR has no moving parts and is inexpensive make SR a potential candidate for industrial process monitoring and control. However, the major disadvantages of SR are the dependence on a calibration standard, the stability of the intensity measurement, and a comparatively low sensitivity to very thin films.

SE is a fundamentally more accurate technique than SR for obtaining film thickness and optical dielectric function information. In general, SE measurements are performed at an angle off-normal with respect to the sample. In this configuration, the measurement is sensitive to the state of polarization of the incident and reflected waves.16 The measured data are generally written in the form of the ratio, \(\rho \), of the complex Fresnel reflection coefficients for the \(s \) and \(p \) polarizations, \(r_s \) and \(r_p \), respectively,

\[
\rho = \frac{r_p}{r_s}
\]

or

\[
\rho = \tan(\phi)e^{j\Delta},
\]

where \(\tan(\phi) \) is the ratio of the magnitude of the \(p \)-polarized to the \(s \)-polarized reflected light (\(|r_p|/|r_s| \)) and \(\Delta \) is \(\delta_p - \delta_s \). \(\delta_p \) and \(\delta_s \) indicate the phase shifts upon reflection for the \(p \) and \(s \) polarizations, respectively. SE can be applied in
II. 2CSR SYSTEM

The 2CSR system configuration is illustrated in Fig. 1. The key elements of the system are the simultaneous resolution of the broad-spectrum light into s and p polarizations using a Wollaston prism and the spectral analysis of these two orthogonal components using low-cost linear array spectrometers. The use of the Wollaston prism in such measurements dates back to the beginning of the 20th century, however, it was not until the work of Jellison and Modine in 1990 that the prism was used for spectroscopic thin film measurements. The recent availability of low-cost charge coupled device (CCD) spectrometers allows us to use multiple spectrometers on a single system. By using two spectrometers, we are able to simultaneously record the two orthogonally polarized exit beams from the Wollaston prism over a broad wavelength range on millisecond timescales.

We use a 75 W xenon arc lamp as our light source. Our polarizer is an ultraviolet (UV) grade calcite Glan–Taylor prism with an extinction ratio of 5×10^{-5} and a beam deviation of 1 min of arc. We fix polarization of the incident beam at 45° for these experiments. In order to avoid any stress-induced polarization changes we use strain-free windows on the ellipsometer ports of the reactive ion etch (RIE) chamber which we used as a testbed for this sensor. Our RIE chamber is a parallel plate, capacitively coupled reactor which is a scaled-up version of the Gaseous Electronics Conference (GEC) reference cell. We place the sample on the bottom electrode (the powered electrode) of the modified GEC cell. The spot size of the light hitting the sample is approximately 1 cm by 3 cm. The extinction ratio of the calcite Wollaston prism is 10^{-6} and the angle between the exiting beams is nominally 20° for 546 nm light and varies by approximately 5° within our wavelength range. We use UV grade collimating beam probes to refocus the two exit beams from the Wollaston prism into fiber optic cables.

We collect these intensity data using an Ocean Optics SD2000 two-channel spectrometer. Each spectrometer uses a fixed position, 600 lines/mm grating blazed for 400 nm, a 25 μm entrance slit, and a 2048 element linear CCD array with a selective coating to reduce second order effects. The spectral resolution is 1.3 nm. We collect both s- and p-polarized data simultaneously over the range 370–850 nm in 6 ms. An example of the raw data is shown in Fig. 2. Acquisition speed can be improved (with reduced signal to noise) to 3 ms with currently available analog-to-digital cards. We believe that the UV performance of the 2CSR is primarily limited by the Wollaston prism and the near infrared performance is limited by the CCD detectors and the xenon lamp intensity.

