Object Detection
(Plus some bonuses)

EECS 442 – David Fouhey
Fall 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_F19/
“Semantic Segmentation”: Label each pixel with the object category it belongs to.
Today – Object Detection

“Object Detection”: Draw a box around each instance of a list of categories
The Wrong Way To Do It

Starting point:
Can predict the probability of F classes
P(cat), P(goose), … P(tractor)
The Wrong Way To Do It

Add another output (why not):
Predict the *bounding box* of the object
[x,y,width,height] or [minX,minY,maxX,maxY]
The Wrong Way To Do It

Put a loss on it:
Penalize mistakes on the classes with

\[L_c = \text{negative log-likelihood} \]
\[L_b = \text{L2 loss} \]
The Wrong Way To Do It

Add losses, backpropagate
Final loss: \(L = L_c + \lambda L_b \)

Why do we need the \(\lambda \)?
The Wrong Way To Do It

Now there are two ducks. How many outputs do we need?

\[F, 4, F, 4 = 2*(F+4) \]
The Wrong Way To Do It

Now it's a herd of cows. We need *lots* of outputs (in fact the precise number of objects that are in the image, which is circular reasoning).
In General

- Usually can’t do varying-size outputs.
- Even if we could, think about how you would solve it if you were a network.

Bottleneck has to encode where the objects are for all objects and all N.
An Alternate Approach

Examine every sub-window and determine if it is a tight box around an object.

Yes

No?

Hold this thought

No
Sliding Window Classification

Let’s assume we’re looking for pedestrians in a box with a fixed aspect ratio.

Slide credit: J. Hays
Sliding Window

Key idea – just try all the subwindows in the image at all positions.

Slide credit: J. Hays
Generating hypotheses

Key idea – just try all the subwindows in the image at all positions **and scales**.

Note – Template did not change size
Each window classified separately
How Many Boxes Are There?

Given a HxW image and a “template” of size by, bx.

Q. How many sub-boxes are there of size (by,bx)?

A. \((H-by)*(W-bx)\)

This is before considering adding:

- scales \((by*s,bx*s)\)
- aspect ratios \((by*sy,bx*sx)\)
Challenges of Object Detection

- Have to evaluate *tons* of boxes
- Positive instances of objects are *extremely* rare

How many ways can we get the box wrong?
1. Wrong left x
2. Wrong right x
3. Wrong top y
4. Wrong bottom y
Prime-time TV

Are You Smarter Than A 5th Grader?

Adults compete with 5th graders on elementary school facts.

Adults often not smarter.
Computer Vision TV

Are You Smarter Than A Random Number Generator?

Models trained on data compete with making random guesses.

Models often not better.
Are You Smarter than a Random Number Generator?

• Prob. of guessing 1k-way classification?
 • 1/1,000

• Prob. of guessing all 4 bounding box corners within 10% of image size?
 • \((1/10)*(1/10)*(1/10)*(1/10)=1/10,000\)

• Probability of guessing both: 1/10,000,000

• Detection is hard (via guessing and in general)

• Should always compare against guessing or picking most likely output label
Evaluating – Bounding Boxes

Raise your hand when you think the detection stops being correct.
Evaluating – Bounding Boxes

Standard metric for two boxes:
Intersection over union/IoU/Jaccard coefficient

(a) Ground truth (b) $J = 0.554$ (c) $J = 0.703$ (d) $J = 0.910$

Jaccard example credit: P. Kraehenbuehl et al. ECCV 2014
Evaluating Performance

• Remember: accuracy = average of whether prediction is correct
• Suppose I have a system that gets 99% accuracy in person detection.
• **What’s wrong?**
• I can get that by just saying no object everywhere!
Evaluating Performance

- True detection: high intersection over union
- Precision: \(\frac{\text{#true detections}}{\text{#detections}} \)
- Recall: \(\frac{\text{#true detections}}{\text{#true positives}} \)

Reject everything: no mistakes

Ideal!

Summarize by area under curve (avg. precision)

Accept everything: Miss nothing
Generic object detection
Histograms of oriented gradients (HOG)

Partition image into blocks and compute histogram of gradient orientations in each block

HxWx3 Image

H’xW’xC’ Image

Image credit: N. Snavely

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

Slide Credit: S. Lazebnik
Pedestrian detection with HOG

- Train a pedestrian template using a linear support vector machine

positive training examples

negative training examples

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005
Pedestrian detection with HOG

- Train pedestrian “template” using a linear svm
- At test time, convolve feature map with template
- Find local maxima of response
- For multi-scale detection, repeat over multiple levels of a HOG pyramid

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

Slide Credit: S. Lazebnik
Example detections

[Dalal and Triggs, CVPR 2005]

Slide Credit: S. Lazebnik
20 challenge classes:

- Person
- Animals: bird, cat, cow, dog, horse, sheep
- Vehicles: aeroplane, bicycle, boat, bus, car, motorbike, train
- Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

Dataset size (by 2012): 11.5K training/validation images, 27K bounding boxes, 7K segmentations

http://host.robots.ox.ac.uk/pascal/VOC/
Object detection progress

PASCAL VOC

Source: R. Girshick
Region Proposals

Do I need to spend a lot of time filtering all the boxes covering grass?
Region proposals

- As an alternative to sliding window search, evaluate a few hundred *region proposals*
 - Can use slower but more powerful features and classifiers
 - Proposal mechanism can be category-independent
 - Proposal mechanism can be trained

Slide Credit: S. Lazebnik
R-CNN: Region proposals + CNN features

Source: R. Girshick

R-CNN details

- **Regions**: ~2000 Selective Search proposals
- **Network**: AlexNet *pre-trained* on ImageNet (1000 classes), *fine-tuned* on PASCAL (21 classes)
- **Final detector**: warp proposal regions, extract fc7 network activations (4096 dimensions), classify with linear SVM
- **Bounding box regression** to refine box locations
- **Performance**: mAP of 53.7% on PASCAL 2010 (vs. 35.1% for Selective Search and 33.4% for DPM).

R-CNN pros and cons

- **Pros**
 - Accurate!
 - Any deep architecture can immediately be “plugged in”

- **Cons**
 - Ad hoc training objectives
 - Fine-tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressions (least squares)
 - Training is slow (84h), takes a lot of disk space
 - 2000 CNN passes per image
 - Inference (detection) is slow (47s / image with VGG16)

Slide Credit: S. Lazebnik
Faster R-CNN

Region Proposal Network (RPN)

Small network applied to conv5 feature map.

Predicts:
- good box or not (classification),
- how to modify box (regression) for k “anchors” or boxes relative to the position in feature map.

Source: R. Girshick
Faster R-CNN results

<table>
<thead>
<tr>
<th>system</th>
<th>time</th>
<th>07 data</th>
<th>07+12 data</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-CNN</td>
<td>~50s</td>
<td>66.0</td>
<td>-</td>
</tr>
<tr>
<td>Fast R-CNN</td>
<td>~2s</td>
<td>66.9</td>
<td>70.0</td>
</tr>
<tr>
<td>Faster R-CNN</td>
<td>198ms</td>
<td>69.9</td>
<td>73.2</td>
</tr>
</tbody>
</table>

detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet
Object detection progress

Before deep convnets

Using deep convnets

Faster R-CNN

Fast R-CNN

R-CNNv1
1. Take conv feature maps at 7x7 resolution
2. Add two FC layers to predict, at each location, score for each class and 2 bboxes w/ confidences

- 7x speedup over Faster RCNN (45-155 FPS vs. 7-18 FPS)
- Some loss of accuracy due to lower recall, poor localization

New detection benchmark: COCO (2014)

- 80 categories instead of PASCAL’s 20
- Current best mAP: 52%

COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:

- Object segmentation
- Recognition in context
- Superpixel stuff segmentation
- 330K images (>200K labeled)
- 1.5 million object instances
- 80 object categories
- 91 stuff categories
- 5 captions per image
- 250,000 people with keypoints

http://cocodataset.org/#home
A Few Caveats

• Flickr images come from a really weird process
• Step 1: user takes a picture
• Step 2: user decides to upload it
• Step 3: user decides to write something like “refrigerator” somewhere in the body
• Step 4: a vision person stumbles on it while searching Flickr for refrigerators for a dataset
Who takes photos of open refrigerators?
Guess the category!

These were detected with >90% confidence, corresponding to 99% precision on original dataset.

(a) Person (b) Bicycle (c) Giraffe
Kitchens from Googling

Places 365 Dataset, Zhou et al. ‘17
New detection benchmark: COCO (2014)

J. Huang et al., *Speed/accuracy trade-offs for modern convolutional object detectors*, CVPR 2017
Summary: Object detection with CNNs

• R-CNN: region proposals + CNN on cropped, resampled regions
• Fast R-CNN: region proposals + RoI pooling on top of a conv feature map
• Faster R-CNN: RPN + RoI pooling
• Next generation of detectors
 • Direct prediction of BB offsets, class scores on top of conv feature maps
 • Get better context by combining feature maps at multiple resolutions
And Now For Something Completely Different
ImageNet + Deep Learning

- Image Retrieval
- Detection
- Segmentation
- Depth Estimation
- ...

Slide Credit: C. Doersch
Do we even need semantic labels?

Do we need this task?

Materials?
Parts?
Pose?
Geometry?
Boundaries?