We determined our incident angle to be $73.00° \pm 0.05°$ by measuring $|R_s|^2$ and $|R_p|^2$ for a well known silicon dioxide/silicon sample and doing a least squares fit of the incident angle. In SE one would determine the incident angle by...
making a measurement of a bare silicon sample and doing a two parameter least squares fit of the incident angle and the oxide overlayer thickness. We are operating the 2CSR near the pseudo-Brewster angle of silicon (76.13° at 546.1 nm) so the \(p \)-reflected intensity is minimal. In ellipsometry, this means that the \(\tan(\psi) \) value is close to zero, however, the phase information found in \(\cos(\Delta) \) has enough structure that meaningful information about the sample and the angle of incidence can be derived from this parameter alone. Since 2CSR measures the absolute reflected intensity of the \(s \)- and \(p \)-reflected light, with a bare silicon substrate we ostensibly can only fit the \(s \)-intensity data to an optical model. However, the \(s \)-reflected intensity from a bare silicon wafer does not have sufficient structure for us to definitively determine the angle of incidence. By using a well-known thick oxide rather than a bare silicon wafer for this angle of incidence calibration, we obtain strong \(s \)- and \(p \)-reflected intensity data from the sample. These data have enough structure that we can fit to the optical model in order to determine the incident angle. This calibration need only be performed when the sensor is first placed on a piece of equipment.

In order to account for run-to-run variations in the system, such as fluctuations in intensity of the light source and in the wavelength dependent sensitivity of the detectors, an absolute intensity calibration must be performed. All experimental data must be normalized with respect to this calibration. The frequency with which this calibration needs to be repeated depends on the overall stability of the light source and the detector. Although our current system will typically yield accurate results several hours after initial calibrations, we repeat this calibration for each measurement to account for the fluctuations in the intensity of the light source and the gain changes in the detectors due to temperature variations. By adding feedback stabilization of the lamp intensity and the detector temperature, accurate operation with long periods between calibrations should be possible.

The calibration procedure requires two steps. First, a reference spectrum is collected from mirror smooth, magnetron sputtered aluminum on silicon sample. We chose aluminum as a reference rather than bare silicon because aluminum has a high reflectance for both the \(s \) and \(p \) polarizations of light. When exposed to air, the aluminum grows an oxide overlayer 20–25 Å thick, as does bare silicon. In general, this overlayer cannot be neglected when making optical measurements. For instance, in the ellipsometric measurements, the native oxide on aluminum can cause a 18% decrease in the calculated refractive index, \(n \), at 546 nm and the extinction coefficient, \(k \), is low by 10% at the same wavelength. However, we are not making a phase-sensitive ellipsometric measurement; we are looking at the absolute reflected intensities of the \(s \) and \(p \) polarizations. As mentioned in the previous paragraph, when the \(p \)-reflected intensity is close to zero, as it is near the pseudo-Brewster condition, the ellipsometric parameter \(\tan(\psi) \) is close to zero as well and SE fits in this regime rely on fitting the phase information found in \(\cos(\Delta) \). Thus, a small change in surface layer thickness due to the growth of a native oxide, if neglected, will cause a significant change in the determined film properties. In order to assess what effect, if any, the native oxide has on our calibration, we modeled the orthogonally polarized 73° reflected intensities from both a bare aluminum sample and an aluminum sample covered with a 20 Å oxide overlayer. In Fig. 3, we plot \((\frac{R_{p\text{bare}}}{R_{s\text{bare}}})_{\text{Si}} \) and \((\frac{R_{p\text{bare}}}{R_{s\text{bare}}})_{\text{Al}} \) over the wavelengths used in our measurements. \((\frac{R_{s\text{bare}}}{R_{p\text{oxide}}})_{\text{Si}} \) ranges from 1.001 to 1.000 and \((\frac{R_{s\text{bare}}}{R_{p\text{oxide}}})_{\text{Al}} \) ranges from 0.992 to 0.995. Thus, at most, the aluminum oxide overlayer causes a 0.1% change in the \(R_{p\text{bare}} \) data and a 0.8% change in the \(R_{s\text{bare}} \) data. In comparison, Fig. 4 shows \((\frac{R_{p\text{bare}}}{R_{s\text{oxide}}})_{\text{Si}} \) and \((\frac{R_{p\text{bare}}}{R_{s\text{oxide}}})_{\text{Al}} \) for bare silicon and silicon with a native oxide over the same wavelengths. \((\frac{R_{p\text{bare}}}{R_{s\text{oxide}}})_{\text{Si}} \) ranges from 1.01 to approximately 1.00 and \((\frac{R_{p\text{bare}}}{R_{s\text{oxide}}})_{\text{Si}} \) ranges from 0.95 to 0.97. From this, we see that the maximum error caused by an oxide overlayer on silicon substrate is an order of magnitude greater error (1% vs 0.1%) than that of an oxide overlayer on an aluminum substrate. Furthermore, the error in the \(R_{s\text{bare}} \) data caused by an oxide overlayer ranges from 3%–5% compared to a maximum error of less than 1% for the aluminum sample.

The difference in the effect of an oxide overlayer on an aluminum sample versus the effect of an oxide overlayer on a bare silicon sample is due to the fact that for absorbing material, such as a semiconductor or metal, the \(p \)-polarized reflectance does not go to zero for any angle of incidence. Instead, there is a pseudo-Brewster condition at which the reflected \(p \) intensity is at a minimum. This condition occurs at an incident angle which depends on the extinction coefficient, \(k \). The Brewster condition is shown in the following equation:

\[
\tan(\theta_B) = \frac{n}{k}
\]
Since we have both $|R_s|^2$ and $|R_p|^2$, we can fit either the 2CSR full data set, $|R_s|^2, |R_p|^2$, to an optical model or we can fit the ellipsometric parameter, $\tan(\psi)$, where $\tan(\psi) = (|R_s|^2/|R_p|^2)^{1/2}$ to an optical model. Looking at the data in the $\tan(\psi)$ mode, where the intensities are ratioed, affords us the same immunity that SE has to window coating and other situations where the overall intensity of the light varies during the course of a measurement. As a trade-off, though, when we fit in the $\tan(\psi)$ mode we are neglecting some of the information contained in the absolute intensity measurement of the 2CSR and, as is generally the case when taking the ratio of data, our noise increases. We will look at the effects of this later in this section.

Figure 5 shows the 2CSR measured reflectances, $|R_s|^2$ and $|R_p|^2$, and the best fits of these data from a nominally 10,000-Å-thick oxide on silicon. The best fit thickness of these data is 10.056 ± 2 Å, where the \pm is the statistical 95% confidence limit from the regression fit. This compares well with the result found by measuring the same film on an ex situ state-of-the-art scanning SE (10.076 Å). The quality of the fit shown in Fig. 5 indicates that when using the correct optical model for a material, 2CSR determines film thickness with an accuracy comparable to that of a slower, ex situ measurement tool.

Next, we looked at the more complex n^+ polysilicon/silicon dioxide/silicon structure with the 2CSR. Figure 6 shows the 2CSR measured reflectances, $|R_s|^2$ and $|R_p|^2$, and the best fits of these data from the unetched polysilicon stack. In our optical model, we fixed the oxide thickness at 300 Å (as measured ex situ by SE) and fit both the roughness layer and bulk polysilicon thicknesses. The 2CSR measured bulk polysilicon and the surface roughness layer thicknesses are 5112 ± 3 and 48 ± 4 Å, respec-
tively. *Ex situ* SE measurements of this sample show that the bulk polysilicon thickness is 5109 Å and the roughness layer thickness is 49 Å.

When we convert the $|R_p|^2, |R_s|^2$ data from the polysilicon measurement to the tan(ϕ) mode, we obtain the fit shown in Fig. 7. The bulk polysilicon thickness is 5131 ± 1 Å and the surface roughness thickness is 72 ± 2 Å. As mentioned before, we lose some sensitivity to the film thickness when we ratio the p-reflected intensity to the s-reflected intensity, however, we gain the same immunity that SE has to intensity fluctuation issues such as window coating. We will further discuss the effects of fitting the tan(ϕ) form of the polysilicon data when we look at measuring etch rates.