ImageNet + Deep Learning

Slide Credit: C. Doersch
Context as Supervision

[Collobert & Weston 2008; Mikolov et al. 2013]

store-bought gimmicks and appliances, the toasters and
Context Prediction for Images

Slide Credit: C. Doersch
Semantics from a non-semantic task

Slide Credit: C. Doersch
Relative Position Task

8 possible locations

Randomly Sample Patch
Sample Second Patch

Slide Credit: C. Doersch
Patch Embedding

Input

Nearest Neighbors

Note: connects *across* instances
Avoiding Trivial Shortcuts

Include a gap

Jitter the patch locations

Slide Credit: C. Doersch
A Not-So “Trivial” Shortcut

Slide Credit: C. Doersch
Chromatic Aberration

Slide Credit: C. Doersch
Chromatic Aberration

Slide Credit: C. Doersch
What is learned?

<table>
<thead>
<tr>
<th>Input</th>
<th>Ours</th>
<th>Random Initialization</th>
<th>ImageNet AlexNet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slide Credit: C. Doersch
Pre-Training for R-CNN

1. Input image
2. Extract region proposals (~2k)
3. Compute CNN features
4. Classify regions

Pre-train on relative-position task, w/o labels

[Girshick et al. 2014]
VOC 2007 Performance
(pretraining for R-CNN)

% Average Precision

ImageNet Labels Ours No Pretraining

54.2 56.8 61.7

[Krähenbühl, Doersch, Donahue & Darrell, “Data-dependent Initializations of CNNs”, 2015]
Other Sources Of Signal
Grayscale image: L channel

$X \in \mathbb{R}^{H \times W \times 1}$

Color information: ab channels

$\hat{Y} \in \mathbb{R}^{H \times W \times 2}$
Grayscale image: $X \in \mathbb{R}^{H \times W \times 1}$

Semantics? Higher-level abstraction?

F

Concatenate (L, ab)

(X, \hat{Y})

“Free” supervisor signal

Slide Credit: R. Zhang
Visually Indicated Sounds

Andrew Owens Phillip Isola Josh McDermott
Antonio Torralba Edward Adelson William Freeman
Face Recognition

• Some goals for face/person/recognition:
 • Should be able to recognize lots of people
 • Shouldn’t require lots of data per-person
 • Should be able to recognize a new person post-training

• Classification doesn’t handle any of these well.
Face Recognition

Goal: given images, would like to be able to compute distances between the images.

Face recognition is then: given reference image, is this person the same as the reference image (here: < 1.1)
Face Recognition

Distances between images are not meaningful.

Need to convert image into vector (typically normalized to unit sphere)

How?
Triplet Network

Input

1024D Shape Embedding

$L(\alpha, p, n) = \max(D(\alpha, p) - D(\alpha, n) + \alpha, 0)$

Training

max(D(\[\text{Image 1}\], \[\text{Image 2}\]) - D(\[\text{Image 3}\], \[\text{Image 2}\]) + \alpha, 0)

Idea: Pass all three images through same network (e.g., in same batch).
In Practice

• Picking triplets crucial:
 • Lots of easy triplets (e.g., me and Shaquille O’Neal) – don’t learn anything
 • Only hard triplets (e.g., me and my doppleganger) – training fails since it’s too hard
 • During training, some of the worst mistakes in practice (triplets with highest loss) are often just mislabeling mistakes

• More generally called “Metric Learning”
• Lots of applications beyond face recognition
Next Time

• Video
Extra Stuff
Fast R-CNN – ROI-Pool

Line up

Divide

Pool

“conv5” feature map of image

Source: R. Girshick

R. Girshick, Fast R-CNN, ICCV 2015
Fast R-CNN

ConvNet

Forward whole image through ConvNet

"conv5" feature map of image

"RoI Pooling" layer

Fully-connected layers

Bounding-box regressors

Linear + softmax

Softmax classifier

Region proposals

Linear

FCs

Source: R. Girshick, Fast R-CNN, ICCV 2015
Fast R-CNN training

Log loss + smooth L1 loss

Multi-task loss

Linear + softmax

Linear

FCs

Trainable

ConvNet

Source: R. Girshick

Fast R-CNN: Another view

Source: R. Girschick

Fast R-CNN results

<table>
<thead>
<tr>
<th></th>
<th>Fast R-CNN</th>
<th>R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train time (h)</td>
<td>9.5</td>
<td>84</td>
</tr>
<tr>
<td>- Speedup</td>
<td>8.8x</td>
<td>1x</td>
</tr>
<tr>
<td>Test time / image</td>
<td>0.32s</td>
<td>47.0s</td>
</tr>
<tr>
<td>Test speedup</td>
<td>146x</td>
<td>1x</td>
</tr>
<tr>
<td>mAP</td>
<td>66.9%</td>
<td>66.0%</td>
</tr>
</tbody>
</table>

Timings exclude object proposal time, which is equal for all methods. All methods use VGG16 from Simonyan and Zisserman.

Source: R. Girshick