Despite the fact that our fit of the polysilicon data in the tan(ϕ) mode returns roughly the same results as the $|R_p|^2, |R_s|^2$ fit, this is not the case for all materials. When we fit the same oxide data as that shown in Fig. 5 in the tan(ϕ) mode, we get a thickness of 9988 ± 2 Å compared to the $|R_p|^2, |R_s|^2$ 2CSR measurement of 10 056 ± 2 Å and the SE measurement of 10 076 Å. This discrepancy is due to the sharp discontinuities in the tan(ϕ) data for this oxide (see Fig. 8). This problem of fitting points where tan(ϕ) approaches infinity is encountered in SE measurements as well. In SE, it can be avoided by fitting the Fourier coefficients, α and β, rather than tan(ϕ) and cos(Δ). In a rotating analyzer configuration α and β relate to the reflected intensity as in the following equation:

$$I_0(t) = I_0(1 + \alpha \cos 2 \omega_a t + \beta \sin 2 \omega_a t),$$

where $I_0(t)$ is the time dependent reflected intensity and ω_a is the rotation frequency of the analyzer. Thus, by fitting $|R_p|^2, |R_s|^2$ fit, this is not the case for all materials. When we fit the same oxide data as that shown in Fig. 5 in the tan(ϕ) mode, we get a thickness of 9988 ± 2 Å compared to the $|R_p|^2, |R_s|^2$ 2CSR measurement of 10 056 ± 2 Å and the SE measurement of 10 076 Å. This discrepancy is due to the sharp discontinuities in the tan(ϕ) data for this oxide (see Fig. 8). This problem of fitting points where tan(ϕ) approaches infinity is encountered in SE measurements as well. In SE, it can be avoided by fitting the Fourier coefficients, α and β, rather than tan(ϕ) and cos(Δ). In a rotating analyzer configuration α and β relate to the reflected intensity as in the following equation:

$$I_0(t) = I_0(1 + \alpha \cos 2 \omega_a t + \beta \sin 2 \omega_a t),$$

where $I_0(t)$ is the time dependent reflected intensity and ω_a is the rotation frequency of the analyzer. Thus, by fitting $|R_p|^2, |R_s|^2$ fit, this is not the case for all materials. When we fit the same oxide data as that shown in Fig. 5 in the tan(ϕ) mode, we get a thickness of 9988 ± 2 Å compared to the $|R_p|^2, |R_s|^2$ 2CSR measurement of 10 056 ± 2 Å and the SE measurement of 10 076 Å. This discrepancy is due to the sharp discontinuities in the tan(ϕ) data for this oxide (see Fig. 8). This problem of fitting points where tan(ϕ) approaches infinity is encountered in SE measurements as well. In SE, it can be avoided by fitting the Fourier coefficients, α and β, rather than tan(ϕ) and cos(Δ). In a rotating analyzer configuration α and β relate to the reflected intensity as in the following equation:

$$I_0(t) = I_0(1 + \alpha \cos 2 \omega_a t + \beta \sin 2 \omega_a t),$$

where $I_0(t)$ is the time dependent reflected intensity and ω_a is the rotation frequency of the analyzer. Thus, by fitting
the raw data, α and β in rotating analyzer SE measurements and $|R_s|^2$ and $|R_p|^2$ in 2CSR measurements, rather than the ellipsometric parameters, the problems with fitting discontinuous data can, for the most part, be avoided.

We analyzed the noise in our thickness measurements by taking the standard deviation of repeated measurements of a sample with the plasma off. Similarly, we analyzed the noise in the etch rate by taking the standard deviation of a nominally constant etch rate. For all experiments we determined the etch rates by taking point-by-point derivatives of the thickness data. The standard deviation of our thickness for the SiO$_2$ samples, $\sigma_{d,\text{ox}}$, is 0.22 Å where the thickness is determined from 30 averaged reflectance spectra, each spectra acquired in 6 ms. The standard deviation of our etch rate for the SiO$_2$ sample, $\sigma_{e,\text{ox}}$, is 0.37 Å/s with the same integration time and sample averaging. This is in good agreement with our etch rate noise estimation for random noise sources shown in Eq. (6), which predicts $\sigma_e = 0.31$ Å/s:

$$\sigma_e = \sqrt{2} \sigma_d / \Delta t,$$

where Δt is the sampling time.1 No pixel smoothing was done for the above measurements. If we perform three pixel boxcar smoothing, we find a standard deviation of 0.7 Å in repeated thickness measurements of a SiO$_2$ sample with a 6 ms integration time and no sample averaging. Without any pixel smoothing, the spectrometer has an optical resolution of 1.33 nm as stated earlier. By averaging over a total of seven pixels, we decrease the optical resolution to 2.22 nm, however, this does not adversely affect the quality of our data. More sophisticated smoothing algorithms, such as the Savitzky–Golay method,41 can be used to improve the quality of these fits.

Likewise, we made repeated measurements of a n^+ polysilicon/SiO$_2$/Si stack and determined the standard deviation of the measurements from both the $|R_s|^2$, $|R_p|^2$ and the tan(ψ) fits of the data. We find $\sigma_{d,\text{poly}}$ to be 0.25 Å for the $|R_s|^2$, $|R_p|^2$ fit when we averaged over fifty 6 ms integration times for each thickness measurement. The standard deviation of the polysilicon etch rate, $\sigma_{e,\text{poly}}$, is 0.32 Å/s from the $|R_s|^2$, $|R_p|^2$ fit where, again, the etch rate is determined by taking a point-by-point derivative of the thickness measurement. This is also in good agreement with our etch rate noise estimation from Eq. (6), from which we would expect $\sigma_{e,\text{poly}}$ to be 0.35 Å/s.

When we find the noise in our thickness measurements for the tan(ψ) fit of the data, we find $\sigma_{d,\text{poly}}$ to be 1.9 Å which is nearly eight times that of the $|R_s|^2$, $|R_p|^2$ fit. Similarly, the noise in the etch rate is 1.6 Å, five times higher than that found with the $|R_s|^2$, $|R_p|^2$ fit. These large standard deviations are due to the fact that, as stated earlier, taking the ratio of data amplifies any noise present in the original data.

In Fig. 9 we show 2CSR data from a CF$_4$ etch of a SiO$_2$ on Si sample. We fixed the pressure at 100 mTorr and the CF$_4$ flow rate at 50 sccm. The initial oxide thickness is 10056 Å. We used a 6 ms integration time, averaged over 30 of these integration times and repeated this measurement once every second. We set the power at 50 W for the first 150 s of the etch and increased it to 100 W for the second 150 s of the etch. The etch rate at 50 W is approximately 5 Å/s while the etch rate for 100 W is roughly 15 Å/s (see Fig. 9). The final oxide thickness is 7006 Å.

We show data from a CF$_2$ etch of the polysilicon/silicon dioxide/silicon stack in Fig. 10. Again, we fixed the pressure at 100 mtorr and the CF$_4$ flow rate at 50 sccm. We set the power at 50 W for the first 75 s of the etch and at 100 W for the second 75 s of the etch. The initial total polysilicon (bulk polysilicon+surface roughness layer) thickness is 5134 Å. The 50 W etch rate is approximately 7 Å/s and increases to roughly 20 Å/s when the power is increased to 100 W (see Fig. 10). The final total polysilicon thickness is 3140 Å. The oxide and polysilicon thickness measurements shown in Figs. 9 and 10 are determined by fitting the optical model for both $|R_s|^2$ and $|R_p|^2$.
In Fig. 11, we plot the same $|R_s|^2, |R_p|^2$ fit of the $n^+ \text{polysilicon etch rate data}$ shown in Fig. 10. We overlay these data with the equivalent etch rate data from the $\tan(\phi)$ fit (shown as circles in Fig. 11). The mean etch rate is the same for both fitting techniques, however, from Fig. 11 it is clear that the standard deviation of the data fit by the $|R_s|^2, |R_p|^2$ technique is substantially lower than that of the $\tan(\phi)$ fit as indicated in our standard deviation measurements.

Although 2CSR is better than SR at measuring very thin films, it is still important to note the limitations of the measurement. In Fig. 12, we show the thickness and the corresponding confidence limit on the thickness for a SiO$_2$ on Si sample as the final 2000 Å of material are removed during an etch. At the outset of this region of the etch, where the oxide thickness is nearly 2000 Å, the confidence limits are on the order of 10 Å. As the oxide thickness decreases below 600 Å (around 650 s), the confidence limits on the thickness begin to increase gradually until 665 s, when the confidence limits jump from 25 to 175 Å over the course of 10 s. This is the region where the oxide thickness is at and below 300 Å. Thus, as indicated by the large confidence limits on the film thickness fits below 300–400 Å, the 2CSR is not sensitive enough to provide accurate film thickness measurements.

![Fig. 12](image1)

Fig. 12. Thickness and confidence limits as a function of time for the last 2000 Å of an oxide etch. When the oxide thickness decreases below roughly 600 Å, the 95% confidence limit on the best fit thickness value rises from roughly 10 Å to nearly 200 Å by the time the oxide thickness reaches 200 Å. Thus, for very thin oxides (those less than a few hundred angstroms) the 2CSR is not sensitive enough to provide accurate film thickness measurements.

In Fig. 11, we plot the same $|R_s|^2, |R_p|^2$ fit of the $n^+ \text{polysilicon etch rate data}$ shown in Fig. 10. We overlay these data with the equivalent etch rate data from the $\tan(\phi)$ fit (shown as circles in Fig. 11). The mean etch rate is the same for both fitting techniques, however, from Fig. 11 it is clear that the standard deviation of the data fit by the $|R_s|^2, |R_p|^2$ technique is substantially lower than that of the $\tan(\phi)$ fit as indicated in our standard deviation measurements.

Although 2CSR is better than SR at measuring very thin films, it is still important to note the limitations of the measurement. In Fig. 12, we show the thickness and the corresponding confidence limit on the thickness for a SiO$_2$ on Si sample as the final 2000 Å of material are removed during an etch. At the outset of this region of the etch, where the oxide thickness is nearly 2000 Å, the confidence limits are on the order of 10 Å. As the oxide thickness decreases below 600 Å (around 650 s), the confidence limits on the thickness begin to increase gradually until 665 s, when the confidence limits jump from 25 to 175 Å over the course of 10 s. This is the region where the oxide thickness is at and below 300 Å. Thus, as indicated by the large confidence limits on the film thickness fits below 300–400 Å, the 2CSR is not sensitive enough to very thin films. The phase information obtained in full SE measurements contains enough structure such that SE is able to more accurately quantify film thicknesses for well-characterized materials in the very thin film regime. The work of An et al. discusses combining SE and SR measurements which would better enable the measurement of these very thin films.

Through these experiments on blanket wafers, we established that the 2CSR is able to accurately measure both blanket film thickness and etch rates. An evolving application of spectroscopic ellipsometry is the topographic analysis of grating structures. The diffraction from grating structures yields strong features in both $\tan(\phi)$ and $\cos(\Delta)$. The linewidths, wall angles and more complex shape information of lines in gratings can be obtained from SE data by accurately modeling the diffraction from the grating. Here, we will show that the 2CSR can perform similar measurements at high speeds. The first grating we have looked at is a 0.35 μm line/space grating in photoresist/300 Å SiO$_2$/Si (see Fig. 13). The period is measured as 0.700 μm using first order diffraction angle at multiple wavelengths. We measured the s- and p-reflected intensities from the grating using the 2CSR and we also measured the ellipsometric parameters at 73° incidence using a SOPRA GESP-5 ex situ SE. As with all of the other 2CSR measurements presented in this article, we used an integration time of 6 ms and, in this case, we did not perform any sample averaging.

![Fig. 13](image2)

Fig. 13. SEM of 0.35 μm line/space photoresist grating on 300 Å SiO$_2$ on Si. Photoresist thickness is approximately 0.8 μm.
we can detect transient phenomena not previously observable with the slower thin film measurement tools. With these data, we can develop a more complete understanding of the physics and chemistry of the etch process and apply this information to industrial process development and control issues. Additionally, we have shown that with 2CSR we have the level of accuracy needed to measure patterned wafer structure in a fraction of the time it takes conventional SE to make the same measurement. We also demonstrated our ability to fit these data using the RCWA method and to develop a model of the grating profile. When applied to etch measurements of patterned wafers, the RCWA method analysis of 2CSR data will allow us, in effect, to observe the grating profile evolution during an etch.

Our further development of the 2CSR may involve the transformation of the original sensor into an SE by adding a Fresnel Rhomb 1/4-wave achromatic compensator in either the polarizer-sample-compensator-analyzer mode or the polarizer-compensator-sample-analyzer mode. With the compensator set at 0°, we will obtain \(|R_1|^2\) and \(|R_2|^2\), as we do in our current polarizer-sample-analyzer two-channel spectroscopic reflectometry setup. With the compensator set to \(\pm 45°\), we can obtain \(|R_1 + jR_2|^2\) and \(|R_1 - jR_2|^2\). So, with these measurements, we will be able to obtain \(\psi\) and \(\Delta\) at high speeds with one three-position rotational moving part.

ACKNOWLEDGMENTS

This work was funded in part by the AFOSR/DARPA MURI Center for Intelligent Electronics Manufacturing under Contract No. AFOSR F49620-95-1-0524 and by the Semiconductor Research Corporation under Contract No. 97-FC085. The authors would like to thank C. Galarza, D. Grimmer, D. Schweiger, P. Klimecky, M. Gulari, C. Garvin, A. Salian, and T. Li for their help in this work.

In addition to measuring \(\tan(\psi)\) from complicated structures, we are also working on fitting the patterned structure data using the rigorous coupled wave analysis (RCWA) method.\(^{47}\) We fix the oxide thickness at 300 Å. The grating is modeled as a trapezoid on a rectangular base (see Fig. 14) where we fit the top width, depth and wall angle of the trapezoid along with the depth of the rectangular base. The RCWA extracted best fit dimensions of the trapezoid are: top width = 0.192 \(\mu\)m, depth = 0.534 \(\mu\)m, and wall angle 83.9° and the depth of the rectangular base is 0.237 \(\mu\)m.

We plot the 2CSR measured data for \(\tan(\psi)\) with the SE data and the RCWA fit in Fig. 14. Figure 14 clearly shows both the 2CSRs capability of accurately measuring \(\tan(\psi)\) from complicated structures and our ability to fit the data with using the RCWA method. The 2CSR measurement, again, took on the order of milliseconds, while the \textit{ex situ} scanning monochromator SE measurement took on the order of minutes to collect the same information. The noise in the 2CSR measurement in the infrared is due to the fact that the detector has its maximum efficiency between 2500 and 8000 Å.

IV. CONCLUSION

In this article we have presented a sensor for measuring thin films. This sensor, the 2CSR is a nondestructive, noninvasive thin film measurement tool with no moving parts which can be easily used for \textit{in situ} metrology. The simplicity of the sensor, along with the recent availability of low-cost spectrometers with linear array detectors make the overall construction cost of the 2CSR low enough that this type of sensor can be implemented on a wide-scale basis in both research and industrial settings. The lack of moving parts and the linear array detectors afford us the ability to make high accuracy measurements on millisecond time scales. This high speed measurement capability makes the 2CSR ideal for process monitoring and industrial process control applications. With the fast data acquisition time, we can sample the s- and p-reflected intensities rapidly enough that

45 H. Huang, W. Kong, B. Stutzman, and F. Terry, Jr., *AEC/APC Symposium* (SEMATECH, Austin, TX, 1999).
